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Abstract

Advances in DNA sequencing technologies have revolutionised rare disease diagnostics and have led to a dramatic increase
in the volume of available genomic data. A key challenge that needs to be overcome to realise the full potential of these
technologies is that of precisely predicting the effect of genetic variants on molecular and organismal phenotypes. Notably,
despite recent progress, there is still a lack of robust in silico tools that accurately assign clinical significance to variants.
Genetic alterations in the CACNAIF gene are the commonest cause of X-linked incomplete Congenital Stationary Night
Blindness (iCSNB), a condition associated with non-progressive visual impairment. We combined genetic and homology
modelling data to produce CACNAI1F-vp, an in silico model that differentiates disease-implicated from benign missense
CACNAIF changes. CACNAI1F-vp predicts variant effects on the structure of the CACNAIF encoded protein (a calcium
channel) using parameters based upon changes in amino acid properties; these include size, charge, hydrophobicity, and
position. The model produces an overall score for each variant that can be used to predict its pathogenicity. CACNA1F-vp
outperformed four other tools in identifying disease-implicated variants (area under receiver operating characteristic and
precision recall curves = 0.84; Matthews correlation coefficient = 0.52) using a tenfold cross-validation technique. We
consider this protein-specific model to be a robust stand-alone diagnostic classifier that could be replicated in other proteins
and could enable precise and timely diagnosis.

Introduction

Over the past decade, high-throughput DNA sequencing
technologies have revolutionised the management of indi-
viduals with rare genetic disorders, enabling timely and
precise diagnosis, and facilitating personalised medicine
approaches [1]. For genetically heterogenous conditions
such as hereditary hearing loss and inherited retinal dis-
orders (IRDs), genomic testing has been shown to have
significant clinical utility, leading to improved management
[2]. In these conditions, variant detection can provide a
molecular diagnosis in over 50% of patients [3, 4]. How-
ever, distinguishing the disease-causing variants from the
many potentially functional variants present in any human
genome remains particularly challenging [5].

IRDs is a heterogeneous group of disorders that affect ~1
in 3000 people [6] and are a leading cause of blindness in
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working age adults in the UK [7]. Congenital stationary
night blindness (CSNB; also known as congenital stationary
synaptic dysfunction/disorder) is a non-progressive form of
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childhood-onset IRD that is associated with variable com-
binations of night vision problems, reduced visual acuity,
myopia, and nystagmus. X-linked incomplete CSNB
(iCSNB; also known as type 2 CSNB (OMIM 300071)) is
the most prevalent CSNB subtype and it is classically caused
by variants in the CACNAIF gene [8]. CACNAIF (Gene ID
300110) consists of 48 exons (ENST00000376265.2) and
encodes a polypeptide (1977 amino acids) that forms the
pore of a voltage-gated calcium channel, Ca,1.4 al [9, 10].
CACNAIF (NM_005183.3). Its function involves sustaining
continuous calcium dependent glutamate release from the
photoreceptors to bipolar cells in the retina [11]. Over fifty
CACNAIF missense variants are described to cause iCSNB
on the human gene mutation database (HGMD v2019.4)
[12] the majority of which are functionally uncharacterised.
Improved prediction of the likely phenotypic consequences
of missense variants in CACNAIF is therefore key to the
molecular diagnosis of patients with iCSNB.

A number of in silico tools can be used for interpreting
the effects of sequence variants, both in research and in
clinical laboratory settings. Four commonly used tools
include Sorting Intolerant From Tolerant (SIFT, [13]) which
uses a sequence homology-based method, polymorphism
phenotyping v2 (PolyPhen2, [14]) which utilises a sequence
and structure-based approach, combined annotation depen-
dent depletion (CADD, [15]) which uses a supervised
learning method, and consensus deleteriousness score
(CONDEL, [16]) which uses a consensus-based approach
[17]. The latest version of CONDEL combines the predic-
tions of two other tools, mutation assessor [18] and the
Functional Analysis Through Hidden Markov Models
([19]) using weighted averaging.

Despite relative success in differentiating between
disease-causing and benign variants in some genes, these
tools are not consistently effective in their predictions [20].
Even in combination, their efficiency has been shown to be
gene-dependent [21]. Here, we integrate detailed genetic
CACNAIF data with homology modelling of the Ca,1.4 al
protein structure. We show, using CACNA1F-variant pre-
dictor (CACNAI1F-vp), that protein-specific structural ana-
lysis has the ability to improve performance in
differentiating disease-implicated missense changes from
other potentially functional variants.

Methods
Datasets

The HGMDR database was used to retrieve missense var-
iants that have been previously associated with clinical
phenotypes (n = 63; database accessed October 2017). The
ClinVar database [22] was also interrogated and a literature

search, using the search term ‘CACNA1F AND mutation*’,
was carried out at the same time; no further changes were
identified. DNA changes associated with disease in patients
tested at the Manchester Genomic Diagnostic Laboratory
(MGDL), a United Kingdom Accreditation Service Clinical
Pathology Accredited medical laboratory (Clinical Pathol-
ogy Accredited identifier, no. 4015) were also included (n
=9; database accessed October 2017). The guidelines set
out by the American College of Medical Genetics and
Genomics and Association of Molecular Pathology [23]
were used to evaluate the latter set of variants. The Genome
Aggregation Database (gnomAD, accessed October 2017)
[24] was used to identify a set of presumably benign,
“control” variants (hereafter referred to as benign variants).
All missense changes detected in males were selected (n =
322). According to the gnomAD curation team every effort
was made to exclude individuals with severe paediatric
diseases from the dataset so we do not expect the over-
whelming majority of these variants to be associated with
iCSNB [24] [online: http://gnomad.broadinstitute.org/faq;
accessed January 2019].

Homology modelling

A homology model of Ca,1.4 al was generated using
MODELLER v9.17 [25], since its 3D structure has not been
experimentally determined. The CACNAIF sequence from
UniProt (Uniprot ID: 060840, [26]) was used to identify the
structure of the rabbit Ca, 1.1 complex from the Protein Data
Bank (PDB, [27]) as a homologous structure (PDB ID:
5GJV). The sequences were aligned using Clustal Omega
v1.2.3 [28] with default parameters. Approximately 64%
sequence identity in the modelled regions suggests similarity
in structure. Five models of Ca,1.4 al were built and the one
with the lowest Discrete Optimised Protein Energy score
was selected. PyMol [29] was used to visualise the model.

Hypotheses and analyses

To examine van der Waals interactions in the model,
hydrogen atoms were added with Reduce [30], and atomic
contacts were calculated with Probe [31]. Amino-acid
replacements were modelled and visualised using KiNG
v2.23 [32]. All low energy side chain conformations
(rotamers) were examined and the one with smallest van der
Waals overlaps chosen for each variant. In addition, the
Richards volume scale [33] was used to calculate the dif-
ferences in residue volumes. A reference set of all possible
differences in volume of all 20 amino acids was calculated,;
the results of this were divided into four bins based on
volume change upon amino-acid replacement: <—42A°
group, —42 to 0A® group, 0 to 42A°% group and >42A°
group. Similarly, both the disease-implicated and the
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presumably benign set of variants were divided into four
bins and were later compared with a replication the same
four bins of variants with the only difference of having the
mutant/introduced residues randomly generated using
Monte Carlo simulation to identify statistically significant
differences (p <0.05).

The EGS hydrophobicity scale [34] was used to calculate
change in hydrophobicity arising from an amino-acid
replacement. To investigate changes in charged residues,
hydrophobic residues, and differences in spatial distribution
of the variants between the two sets, a reference set of
uniformly distributed variants that were randomly generated
using Monte Carlo simulation was used.

CACNAIF orthologues (n=23) were identified from
UniProt and aligned using Clustal Omega with default
parameters. A conservation score was calculated through
generating a profile [35] where the alignment is converted
into a position-specific scoring system. The frequency with
which the residues occur at each position is scored and later
used to measure conservation using the substitution matrix
BLOSUMG62 [36]. The intracellular and extracellular sides
of the plain in the model were determined by defining the
spatial distribution of the residues using angle calculations.
The angle formed between three residues (the Ca atom of
the query residues, the centre of mass of the protein, and the
Ca of Lys383 chosen by inspection) was calculated. A
residue was counted to be on the intracellular side of the
plain if this angle was <90°, otherwise on the extracellular
side of the plain. The carboxyl terminal domain (CTD) and
the unmodelled parts were excluded from this calculation.

The scripts used in this study are available on the GitHub
repository (https://github.com/shalawsallah/CACNA 1F-va
riants-analysis).

Formulating pathogenicity criteria and evaluating
prediction performance

We defined two datasets. Dataset D represents disease-
implicated variants from HGMD® and MGDL and dataset N
represents presumably benign variants that were found in
hemizygous state in the gnomAD cohort. We analysed these
two datasets to find features that correlate with disease
causality. The logistic regression algorithm “Logistic” [37]
from the WEKA (Waikato Environment for Knowledge
Analysis) machine learning package [38] was used with
default parameters (weka.classifiers.functions.Logistic -R
1.0E-8 -M -1 -num-decimal-places 4) to classify the var-
iants. Prior to this, the “ClassBalancer” and “Discretize”
filters (weka.filters.MultiFilter -F “weka.filters.supervised.
instance.ClassBalancer -num-intervals 10” -F “weka.filters.
supervised.attribute.Discretize -R first-last -precision 67)
were applied successively to reweight the imbalanced
classes in the data and increase performance, respectively.
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The performance of this classifier was later compared to
that of the other four classifiers described above using the
area under the curve (AUC) of receiver operating char-
acteristic (ROC, [39]). The AUC under the precision recall
(PR) curve was also used to measure their performances in
correctly identifying the true positives, i.e. disease-
associated variants, among the true positives and false
positives [40]. The Matthews correlation coefficient test
(MCC, [41]) was used to measure the correlation between
the actual class of variants and the predictions made by the
classifiers. The Bonferroni correction was applied to correct
for possible error rates in multiple comparisons, such as
comparisons made in domains of the protein [42].

Results
CACNATF variants identification

We identified 72 disease-implicated missense variants
(dataset D) that were present in either HGMDR (n = 63) or
the MGDL database (n =9). Next, we identified 322 pre-
sumably benign missense variants (dataset N) from gno-
mAD (the combined 394 variants are shown in Online
Resource 1). Class assignment to datasets D and N was not
definitive. Rather, it was assumed that the two groups of
variants represented populations that were significantly
skewed towards carrying disease-causing and benign var-
iants, respectively.

Performance of in silico tools

We then assessed the ability of four in silico tools to predict
the class of the CACNAIF missense variants (Table 1). The
performance of these tools was highly variable, with a
notable variation in the false positive rate (FPR). However,
when using the unscaled/raw scores of CADD, at a
threshold of 5.25, instead of the recommended scaled
scores, we found it to perform better (e.g. MCC = 0.53,
up from 0.12, AUC ROC = 0.83, up from 0.79, and AUC
PR =0.44, up from 0.43). Furthermore, we found that
changing the CONDEL-defined threshold from 0.52 to 0.65,

Table 1 The comparison of the true positive (TP) and false positive
(FP) predictions of CACNAIF variants using four different tools (total
positives and negatives =72 and 322, respectively (NM_005183.3;
ENSTO00000376265.2)); FPR: false positive rate.

Tools Optimal threshold TP FP FPR (%)
SIFT 0.05 65 171 53
PolyPhen2 0.85 62 132 41
CADD 15 70 277 86
CONDEL 0.52 69 255 79
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Fig. 1 Model representation of the template structure (PDB ID
5GJV) used in homology modelling. The structure is of the mam-
malian voltage-gated calcium channel Ca,1.1 complex at a resolution
of 3.6 angstroms [43]. The transmembrane domain (approximately

i.e. a threshold specific to CACNAIF, results in a higher
overall performance (e.g. MCC = 0.52, up from 0.17).

Homology modelling

In order to analyse the structural and physicochemical
properties of missense variants, we generated a homology
model of Ca,1.4 al and mapped the variants onto it.
Approximately 2/3 of the human Ca,1.4 ol protein could be
modelled, i.e. residues 67-414, 516-766, and 858-1580.
The parts that were not modelled had no homologous
sequence in the template protein. Both termini of template
Ca,1.4 ol are on the cytoplasmic side and the structure has
four (I-1V) transmembrane domains, each of which consists
of six transmembrane o-helical segments (S1-S6). The
fourth transmembrane helix (S4) is a voltage sensor, with
S5 and S6 segments of each domain making the ion channel
and selectivity filter (Fig. 1, [43]).

Structural analysis as a means of assessing variant
pathogenicity

In order to integrate clinical CACNAIF data with homology
modelling of Ca,1.4 al we defined a set of structure-based
parameters and determined their ability to differentiate
variants from the D and N groups.

(1) The Ca,l.4 al model. Four regions of the human
Ca,1.4 al sequence, residues 1-66, 415-515, 767-857, and
1581-1977, have no homologous residues in the rabbit
Ca,l.1 protein used as a template for modelling. The
majority of the variants, i.e. 68/72 (94%), from dataset D
were found to be on regions shared by both the model and
the template structure, i.e. modelled regions, (p <0.0001)
compared with only 200/322 (62%) of the variants from
dataset N (p >0.9). The regions absent from the model, i.e.
unmodelled regions, contain only a small proportion of the

within the lines) in the side view representation (a). The pore (indi-
cated by an arrow) and the first four out of six segments (highlighted
in the rectangle) of each of the four domains in top view represen-
tation (b).

variants from dataset D and are poorly conserved across ten
human paralogues [43]. These data therefore suggest that
variants found within the unmodelled regions are less likely
to be disease-associated.

(i1) Variant location within the Ca,l1.4 al protein. Visual
inspection suggested that the majority of the variants from
dataset D were found closer to the intracellular region than
to the extracellular one. We therefore defined a plain
through the centre of mass of the molecule and determined
whether variants were on the extracellular or intracellular
side of this plain. This defined 745 residues to be in the
extracellular side of the plain and 621 in the intracellular
side of the plain. The locations of the variants differed
between the two groups, with group D variants more fre-
quently seen on the intracellular side of the plain of domain
I (p =0.048 (a significant p value must be <0.005 following
Bonferroni correction)).

(iii) Conservation of mutated residues. Of the 72 mutated
residues from dataset D, 69 were conserved among the
24 species considered (i.e. had a calculated conservation
score <5 out of 10). In contrast, of the 322 mutated residues
from dataset N only 177 were conserved and 145 non-
conserved (i.e. had a conservation score of > 6 out of 10
(p=1.2x 107", Mann-Whitney U test)).

When considering only the modelled regions, 67 of the
68 mutated residues from dataset D were established as
conserved compared with 158 of the 200 mutated residues
from dataset N (p =2.36 x 1072, Mann—Whitney U test). It
can therefore be concluded that changes in conserved resi-
dues, the majority of which are on the modelled regions, are
shown to be more likely disease-associated.

(iv) Changes in residue-volume and molecular
goodness-of-fit test. Replacement of amino-acids may result
in steric clashes with neighbouring regions of the protein
model. To determine whether this is the case we assessed all
low-energy side chain conformations [44] and evaluated

SPRINGER NATURE
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Fig. 2 Protein structure modelling for a disease-implicated variant.
In testing the molecular goodness-of-fit for the disease-implicated
CACNAIF (NM_005183.3; ENST00000376265.2) variant ¢.647 T >
G p.(Leu216Arg), the red spikes reflect an overlap of van der Waals
interaction between the surrounding residues and the introduced
arginine (in orange) in place of the mutated leucine (in green) high-
lighted by the arrows.

their “goodness-of-fit” using the Probe software [31]. There
is a significant difference between the two sets of data (p =
0.001, Mann—Whitney U test) with a higher number of
variants in dataset D having a more negative Probe score
compared with the group N variants (p =0.03 at Probe
scores <180, Mann—Whitney U test). This indicates the
introduction of van der Waals overlaps resulting in steric
clashes (Fig. 2).

The above finding is in accordance with the differences
found in volume-change between the two groups of variants
(p = 0.03, Mann—Whitney U test) with a higher number of
variants in dataset D resulting in the replacement of smaller
amino-acids with larger ones (i.e. a size change <—42A3,
n=23/72 for dataset D, n=59/322 for dataset N; p =
0.046, Mann—Whitney U test). This difference was also
observed when changes in volume in group D variants were
compared with the reference set of volume changes (p =
0.04, Mann—Whitney U test), in contrast to comparing the
group N variants to the reference set (p=0.50,
Mann—Whitney U test). Therefore, the changes that lead to
disruption of packing, and a more negative Probe score are
more likely to be disease-associated.

(v) Changes in charged residues. Cavl.4 al is a voltage-
gated calcium channel and alterations in charge are likely to
affect its function. The replacement of neutral or negatively
charged residues with positively charged residues, (gain of
positive charge), was found to be more frequent among
variants from dataset D, n = 17/72, than dataset N, n = 34/
322, throughout Cavl.4 al (p =0.036). There was more
frequent replacement of positively charged residues with
neutral or negatively charged residues (loss of positive
charge) amongst variants from dataset D than dataset N in
the fourth transmembrane helix (S4) (i.e. the voltage sensor)
of all domains combined (p =0.002), n = 4/6, and in S0-4
of domains II (p = 0.01(significant p value must be <0.005
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following Bonferroni correction)), n =2/4, and in S0-4 of
domain IV (p =0.002 (significant p value must be <0.005
following Bonferroni correction)), n = 3/5.

(vi) Changes in hydrophobic residues. Since Cavl.4 ol
is a transmembrane protein, variants involving replacement
of hydrophobic residues were considered. The replacement
of hydrophobic residues among variants from dataset D in
domain I, n = 12/16, is correlated with pathogenicity (p =
0.015 (a significant p value must be <0.005 following
Bonferroni correction)).

The pathogenicity criteria

The pathogenicity criteria identified were used as features
(Online Resource 1) by a logistic classifier to differentiate
between the disease-implicated and presumably benign
datasets as a composite assessment:

e Variants in sequences shared by the template structure
and the model

e Loss of positively charged residues in the fourth
transmembrane helix (S4) of the four homologous
domains

e Gain of positively charged residues throughout the
protein

e Loss of hydrophobic residues in domain |

e Variants at conserved residues

e Variants found in the lower half of domain I

e Variants resulting in the introduction of larger residues
in place of smaller residues

e A more negative goodness-of-fit, i.e. Probe, score

Machine learning application

The logistic regression model “Logistic” from WEKA was
used to classify the variants. The performance of the binary
classifier is evaluated using a ROC curve [45] which mea-
sures trade-offs between the sensitivity and the specificity of
the classifier at different thresholds. An optimum threshold
can allow for a higher true positive rate (TPR) or a lower
FPR, as required, or a combination of these in a diagnostic
classifier. To account for the imbalance between the two
classes in the data however, the ROC curve is combined
with a PR curve to evaluate the true positives among the
overall positive predictions.

The logistic model performance was compared with four
commonly used in silico prediction tools (Table 2). Its per-
formance in differentiating between the two classes of
variants (AUC ROC =0.84) is comparable to that of the
other four classifiers (Fig. 3). Notably, the larger area under
the logistic model PR curve (AUC PR = 0.84) represents a
comparably high precision (representing a low FPR), and a
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Table 2 Comparing the predictions and the overall performance of the different tools shows a high recall rate at the expense of the precision rate at
optimum thresholds for all the tools except for CACNA1F-vp. CACNA1F-vp has also a higher MCC score (MCC scores range from 1 to —1 with
1 being a perfect correlation between predictions and the classes, and —1 being an inverse correlation); total disease-implicated and benign
variants = 72 and 322, respectively (NM_005183.3; ENST00000376265.2); AUC ROC: area under the receiver operating characteristic curve,
AUC PR: area under the precision recall curve, TPR: true positive rate, FPR: false positive rate, PPV: positive predictive value, MCC: Matthews

Correlation Coefficient.

Tools Threshold Recall/TPR (%) FPR (%) Precision/PPV (%) AUC ROC AUC PR MCC
SIFT 0.05 88 53 28 0.77 0.61 0.3
PolyPhen2 0.85 86 41 32 0.83 0.59 0.35
CADD 15 97 86 20 0.79 0.43 0.12
CONDEL 0.522 96 79 21 0.85 0.61 0.17
CACNAIF-vp 0.567 86 33 72 0.84 0.84 0.52
1.0 = 1.0

> 08 0.8 1

3 .

g o

~ 0.6 e c 0.6

g g =]

T 2% )

o ’ [%}

(] i o

> 04 € 04

= T —— CACNAI1F-vp (area = 0.84) CACNA1F-vp (area = 0.84)

& o —— SIFT (area = 0.77) —— SIFT (area = 0.61)

% 0.2 L —— PolyPhen2 (area = 0.83) 0.2 — PolyPhen2 (area = 0.59)

= ,/’ —— CADD (area = 0.79) —— CADD (area = 0.43)

// —— CONDEL (area = 0.85) —— CONDEL (area = 0.61)
0.0 ¥ . - - . . 0.0 = = r 3 .
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate (1-specificity)

Fig. 3 ROC curves for the different classifiers. The predictive power
of the protein-specific (CACNA1F-vp) model is comparable to that of
the four tools, using 72 disease-implicated and 322 presumably benign
CACNAIF variants, shown by an area under the receiver operating
characteristic (ROC) curve of 0.84.

high recall or sensitivity, i.e. a low false negative rate
(Fig. 4).

Discussion

The interpretation of the large number of genetic variants
generated through current gene sequencing techniques
poses a significant challenge [46]. Computational prediction
tools go some way to address this major issue but have been
shown to frequently be inconsistent [20]. In this study, we
produced a CACNAIF-specific variant classifier through
analysing sequence and structural data of the protein and its
variants. This protein-specific approach was used as an
alternative to currently available tools that tend to be less
intuitive and often perform in a contradictory fashion
[47, 48]. Our analysis was enabled through the use of a 3D
homology model of the protein structure that allowed
structural analysis of 94% of the disease-implicated and
62% of the presumably benign variants. Clearly such ana-
lysis may not be possible for proteins where there is limited

Recall

Fig. 4 PR curves for the different classifiers. The precision of the
protein-specific (CACNA1F-vp) model is outperforming that of the
four tools, using 72 disease-implicated and 322 presumably benign
CACNAIF variants, shown by an area under the precision recall (PR)
curve of 0.84.

knowledge of the protein structure. Notably, the modelled
region contained the majority of disease-implicated variants
and appeared to be conserved among the orthologs of
Cavl.4 al. In contrast, the regions that were not included in
the model contain only a small proportion of the disease-
implicated variants and are poorly conserved across the
orthologs and ten human paralogues of Cavl.4 al. These
results indicate a strong correlation firstly between the
modelled protein regions and pathogenicity, and secondly
between conservation and pathogenicity for this molecule.

The loss of positively charged residues in the fourth
transmembrane helix (S4) found in the disease-implicated
variant set, is thought to cause disturbance in voltage-
dependence functionality [49]. The outward movement of
gating charges in S4 seem to result in bending of S6 and
opening the pore [50]. Positively charged S4 residues form
salt bridges with the negatively charged residues on S1-3
[50, 51]; it can be speculated that altering these interactions
affects channel structure and function. In contrast, disease-
implicated variants leading to gain of positively charged
residues may affect the overall function through interference

SPRINGER NATURE
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with calcium ion selectivity and permeability [49]. In the
CTD, such alterations may also interfere with inhibition of
calcium dependent inactivation. Notably, this important
regulatory functional domain tends to be less tolerant to
variation [52].

We compared the prediction performances of four in
silico tools to that of CACNAIF-vp, and found that the
presented protein-specific model was specific and accurate.
It could differentiate between disease-associated and benign
variants as well as the other in silico tools (AUC ROC =
0.84; Table 2). Furthermore, our predictive model outper-
forms the other tools in correctly classifying the majority of
the true disease-associated variants with a lower false
positive prediction (AUC PR = 0.84; Table 2). Including
more presumably benign than disease-implicated variants in
the analyses, i.e. having an imbalanced dataset, could
improve the ROC curve without any real improvement in
sensitivity or specificity. Evaluation using a PR curve is
immune to this effect of an imbalanced dataset. This makes
the PR curve a more robust measure to evaluate the speci-
ficity of each tool. CACNAIF-vp misclassified seven
disease-implicated variants. These include the four disease-
implicated variants found outside of the modelled regions
of the protein (c.1301 C>T p.(Ala434Val), c.1464G>T
p.(Glu488Asp), c.2390 A>T p.(Glu797Val), and c.2542
G>A p.(Gly848Ser)), and one variant (c.1903G>A
p-(Val6351le)) that was seen in the gnomAD population at a
high frequency (320/150041 alleles). The homology model
was less informative for the variants found outside of the
modelled regions. Hence, the lack of structural information
about these variants may be a strong factor in their mis-
classification. CACNAI1F-vp also misclassified 125/322
(39%) benign variants (Online Resource 2). A recent study
found that disease-implicated CACNAIF variants are pre-
sent in gnomAD, which might be due to overlooked/
undiagnosed cases in this dataset [53]. When we used a
more stringent criterion to define benign variants (presence
in the gnomAD dataset in hemizygous state in at least five
individuals) we found that the misclassification rate of
CACNAI1F-vp was lower (16/52; 30%). Overall, we found
significant differences between the CACNAI1F-vp predic-
tions and those of SIFT, CADD, and CONDEL (p<
0.00001, McNemar chi square test [54]).

We found that adjusting the variant-pathogenicity
thresholds defined by CADD and CONDEL improves the
performance of these tools (MCC increases from 0.12 &
0.17 to 0.53 & 0.52, respectively). Therefore, a protein-
specific pathogenicity-threshold in these tools further vali-
dates the advantage of using a protein-specific approach. A
factor that could inflate the performance of these in silico
methods is that the data used in testing these tools (in the
present study) may have been utilised initially to train them.
However probable, this was difficult to confirm.

SPRINGER NATURE

Important insights could be gained by comparing the
characteristics of the presumed disease-associated (HGMDR,
MGDL) and the presumed benign (gnomAD) variants. One
of the key differences was in the molecular “goodness-of-fit”
test where the deleterious packing interactions were shown to
be greater amongst disease-implicated variants and are likely
to lead to structural instability and functional abnormality.
Intriguingly, a small number of the presumably benign var-
iants (n=19/322) were also found to have significantly
disordered packing interactions (Online Resource 3); the
majority of these changes (14/19) were among the
CACNA1F-vp misclassified variants (Online Resource 2). A
possible explanation for this is the inaccuracies in the
homology modelling process around these missense changes.
Alternatively, it is not implausible that some of these benign
variants are in fact disease-associated (especially the extre-
mely rare ones such as ¢.2221 C>T p.(Leu741Phe) which is
found in 1/86168 gnomAD alleles), Importantly, gnomAD is
population rather than an unaffected control database and
some individuals may in fact have iCSNB.

This study has important limitations. First, the missense
changes that fall outside of the reliably modelled regions
are more difficult to interpret using the approach outlined.
This is highlighted by the misclassification of the four
disease-implicated variants that fall outside of the modelled
regions. Second, the protein-specific nature of our classifier
has significant advantages but limits the number of avail-
able variants to train the model. Given the prevalence and
degree of allelic heterogeneity of iCSNB, assembling a
large independent variant dataset to test the classifier’s
performance was not possible. Third, we did not take into
account factors like penetrance and expressivity in assem-
bling the disease-implicated (dataset D) and presumably
benign (dataset N) variant datasets. It is worth noting
though that, despite the fact that a number of different
ophthalmic conditions has been linked to CACNAIF var-
iants (including iCSNB, Aland eye disease and X-linked
cone-rod dystrophy 3), incomplete penetrance is certainly
not a frequent feature of CACNAIF-related disorders
[52, 55]. Intriguingly, eight disease-implicated variants
were also present in gnomAD in hemizygous state (and
where therefore also included in the presumably benign
dataset; Online Resource 4). This highlights the fact that
certain variants would have been incorrectly annotated;
clearly, this lack of definitive variant class assignment
negatively affects the performance of CACNAI1F-vp.

We can conclude that CACNA1F-vp can form the basis of
an effective test. Its relatively higher precision compared with
existing tools may help pinpoint disease-associated variants
among background variation, facilitating the process of
diagnosing patients with iCSNB. Importantly, wrongly
diagnosing affected individuals can cause distress to the
patient and their family and can lead to further unnecessary
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investigations (for example repeated electrodiagnostic
assessments). Obtaining co-segregation and functional data is
undeniably important and necessary but this information is
often difficult or impractical to get. We therefore believe that
the presented classifier has a role in the evaluation of indi-
viduals with iCSNB. Finally, it can be speculated that
through studying different molecules using similar approa-
ches, a set of pathogenicity rules will emerge including
protein-specific, family-specific or even perhaps more
general rules.
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