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Gelidium crinale, the red algae belonging to Geliaceae Gelidium, is a traditional edible and
industrial alga in China. A sulfated polysaccharide (GNP) is successfully separated from
Gelidium crinale by acid extraction and two-step column chromatography. Chemical
analysis showed that the molecular weight of GNP was 25.8 kDa and the monosaccharide
composition had the highest galactose content and confirmed the presence and content
(16.5%) of sulfate by Fourier transform infrared spectroscopy (FT-IR) spectrometry as well
as barium chloride-gelatin methods. In addition, the effect of GNP on lipopolysaccharide
(LPS)-induced oxidative stress and inflammation in macrophages was also evaluated. The
research results showed that GNP had fairly strong scavenging activities on 2,2′-azino-
bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical, hydroxyl radical, and 1,1-
diphenyl-2-picrylhydrazyl (DPPH) radical and had Fe2+-chelating ability in a dose-
dependent manner. At the same time, it significantly inhibits the expression of inducible
nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and the production of pro-
inflammatory cytokines in RAW 264.7 cells induced by LPS through blocking the mitogen-
activated protein kinase (MAPK)/nuclear factor kappa beta (NF-κB) signaling pathway.
These results indicate that GNP may be a latent component anti-inflammation in
pharmaceutical and functional food industries.
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INTRODUCTION

Seaweeds are a natural source which not only contain a variety of essential nutrients but also meet the
needs of therapeutic, pharmaceutical, and nutritional fields. Generally speaking, they are divided into
three groups, namely, brown algae (Phaeophyceae), green algae (Chlorophyceae), and red algae
(Rhodophyceae). According to reports, it has a variety of important biologically active compounds,
such as lipids, polysaccharides, polyphenols, anthraquinones, steroids, flavonoids, alkaloids,
triterpenoids, and cardiac glycosides (Cao et al., 2020). Among them, red algae had been widely
used in multiple applications like agriculture, food, biomedical, and cosmetics. The red algal
polysaccharides usually consist of carrageenan cellulose, starch, xylan, and porphyrin.
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Gelidium species, the red algae, have been traditionally used in
the phycocolloid industry for agar–agar production. It has been
widely used in many countries. Among them, Gelidium amansii
(GA) is a kind of widely widespread edible red algae and
harvested in the Asian countries, including China, Korea,
Japan, Thailand, and Singapore (Kang et al., 2016). Several
studies have reported that GA has multiple biological
activities, such as enhancing immune activities, preventing
obesity caused by diet, anti-inflammatory effects, and
improving lipid metabolism, among others (Wang et al., 2013;
Liu et al., 2017; Yang et al., 2017) Gelidium crinale (GC), also
known as Ma Mao (Shandong Province), Gou Mao Cai
(Guangdong Province), and Yan Yi (Zhejiang Province), is a
traditional edible marine economic red alga ofGelidium in China.
Compared with GA by GC, it is clear that the morphology and
size of algae are different, but the biological activity of
components has not been studied. Therefore, the research is to
extract sulfated polysaccharides from GC and evaluate their
structure characterization and anti-inflammatory effects, as
well as provide an experimental basis for the high-value
utilization of GC.

Sulfated polysaccharides represent an important class of
glycans. These polysaccharides are often endowed with high
bioactivity related to their sulfate functional groups, which can
interact with many positively charged biological macromolecules.
In recent years, sulfated polysaccharides isolated from seaweeds
(red algae and brown algae) have attracted more and more
attention. Moreover, the sulfated polysaccharides in algae have
anti-inflammatory, antioxidant, and other pharmacological
activities (de Sousa Oliveira Vanderlei et al., 2011; Li et al.,
2017; Lima de Castro et al., 2018) and can be used in
nutrition and healthcare, pharmaceutical, and cosmetic
industries. Moreover, inflammation is an important biological
process for protecting the human body from diverse hazardous
stimuli, such as infection, injury, and irritation (Kim et al., 2018).
The characteristic of inflammation is that leukocytes migrate
from blood to tissues and circulate in the tissues through
proliferation, which relates to a range of adhesion processes
between resident leukocytes and vascular endothelia. Choric
inflammation and prolonged inflammation may be harmful
and can lead to many diseases, including neurodegenerative
diseases, fever, atherosclerosis, and even cancer (Ryu et al.,
2017). Lipopolysaccharides, found in the outer membranes of
Gram-negative bacteria, can activate a series of signaling
pathways related to inflammation, such as NF-κB and MAPK
pathways (Guha and Mackman, 2001). The activation of NF-κB
promotes the expression of genes related to inflammation,
including iNOS, COX-2, and pro-inflammatory cytokines
(interleukin 6 (IL-6), interleukin-1β (IL-1β), and tumor
necrosis factor-α (TNF-α)) (Baeuerle and Baichwal, 1997). In
addition, the production of inflammation is also related to
oxidative stress, and excessive reactive oxygen species (ROS) in
cells can be considered as one of the causes of oxidative stress. The
ROS molecule has high activity and plays a significant role in cell
function. It can induce cells to secrete inflammatory factors and
lead to inflammation. Overexpression of ROS can cause
inflammation and promote the expression of inflammatory

factors. Nitric oxide (NO) is also involved in the oxidation
reaction caused by ROS, which promotes inflammatory
response. Moreover, ROS can act as a second messenger of
intracellular signal transduction and regulate iNOS, COX-2,
and the expression of pro-inflammatory cytokines through
MAPK/NF-κB activation; thus, inhibiting the level of ROS
may be an anti-inflammatory method (Cobourne-Duval et al.,
2016). Therefore, proper adjustment of the expression of
inflammatory factors may reduce the adverse reactions of
inflammation, thereby preventing the occurrence of
inflammation-related diseases (Hou et al., 2020).

In the study, we first reported sulfated polysaccharides (GNP)
isolated from Gelidium crinale (Naozhou Island Sea, Zhanjiang
City). The structure of the polysaccharides was investigated
through chemical analysis, Fourier transformation infrared
spectroscopy (FT-IR), high-performance liquid
chromatography (HPLC), and gel permeation chromatography
system (GPC). The antioxidant activity of the obtained
polysaccharides (including ABTS radical scavenging capacity,
ferrous ion (Fe2+) chelating capacity, DPPH radical scavenging
capacity, and hydroxyl radical scavenging capacity) was
determined. In addition, the anti-inflammatory effects in vitro
were evaluated, and the signal pathway was discussed in RAW
264.7 macrophages cell.

MATERIALS AND METHODS

Materials and Chemicals
Fresh Gelidium crinale were collected from about 1-m depth of
Naozhou Island Sea, Zhanjiang City, Guangdong Province, in
summer 2020. Algae were identified through the morphological
characters of the herbarium and the appraisal scheme of the Prof.
Zhang C (Guangdong Ocean University).

The standards (fucose, galactose, glucuronic acid, rhamnose,
arabinose, ribose, xylose, glucose, and aminogalactose) were
provided by Sigma-Aldrich (Sigma Chemicals, St. Louis, MO,
USA). The bicinchoninic acid (BCA) assay kit and all cell culture
chemicals were provided by Thermo Fisher Scientific, Inc.
(Waltham, MA, USA). LPS, 2,7-dichlorodihydrofluorescein
diacetate (DCFH-DA), 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT), and dimethyl sulfoxide
(DMSO) were purchased from Sigma-Aldrich (St. Louis, MO,
USA). Mouse polyclonal antibodies, including p65 (sc-8008),
p-p65 (sc-136548), IκBα (sc-1643), p-IκBα (sc-8404), p-JNK
(sc-6254), JNK (sc-7345), p-p38 (sc-166182), and p-ERK (sc-
81492); rabbit polyclonal antibodies (p38, (sc-535); ERK (sc-94));
and secondary antibodies, such as goat anti-rabbit IgG-HRP (sc-
2004), and goat anti-mouse IgG-HRP (sc-2005) were provided by
Santa Cruz Biotechnology (Santa Cruz, CA, USA).

Preparation of Sulfated Polysaccharide
from Gelidium Crinal
Sulfated polysaccharide was extracted using the method of Sun
et al. (2018). Gelidium crinale (500 g) was extracted twice with
90% ethanol (W/V � 1:8) to remove pigments, lipids, and other
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impurities, and it was dried at 45°C and extracted with 0.1 M HCl
(W/V � 1:8) for 8 h; the extraction solution was then neutralized.
After centrifugation, the supernatant was condensed to one-
fourth volume by a rotary evaporator at 50°C and was
sedimented with 80% ethanol at 4°C overnight. The precipitate
was taken after centrifugation, then redissolved with distilled
water; the protein in the solution was removed with Sevag
reagent, and the solution was concentrated and dialyzed.

In the second step of extraction, the solution was filtered
through the Sepharose CL-6B column (2.5 × 60 cm), and the
elution phase was 0.1 mol/l NaCl. Finally, the fractions were
gathered and then freeze-dried to obtain the Gelidium crinale
polysaccharide designated as native GNP.

Chemical Composition Determination
The total sugar content was determined according to the phenol-
sulfuric acid method (Nair and Vaidyanathan, 1964). The content
of reducing sugar was determined by the 3,5-dinitrosalicylic acid
(DNS) method. The sulfate content was determined by the
barium chloride-gelatin method (Dodgson and Price, 1962).

Monosaccharide Composition
Determination
PMP (1-phenyl-3-methyl-5-pyrazolone) pre-column
derivatization combined with HPLC was used to determine
the monosaccharide composition of GNP. Firstly, GNP
(10 mg) was hydrolyzed by trifluoroacetic acid solution for 4 h
at 110°C and cooled to ambient temperature. Then, methanol
(1 ml) was added and dried with nitrogen three to four times. One
milliliter of NaOH (0.3 mol/l) solution was added to fully dissolve
the residue, which is a polysaccharide hydrolysate, and
derivatized after a certain dilution. Four hundred microliters
of mixed monosaccharide standard solution or polysaccharide
hydrolysate was taken respectively in a 5-ml test tube with a
stopper, in which 400 μl of PMP methanol solution was added to
mix and reacted in a 70°C water bath for 2 h. It was then cooled to
room temperature, HCl was added to adjust the pH to 7, and the
solution volume was diluted to 1 ml with water. Chloroform was
added, let to stand as well as the organic solution to be discarded,
and then extracted twice. The water phase was analyzed by HPLC
after using a 0.45-μm microporous filter. Then, the mixture was
further passed through an HPLC instrument equipped with a UV
detector at 30°C column temperature and an Agilent Eclipse
XDB-C18 column (250 × 4.6 mm, 5 μm) for detection. The
mobile phase is phosphate buffer (pH � 6.6) and acetonitrile
(Cao et al., 2019).

Relative Molecular Weight Determination
The molecular weight was determined by the GPC system, which
has a Waters 515 refractive index detector and a Shodex
SBOHPAK-806-803 chromatographic column, and the column
temperature is 40°C. The sample (500 μl) was injected, and the
flow rate was set to 1 ml/min. The mobile phase was ultrapure
water (0.02% sodium azide, pH � 6). The time and logarithm of
molecular weight were used as the abscissa and ordinate,
respectively (Cui et al., 2019). The Jiangshen workstation

(produced by Dalian Jiangshen Chromatography Software Co.,
Ltd.) for data processing to obtain the weight average molecular
weight (Mw), number average molecular weight (Mn), and
molecular weight distribution Mw/Mn.

Fourier Transform Infrared Spectroscopy
Analysis
Potassium bromide was first ground with an agate mortar, then
passed through a mesh screen with an aperture of 0.147 mm and
dried under an infrared light for 4 h. Potassiumbromidewas pressed
into a translucent sheet as a blank, and the sample was mixed with
potassium bromide to make a pressed sheet, and the scanning was
performed in the range of 4,000–400 cm−1 (Jia et al., 2015).

In vitro Antioxidant Activities
ABTS Radical Scavenging Capacity Assay
The ABTS radical scavenging capacity was measured according to
the method of Wang et al. (2021). Potassium persulfate at
2.45 mM and ABTS at 7 mM were mixed in equal volumes
and kept protected from light for 16 h at room temperature to
prepare ABTS radicals. ABTS free radicals were diluted in
phosphate-buffered saline (PBS) to an absorbance of 0.70 ±
0.02 at 734 nm. Then, 2.5 ml of ABTS radical and 0.5 ml of
different concentrations of GNP were mixed and reacted for
25 min at room temperature. Last, the absorbance of the mixture
was measured at 734 nm and calculated according to the
following formula, where Ai is the absorbance of GNP mixed
with the reaction solution; A0 is the absorbance of the mixture
solution without sample; and Aj is the absorbance of GNP.

ABTS radical scavenging capacity (%) � (A0 − Ai + Aj)
A0

× 100%

Ferrous Ion (Fe2+) Chelating Capacity Assay
The ferrous ion chelating potency was measured according to the
method of Sun et al. (2018). One milliliter of GNP with different
concentrations was mixed with 0.2 ml of ferrozine (5 mM) and
0.1 ml of ferrous chloride (2 mM) and let to stand at room
temperature for 15 min. Last, the absorbance of the mixture
was measured at 562 nm and calculated according to the
following formula.

Ferrous ion chelating rate(%) � (A0 − Ai + Aj)
A0

× 100%

DPPH Radical Scavenging Capacity Assay
The DPPH radical scavenging capacity was measured according
to the method of Jia et al. (2015). In short, 4 ml of DPPH
(0.5 mmol/l) and 2 ml different concentrations of GNP were
mixed and let to stand for 30 min. Last, the absorbance of the
mixture was measured at 517 nm and calculated according to the
following formula.

DPPH radical scavenging capacity(%) � (A0 − Ai + Aj)
A0

× 100%
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Hydroxyl Radical Scavenging Capacity Assay
The hydroxyl radical scavenging ability was measured according
to the method of Wang et al. (2021). In short, 2 ml of different
concentrations of GNP, 2 ml H2O2 (9 mM), and 2 ml FeSO4

(9 mM) were mixed and reacted at 25°C for 10 min. Then, 2 ml
salicylic acid (9 mmol/l) was added and reacted for 30 min. Last,
the absorbance of the mixture was measured at 540 nm and
calculated according to the following formula.

Hydroxyl radical scavenging capacity(%)
� (A0 − Ai + Aj)

A0
× 100%

Cell Cultures and Cell Viability Assay
RAW 264.7 cells were provided by Fudan IBS Cell Resource
Center. Cells were plated in DMEM and contained 10% fetal
bovine serum (FBS) and 1% penicillin–streptomycin in 5% CO2

at 37°C. RAW 264.7 cells were seeded into a 96-well plate and
incubated at 37°C for 24 h, and then GNP (1, 10, 50, 100, 200, 500,
and 1,000 μg/ml) was added to the wells. Then, 100 μl (0.5 mg/
ml)MTTwas added to each well and left for 4 h. After cultivation,
the supernatants were removed and the dark blue crystals were
dissolved with dimethyl sulfoxide. Also, the absorbance of the
mixture was measured at 540 nmwith a microplate reader (Wang
et al., 2021).

NO Production
The amount of NO released was measured by the Griess method.
Briefly, RAW 264.7 cells were seeded into a 96-well plate at a
concentration of 5 × 103 cells/ml, and then cells were treated with
GNP and LPS for 24 h. Fifty microliters of supernatant was
collected and mixed with the NO detection kit. The
absorbance was determined at 540 nm (Jia et al., 2020).

Productions of Intracellular ROS Assess
RAW 264.7 cells were seeded into a 96-well plate, then cells were
treated with GNP and LPS for 24 h, and then DCF (10 µM) was
added into each well. After 30 min of incubation in the dark, the
cells were washed with PBS. Subsequently, Hoechst 33342 (5 μg/
ml) was added and incubated for 10 min. The fluorescence values
of Hoechst 33342 and DCF were measured with a microplate
reader. The excitation and emission wavelengths for DCF are 485
and 530 nm, respectively; those for Hoechst 33342 were 500 and
460 nm, respectively (Yu et al., 2016).

ELISA Analysis of Cytokines
RAW 264.7 cells were treated with GNP and LPS for 24 h.
According to the manufacturer’s instructions, the ELISA kit
was used to measure the concentrations of TNF-α and IL-6 in
the supernatant (Xiao et al., 2020).

Western Blot
RAW 264.7 cells were seeded into a six-well plate at a
concentration of 5 × 106 cells/ml and cultured for 24 h. The
old medium was aspirated and discarded and then treated with
GNP for 2 h, then LPS was added for a 24-h incubation. The

protein content was determined with the BCA protein
quantification kit and separated by electrophoresis. Then, it
was shifted to NC membranes. The membrane is sealed with
5% skimmed milk for 2 h and incubated with primary antibody
(dilution ratio 1: 500) at 4°C. The secondary antibody (dilution
ratio of 1: 2,000) was incubated for 2 h and then washed with
TBST three times. Protein expression levels were detected by
using enhanced chemiluminescence substrates (Yang et al., 2020).

Statistical Analysis
All results represent the average of three independent
experiments. GraphPad Prism 8 (GraphPad Prism Software
Inc., La Jolla, CA, USA) and ImageJ (Version 1.46r, NIH,
Bethesda, MD, USA) were used for data analyses, and
statistical analyses between different groups were performed by
t-tests or one-way ANOVA. p < 0.05 was judged to be statistically
significant and was highlighted with asterisks.

RESULTS AND DISCUSSION

Chemical Composition and
Monosaccharide Composition of GNP
Acid extraction is a commonly used method for extracting
polysaccharides, which shows a relatively high sulfate content
and improves the biological activity. The acid extraction of GNP
was processed with treatment of 0.1 M HCl. The total yield of
GNP by several times of acid extraction process was about 3.2%
on the basis of lyophilized dry weight. Then, the impurities were
removed and the total sugar content was determined, and the
content was increased to 75.78% (date not show). In addition, as
shown in Table 1, the reducing sugar content was 8.42%, and the
sulfate group content was 16.50%. PMP pre-column
derivatization and HPLC analysis of the monosaccharide
composition of GNP were performed. As shown in Figure 1,
the GNP was mainly composed of galactose (65.05%), xylose
(11.55%), fucose (11.19%), glucose (6.73%), glucuronic acid
(5.54%), rhamnose (0.79%), ribose (0.47%), amino galactose
(0.43%), and arabinose (0.26%). Among them, galactose has
the highest content, followed by fucose and xylose. Galactose
accounts for more than half of all monosaccharides. Cui et al.
(2019) used the GC-MS analysis method to analyze the
monosaccharide composition of sulfated polysaccharide from
the red seaweed Gelidium pacificum. Research indicated that
the main monosaccharide composition of GPOP-1 was

TABLE 1 | The chemical properties and molecular weight of GNP.

Parameters GNP

Chemical properties
Reducing sugar content 8.42%
Sulfate content 16.50%

Molecular weight
Weight-average molecular weight (Mw) 25.77 kDa
Number-average molecular weight (Mn) 13.39 kDa
Polydispersity (Mw/Mn) 1.92

Relative molecular weight of GNP.
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galactose (59.7%), xylose (7.1%), and galacturonic acid
(19.76%); it was determined that the sulfate group content
was 8.80%. Moreover, Yang et al. (2019) analyzed the
monosaccharide composition of polysaccharide from the red
algae GA, and the results showed that the main
monosaccharide composition of GHE was galactose (86.0%),
fucose (8.3%), and xylose (1.1%). GNP obviously accords with
the characteristics of the Gelidium amansii polysaccharide.
Moreover, the sulfuric acid group content of GNP is relatively
high. Many studies have proved that the higher the sulfate
content, the better the biological activity of polysaccharides
(Hou et al., 2020).

As shown in Table 1, the molecular weight of GNP was
analyzed using the GPC method to obtain several molecular
weights, such as weight average molecular weight (Mw), number
average molecular weight (Mn), and polydispersity (Mw/Mn).
Research indicated that the Mn and Mw of GNP were 13.39 and
25.77 kDa, respectively, and the Mw/Mn was 1.92. Jia et al.
(2015) indicated that the smaller molecular weight of the
polysaccharide isolated and purified from R. minima root
had a higher cancer-destroying activity. Furthermore, Sun
et al. (2018) extracted polysaccharides from Laminaria
japonica and found that polysaccharides with smaller
molecular weight had a higher antioxidant activity.
Meanwhile, Dou et al. (2019) discovered that the lower
molecular weight blackberry polysaccharide had a stronger
bile acid-binding ability and was more easily used by
intestinal bacteria.

Bioactivities of GNP are related to its structure, including
sulfate group content and relative molecular weight. Studies

have shown that polysaccharides with smaller relative
molecular weight and higher sulfate content had better
biological activity (Hou et al., 2020; Mou et al., 2018). It is
shown in Table 2 that the molecular weight of red algae
polysaccharides ranges from tens to hundreds of kDa, and the
sulfate group content is generally about 10%. However, GNP
has a higher content of sulfate groups and a smaller molecular
weight.

FT-IR Spectral Analysis
It is shown in Figure 2 that there is an absorption peak at
3,400 cm−1, which is closely related to the O–H bond stretching
of polysaccharides, indicating that there are power intra-
molecular or intermolecular interactions between
polysaccharide chains (Wang et al., 2021). The weak band at
about 2,930 cm−1 is closely related to the C–H tensile vibration
(Jiao et al., 2018). The absorption band in the range of
1,600–1,650 cm−1 is caused by C�O asymmetric stretching
vibration, which proves that the polysaccharide contains
uronic acid, which is an acidic polysaccharide (Shu et al.,
2018). There is a stretching vibration of S�O at
1,200–1,250 cm−1, and S�O is the characteristic group of the
sulfate group (Sanjeewa et al., 2018). The strong absorption
band at approximately 1,000–1,200 cm−1 is closely related to the
existence of C–O–H and C–O–C stretching vibrations, which
are pyranose rings (Zhu et al., 2021). In addition, the
characteristic absorption at 896 cm−1 indicates the presence
of β configuration in polysaccharides (Bi et al., 2018).
Therefore, these characteristics demonstrated that GNP is a
sulfated polysaccharide.

In vitro Antioxidant Activities
The antioxidant activities of GNP estimated through four
experiments are shown in Figures 3A–D. GNP exhibits
extremely antioxidant activities in a concentration-
dependent manner. The ABTS radical scavenging capacity,
Fe2+ chelating ability, and DPPH radical scavenging capacity
were 89.10%, 76.81%, and 56.11%, respectively, when the
consistency of GNP was 8 mg/ml. The hydroxyl free radical
scavenging ability was 50.43%, with the consistency of GNP
of 12 mg/ml. The IC50 of its ABTS free radical scavenging
ability, Fe2+ chelating ability, hydroxyl free radical
scavenging ability, and DPPH free radical scavenging
ability were 2.22, 2.69, 13.56, and 7.41 mg/ml,
respectively. Many studies have reported that sulfated
polysaccharides are good protective agents for antioxidant
enzymes in cells. Thus, the sulfate content and molecular
weight of sulfated polysaccharides will have a certain impact
on the antioxidant activity (Andrew and Jayaraman, 2021).
Sun et al. (2018) indicated that Laminaria japonica
polysaccharides with a higher content of sulfuric acid
groups and a smaller molecular weight have a strong
ability to scavenge free radicals. Rozi et al. (2019)
extracted polysaccharide from Fritillaria pallidiflora and
believed that its hydroxyl radical scavenging activity was
higher due to its lower molecular weight. Hence, GNP can be
used as potential radical scavengers.

FIGURE 1 |Monosaccharide compositions of GNP were determined by
the method of PMP (1-phenyl-3-methyl-5-pyrazolone) pre-column
derivatization combined with high-performance liquid chromatography
(HPLC).
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Cell Viability Assay
In order to avoid the unnatural death of RAW 264.7 cells induced
by GNP, the effect of GNP on the viability of RAW 264.7 cells was

detected byMTT analysis (Du et al., 2018). It is shown in Figure 4
that compared with the blank group without GNP, the cell
survival rate of the experimental group with GNP (1, 10, 50,

TABLE 2 | Comparison of the sulfuric acid content and molecular weight of different types of red algae.

Raw material name Sulfate content (%) Molecular weight (kDa) Physical map References

Gracilaria caudata — 250 Barros et al. (2013)

Gracilaria birdiae 6.4 — Maciel et al. (2008)

Gloiopeltis tenax 8.2 — Lim and Ryu, (2009)

Solieria filiformis — 28 Chaves et al. (2018)

Gloiopeltis furcata 24.8 20.6 Hu et al. (2012)

Gracilaria intermedia 6.6 — Lima de Castro et al. (2018)

Gracilaria corticata — 43 Seedevi et al. (2017)

Gelidium pacificum Okamura 8.8 28.81 Cui et al. (2019)

Gelidium amansii 3.72–4.02 31.62–75.86 Yu et al. (2021)

Gelidium crinale 16.50 25.77 No reports
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100, 200, 500, and 1,000 μg/ml) did not change significantly. It
shows that the GNP has no poison effect on RAW 264.7 cells, and
GNP at this concentration can be selected for subsequent
experiments.

Effects of GNP on NO, ROS, and
Inflammatory Cytokine Production
Macrophages are a type of immune cells that participate in the
inflammatory responses. However, uncontrolled inflammation
would lead to tissue damage and further diseases. Inflammation
can lead to the secretion of inflammatory mediators (Rahmati
et al., 2016; Hou et al., 2020). It is shown in Figures 5A–D that the
levels of NO and ROS in RAW 264.7 cells treated with 1 μg/ml
LPS for 24 h significantly increased. However, GNP can reduce
the levels of NO and ROS in cells stimulated by LPS, indicating
that GNP can relieve LPS-induced inflammation. Wang et al.
(2020) reported that SNPS inhibited LPS-induced TNF-α and IL-
6 protein and mRNA expression levels in RAW 264.7 cells.
Moreover, Le et al. (2020) showed that MESP inhibits the

FIGURE 2 | FT-IR spectroscopy of GNP.

FIGURE 3 | In vitro antioxidant activities of GNP. (A) ABTS radical scavenging activity, (B) Fe2+ chelating capacity, (C) DPPH radical scavenging activity, and (D)
hydroxyl radical scavenging activity. Data are expressed as mean ± SD (n � 3).
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levels of NO, TNF-α, IL-1β, IL-6, and IL-10 to reduce LPS-
induced inflammatory response in macrophages. Meanwhile,
Wang et al. (2021) found that CGP-BG inhibited the protein

levels of NO, IL-1β, IL-6, and TNF-α by LPS induction.
Therefore, it can be explained that GNP has anti-inflammation
activity by inhibiting inflammatory mediators.

Effects of GNP on iNOS and COX-2 Protein
Expression
iNOS can induce the production of NO and is an indicator to
identify whether inflammation occurs; COX-2 is also involved in
inflammation. They all catalyze the production of a large number
of pro-inflammatory mediators. Therefore, inhibiting its activity
can effectively reduce the degree of inflammation (Du et al., 2018;
Zhu et al., 2018; Hou et al., 2020). Sanjeewa et al. (2018) reported
that sulfated polysaccharide from Sargassum horneri dose-
dependently inhibited the expression of COX-2 and iNOS.
Meanwhile, Wu et al. (2016) reported that sulfated
polysaccharide from the brown alga Sargassum cristaefolium
can inhibit the expression of iNOS. It is shown in Figures
6A,B that the protein levels of COX-2 and iNOS in cells
increased significantly after LPS treatment in cells, but their
protein levels decreased after GNP treatment. GNP can inhibit
the expression of iNOS and COX-2 in cells induced by LPS. It can
be seen that GNP can inhibit the expression of iNOS and COX-2
in cells to play an anti-inflammatory effect.

FIGURE 4 | Effect of GNP on the viability of RAW 264.7 cells. Cells were
treated with GNP (10, 50, 100, and 200 μg/ml) for 24 h. Cell viability was
detected by MTT assay. Data are expressed as mean ± SD (n � 3).

FIGURE 5 | (A) Effect of GNP onNO levels in LPS-induced RAW264.7 cells. (B) Effect of GNP on ROS levels in LPS-induced RAW264.7 cells. (C) Effect of GNP on
TNF-α levels in LPS-induced RAW 264.7 cells. (D) Effect of GNP on IL-6 levels in LPS-induced RAW 264.7 cells. Data are expressed as mean ± SD (n � 3). (# indicates
the significant difference between the LPS group and the blank group, #p < 0.05, ##p < 0.01, ###p < 0.001; * indicates a significant difference between the experimental
group and the LPS group, *p < 0.05, **p < 0.01, ***p < 0.001).
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FIGURE 6 | Effect of GNP on iNOS and COX-2 protein levels in LPS-induced RAW264.7 cells. Cells were treated with GNP (10, 50, 100, and 200 μg/ml) for 2 h and
then treated with LPS (1 μg/ml) for 24 h (A) iNOS protein expression and (B) COX-2 protein expression. Data are expressed as mean ± SD (n � 3). (# indicates the
significant difference between the LPS group and the blank group, #p < 0.05, ##p < 0.01, ###p < 0.001; * indicates a significant difference between the experimental
group and the LPS group, *p < 0.05, **p < 0.01, ***p < 0.001).

FIGURE 7 | Effect of GNP on the LPS-induced activation of the NF-κB transcription factor in RAW 264.7 cells. (A) The phosphorylation levels of p65, p-p65, IκBα,
and p-IκBα proteins in RAW 264.7 cells. Cells were treated with GNP (10, 50, 100, 200 μg/ml) for 2 h and then treated with LPS (1 μg/ml) for 24 h. (B) The ratios of
p-p65/p65. (C) The ratios of p-IκBα/IκBα. Data are expressed as mean ± SD (n � 3). (# indicates the significant difference between the LPS group and the blank group,
#p < 0.05, ##p < 0.01, ###p < 0.001; * indicates a significant difference between the experimental group and the LPS group, *p < 0.05, **p < 0.01, ***p < 0.001).
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The Effect of GNP on the NF-kB Signaling
Pathway
NF-κB participates in the transactivation of various genes related
to the regulation of immune and inflammatory responses. It is the
most important transcription factor and consists of homodimers
or heterodimers of Rel proteins (Du et al., 2015). In normal cells,
it binds to IκB and locates in the cytoplasm, thereby inhibiting its
entry into the nucleus. Then, phosphorylation of IκB causes NF-
κB to be activated to enter the nucleus, thereby starting to
produce various mediators (Levy-Ontman et al., 2011; Wu
et al., 2016). As shown in Figures 7A–C, the gray levels of the
bands were analyzed in each group. After LPS treatment, the
protein expression levels of p-p65 and p-IκBα in RAW 264.7 cells
increased significantly, while after GNP treatment, their protein
expression decreased. This indicates that GNP can block NF-kB
from entering the nucleus by inhibiting the phosphorylation of
p65 and IκBα.

The Effect of GNP on the MAPK Signaling
Pathway
Mitogen-activated protein kinase (MAPK), including
extracellular signal-regulated kinase (ERK), c-Jun NH2-
terminal kinase (JNK), and P38 participate in the mediation of

cell growth, apoptosis, and proliferation (Arthur et al., 2013).
MAPK is the upstream signaling molecule of NF-κB, and it also
participates in the inflammatory response and regulates the
expression of related genes (Paunovic and Harnett, 2013; Jia
et al., 2020). This study evaluated the expression of ERK, JNK,
and p38 by Western blotting. It is shown in Figures 8A–D that
the protein expression levels of p-p38, p-JNK, and p-ERK in
RAW 264.7 cells were increased after LPS induction. However,
after GNP treatment, their protein levels decreased. This indicates
that GNP can block the MAPK signaling pathway by restraining
the phosphorylation of P38, JNK, and ERK.

From the structure–activity relationship, the GNP from
Gelidium crinale has rich potential sulfate content (16.5%),
galactose content (63.05%), and smaller molecular weight
(25.8 kDa) compared with other red algae (Gloiopeltis furcata,
Gracilaria intermedia, Gelidium pacificum Okamura, and
Gelidium amansii, Table 2). In red algae, sulfate content,
monosaccharide composition, and relative molecular weight
are important factors for the activity level and intensity.
Sulfate content might affect the binding of polysaccharides
with the cell wall receptor, thereby affecting the production of
NO, but the specific reason for it still unknown (Hou et al., 2020).
A lot of research has shown that the lower molecular weight
makes the spatial conformation of the polysaccharides easy to be

FIGURE 8 | Effect of GNP on the LPS-induced phosphorylation of MAPKs in RAW264.7 cells. (A) The phosphorylation levels of JNK, p-JNK, p38, p-p38, ERK, and
p-ERK proteins in RAW 264.7 cells. Cells were treated with GNP (10, 50, 100, and 200 μg/ml) for 2 h and then treated with LPS (1 μg/ml) for 24 h. (B) The ratios of
p-JNK/JNK. (C) The ratios of p-p38/p38. (D) The ratios of p-ERK/ERK were calculated. Data are expressed as mean ± SD (n � 3). (“#” indicates the significant difference
between the LPS group and the blank group, #p < 0.05, ##p < 0.01, ###p < 0.001; “*” indicates a significant difference between the experimental group and the
LPS group, *p < 0.05, **p < 0.01, ***p < 0.001).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org November 2021 | Volume 9 | Article 79481810

Pei et al. Antioxidant and Anti-inflammatory Effects of Polysaccharide

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


combined with macrophage cells, especially polysaccharides with
molecular weight of 10–200 kDa, which are the most active
(Zhang et al., 2016; Ji et al., 2018). In addition, glucose,
galactose, and mannose combine with other monosaccharides
to produce polysaccharides with high activity, which are also
important structure–activity groups in active polysaccharides
(Zhang et al., 2016). Our results show that the structure and
monosaccharide compositions of GNP are similar to other
studies, which is completely consistent with the properties of
red algal polysaccharides. Therefore, GNP from Gelidium crinale
can be used as a good potential active material for
pharmaceuticals.

CONCLUSION

In conclusion, a sulfated polysaccharide was successfully
extracted from the red seaweed Gelidium crinale, which
has a smaller molecular weight and a higher sulfate group.
It has antioxidant effects and inhibits the activation of NF-κB
and MAPK signaling in RAW 264.7 cells induced by LPS.
GNP can effectively downregulate the production of
inflammatory factors, which has strong anti-inflammatory
properties. Our results provide experimental data for the
further effective development and utilization of GNP and
Gelidium crinale.
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