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Heritable DNA methylation marks associated with
susceptibility to breast cancer
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Mendelian-like inheritance of germline DNA methylation in cancer susceptibility genes has

been previously reported. We aimed to scan the genome for heritable methylation marks

associated with breast cancer susceptibility by studying 25 Australian multiple-case breast

cancer families. Here we report genome-wide DNA methylation measured in 210 peripheral

blood DNA samples provided by family members using the Infinium HumanMethylation450.

We develop and apply a new statistical method to identify heritable methylation marks based

on complex segregation analysis. We estimate carrier probabilities for the 1000 most

heritable methylation marks based on family structure, and we use Cox proportional hazards

survival analysis to identify 24 methylation marks with corresponding carrier probabilities

significantly associated with breast cancer. We replicate an association with breast cancer

risk for four of the 24 marks using an independent nested case–control study. Here, we report

a novel approach for identifying heritable DNA methylation marks associated with breast

cancer risk.
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DNA methylation is a breast cancer risk factor. Several
genome-wide studies of DNA methylation have found
evidence that global methylation levels measured in

blood-derived DNA is associated with breast cancer risk for
women in the general population, and for women from families at
high genetic risk1–3. While increased global methylation is
associated with a reduced risk, increased methylation levels
within functional promoters have been associated with an
increased risk of breast cancer2,3.

Candidate gene approaches have been used to assess whether
methylation at CpG islands of breast cancer susceptibility genes is
associated with breast cancer risk. Women carrying germline
mutations in BRCA1 have a substantially elevated risk of breast
cancer and their tumours typically have distinctive histological
features4–6. We found that peripheral blood DNA methylation at
the BRCA1 promoter was associated with an estimated 3.5-fold
(95% CI, 1.4–10.5) increased risk of breast cancer diagnosed
before the age of 40 years7. Hansmann et al.8 reported that 1.4%
of 600 women from the German Consortium for Hereditary
Breast and Ovarian Cancer had constitutive BRCA1 hyper-
methylation confined to one of the two alleles8.

Women carrying specific rare germline mutations in ATM are
also at substantially elevated risk of breast cancer9–11. Flanagan
et al.12 performed methylation microarray analyses of peripheral
blood DNA across several genes including BRCA1, BRCA2,
CHEK2, ATM, TP53, CDH1, and MLH1, and demonstrated that
gene body hypermethylation of ATM was associated with an
estimated threefold increased risk of breast cancer12. Brennan
et al.13 combined two nested case–control studies of women at
high risk of breast cancer and found evidence that methylation at
an intragenic locus in ATM (ATMmvp2a) was associated with
increased risk of breast cancer13.

Potapova et al.14 described promoter region methylation of
PALB2 was evident in ~7% of breast and ovarian cancers,
including those with germline mutations in BRCA2, using
methylation-specific PCR and bisulfite sequencing14. In contrast,
Mikeska et al.15 found little evidence of PALB2 methylation in
high-grade serous ovarian cancers using a methylation-sensitive
high-resolution melting assay15.

The terminology being used to describe these observations is
variable and vulnerable to misuse and misinterpretation. The
term ‘epimutation’ is strictly defined as a heritable change in gene
activity that is not associated with a DNA mutation but rather
with gain or loss of DNA methylation or other heritable mod-
ification of chromatin16. Changes in gene expression through
altered DNA methylation or histone modifications induced from
cis- or trans-acting genetic factors known as methylation Quan-
titative Trait Loci, (mQTL) are therefore not epimutations in this
strict sense.

Epimutations and mQTLs can mimic germline mutations in
their effect on cancer predisposition and it is likely that their
contribution has been largely underestimated due to limited
research beyond the candidate gene approaches described above8.
These phenomena could therefore account for some of the
familial risk of breast cancer that is not yet identified.

Intergenerational transmission of epimutations (as described
by the authors in the initial reports) has been observed in MLH1
and MSH2 in the context of Lynch Syndrome (LS), a hereditary
condition in which genetic mutations in key mismatch repair
genes predispose individuals to colorectal, endometrial, and other
cancers17. While two thirds of LS cases carry germline genetic
mutations at the DNA mismatch genes18, a small proportion of
LS has been associated with epimutations19,20. It has since been
demonstrated that some methylation marks at MLH1 and MSH2
that are transmitted transgenerationally are in fact linked to
nearby cis-acting genetic variants and consequently follow

Mendelian inheritance patterns21,22, and are thus not strictly
epimutations. Other MLH1 epimutations occur sporadically and
have not been linked to underlying genetic variations23; while
these epimutations are often observed in a familial context, they
do not follow complete Mendelian inheritance patterns23.

We hypothesised that breast cancers in multiple-case breast
cancer families with no known genetic susceptibility mutations
are in part due to the contribution of heritable DNA
methylation marks (including true epimutations and mQTLs). To
test this, we assessed genome-wide DNA methylation for 25
multiple-case breast cancer families using the Infinium
HumanMethylation450 K BeadArray. One or more women with
breast cancer in these families had been previously screened for,
and found not to carry germline mutations in known breast
cancer susceptibility genes. In this study, we report a new analytic
approach to identify CpG sites with Mendelian-like inheritance
patterns and a set of 24 heritable methylation sites associated with
breast cancer risk.

Results
DNA methylation within families. After removing 3949 poorly
performing CpG probes (detection p-value< 0.05), β-values and
M-values were obtained from a total of 481,563 analysable CpG
probes across DNA samples from 210 individuals in 25 families
(20 families participating in kConFab and 5 families participating
in the ABCFR). β-values denote % methylation levels obtained
from the HM450K platform, where 0 indicates 0% methylation
and 1 indicates 100% methylation. Due to the heteroscedastic
nature of β-values, the log2 ratio of methylation intensity, known
as M-values, are also calculated and used for all statistical
analyses24.

DNA samples were collected from 87 breast cancer cases (one
third of the cases had blood collected prior to diagnosis) and 123
unaffected controls. In order to examine the overall genome-wide
methylation similarities between samples and families, a
hierarchical clustering analysis was performed according to
M-values across 481,563 probes. No distinct clustering by
case–control status was observed but some families shared
similar overall methylation patterns (Supplementary Fig. 1).

Heritable methylation sites. The proportion of probes within
10 bp of known single-nucleotide polymorphisms (SNPs)
increased significantly with Δl (p< 0.0001, and see Fig. 1). We
then removed all probes within 10 bp of known SNPs and those
located on sex chromosomes (see Methods). We screened the
remaining 365,169 sites for those most consistent with having a
Mendelian pattern of inheritance using the statistic Δl (Supple-
mentary Fig. 2A). The 1000 most Mendelian methylation marks
(those with the highest values of Δl) are listed in Supplementary
Data 1. These marks all have values of Δl above 77, which sug-
gests that they are highly heritable. We estimated carrier prob-
abilities for the 1000 most heritable methylation marks using
family structure alone.

Heritable methylation sites associated with breast cancer. Of
the 1000 most Mendelian methylation marks, 24 of them had
carrier probabilities that were associated with breast cancer at the
Bonferroni-adjusted p-value threshold of 5 × 10−5 (all p-values
between 2 × 10−5 and 7.4 × 10−10, see Table 1 and Supplementary
Fig. 2B). Notably, five of the heritable methylation marks were
clustered together at VTRNA2-1. For all 24 marks, the methylation
(β) differences were substantial (Δβ> 0.30) between individuals,
with most of these marks showing methylation patterns distinctly
falling into hypermethylated (β> 0.80), hypomethylated
(β< 0.20), or hemimethylated (β ~ 0.50) groups, indicating
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potential allele-specific methylation pattern at these sites (Sup-
plementary Fig. 3 and Supplementary Table 1). While unbiased
hazard ratios could not be calculated (see Statistical Methods), the
risk of breast cancer increased with carrier probabilities for all
24 sites (Supplementary Table 2, where the low carrier prob-
abilities for some CpGs reflect the very low prior carrier prob-
ability), and the estimated effect of the hypothetical genetic
variant on the M-values of each site can be seen from Supple-
mentary Fig. 3 and Supplementary Table 2. For example, for
cg06536614, ‘carriers’ are hemimethylated and ‘non-carriers’ are
hypomethylated. In contrast, for cg18584561, ‘carriers’ are
hypomethylated and ‘non-carriers’ have generally higher methy-
lation levels but these are spread over a range of methylation.

The five probes associated with the VTRNA2-1 locus
(previously known as miR886) encompass a ~50 bp region
150 bp upstream from the transcription start site and overlapping
a CpG island. Although these probes target 5 independent
proximally located CpG sites, the 50mer probes largely over-
lapped with each other (Fig. 2). In addition to these 5 CpG sites,
DNA methylation at other proximal CpG probes showed similar
patterns, although not meeting statistical significance. Within
each individual, the methylation patterns at all CpGs across this
VTRNA2-1 promoter region were consistent, suggesting allelic
methylation at this locus (Fig. 2b). Two recent studies have
suggested that this region might be maternally imprinted25,26. We
have tested this in eight trios (father, mother, and child) and
included additional siblings when possible by performing clonal
bisulfite sequencing. We observed strong hypermethylation of the
maternally inherited allele, confirming the maternal imprinting of
this locus. We found complete loss of methylation in one child
whose three other siblings retained the methylation in the
maternal allele (Supplementary Fig. 4).

One of the heritable methylation marks associated with breast
cancer risk was located close to the 5′ end of the gene Growth
Regulation by Estrogen Breast Cancer 1 (GREB1). The methyla-
tion patterns of all samples at this methylation site grouped
clearly into hypomethylated, hemimethylated, or hypermethy-
lated. Only 13 of our 210 samples were hypermethylated at this
methylation site. We found three of the other methylation marks

overlapping promoter regions of DUSP22, TMC3, and PPP2R5C.
Nine other heritable methylation marks were located in gene
body regions of MMP27, ANO10, CLGN, ZZEF1, PNKD, XYLT1,
c7orf50, RASA3, and IL10RB, while six heritable methylation
marks were not known to be associated with any gene (Table 1).
The ZZEF1, PNKD, c7orf50, RASA3, and IL10RB probes
overlapped CpG island shores or shelves. The MMP27, ANO10,
XYLT1, and GREB1 probes encompassed enhancer regions.

Breast cancer risk association in the general population.
Altogether, 433 invasive breast cancer cases and their matched
controls were included in the analysis2. The median follow-up
time was 9.5 years, interquartile range (IQR): 5.0 to 13.1 years.
Supplementary Fig. 5 shows β-methylation value distribution for
MCCS cases and controls for the 24 methylation sites showing
heritable methylation patterns and associated with breast cancer
in the family-based analyses. Of the 24 sites, four showed linear
association with risk of breast cancer in the MCCS at the nominal
significance threshold p< 0.05 (Table 2). The significant CpG
probes were cg18584561 (GREB1; OR per standard deviation (s.
d.): 1.18, 95% CI: 1.03–1.36), cg01741999 (PNKD; OR per 1 s.d.:
1.26, 95% CI: 1.03–1.54), cg03916490 (C7orf50; OR per 1 s.d.:
0.83, 95% CI: 0.72–0.96) and cg27639199 (TMC3; OR per 1 s.d.:
1.19, 95% CI: 1.03–1.36).

When comparing values belonging to the smaller vs. larger
‘peak’ of the methylation variable distribution, the results were
consistent and more significant (Table 3). At cg18584561
(GREB1), which was trimodal, both the hypomethylated and
hypermethylated peaks were associated with decreased breast
cancer risk (OR = 0.60 (95% CI: 0.45–0.80), and OR = 0.56, (95%
CI: 0.34–0.95), respectively). The methylation pattern at
cg27639199 (TMC3) was also trimodal where the hypermethy-
lated peak was strongly associated with breast cancer risk (OR =
2.16 (95% CI: 1.26–3.72)). At cg03916490 (C7orf50), reduced
methylation was associated with the breast cancer risk (OR = 1.61
(95% CI: 1.16–2.24)). An annotated CpG probe (cg18514595) was
associated with breast cancer risk when categorised into three
methylation peaks.

These associations were robust to further adjustment for
Houseman’s white blood cell composition, and to further
adjustment for additional breast cancer risk factors (parity,
hormonal replacement therapy use, age at menarche and
menopausal status). Similar results were also found when
restricting the analyses to DNA that was extracted from dried
blood spots (Supplementary Table 3) and when repeating the
analyses with carrier probabilities in place of M-values (Supple-
mentary Table 4).

Associations between genetic variants and DNA methylation.
Genotyped and imputed variants from the iCOGS (± 1 kb of
cg18584561, GREB1) representing 251 MCCS participates was
included in the analysis. This region had eight common variants
(in linkage disequilibrium) nominally associated with breast
cancer risk. We found a very strong linear association between
methylation at cg18584561 and the genotypes at this region (p =
1 × 10−65–1 × 10−71). The association between these genetic var-
iants and the corresponding methylation β-value is presented
graphically in Supplementary Fig. 6.

Association with breast cancer estrogen receptor status. We
tested whether methylation levels at any of these 24 CpG sites
were influenced by ER status in our nested case–control study
and found evidence for three methylation marks cg06536614
(ER-; OR = 1.02 (95% CI: 0.86–1.21) vs. ER + : OR = 0.71 (95% CI:
0.53–0.96), p-value (heterogeneity) = 0.03), cg01074083 (ER-; OR
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Fig. 1 Predicting genetic variation with Δl. The proportion of methylation
sites with nearby SNPs as a function of Δl, both by categories of Δl
(horizontal lines with error bars representing 95% confidence intervals)
and as a polynomial function fitted by logistic regression (curvilinear line)
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Fig. 2 DNA methylation at the VTRNA2-1 promoter. a Genomic locations of 6 HM450K probes associated with VTRNA2-1 promoter region. b DNA
methylation levels (β-values) of these 6 probes labelled by breast cancer status. β-values for each individual are shown on y axis for 6 VTRNA2-1 probes.
c Average DNA methylation levels across all six probes shown separately for individual families and labelled by breast cancer status. β-values are shown on
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Table 1 The methylation marks associated with breast cancer

CpG site Δl P-value for association with breast cancer Chromosome Position (hg19) UCSC reference gene

cg06536614 143.6285 7.23 × 10−09 5 135416381 VTRNA2-1 (MIR886)
cg10306192 109.4419 3.46 × 10−05 11 102576374 MMP27
cg18110333 108.7894 4.13 × 10−10 6 292329 DUSP22
cg00124993 107.9848 1.71 × 10−08 5 135416412 VTRNA2-1 (MIR886)
cg26328633 107.4759 1.64 × 10−08 5 135416394 VTRNA2-1 (MIR886)
cg25340688 105.9031 2.73 × 10−08 5 135416398 VTRNA2-1 (MIR886)
cg18514595 95.25137 1.67 × 10−07 22 49579968 unannotated
cg26896946 92.07959 1.50 × 10−09 5 135416405 VTRNA2-1 (MIR886)
cg11035303 90.90393 1.74 × 10−10 3 43465503 ANO10
cg23012654 89.75858 3.85 × 10−05 14 97493395 unannotated
cg26773954 88.76923 1.12 × 10−06 13 111969980 unannotated
cg22901919 87.59356 1.85 × 10−06 4 141317067 CLGN
cg04417708 85.02877 1.28 × 10−08 17 4043867 ZZEF1
cg18584561 85.00000 9.30 × 10−06 2 11682017 GREB1
cg11608150 82.61516 5.21 × 10−07 5 135415948 unannotated
cg01741999 81.77624 3.28 × 10−09 2 219137824 PNKD
cg01074083 80.41676 1.58 × 10−05 16 17516862 XYLT1
cg02096220 80.35092 3.64 × 10−07 4 129212177 unannotated
cg03916490 79.70945 2.07 × 10−08 7 1080558 C7orf50
cg27639199 79.52796 5.37 × 10−06 15 81666528 TMC3
cg25188166 79.40458 4.90 × 10−08 3 119420208 unannotated
cg05865327 78.94414 1.65 × 10−06 14 102274741 PPP2R5C
cg23947138 77.34483 7.47 × 10−10 13 114782778 RASA3
cg05187003 77.22616 1.50 × 10−08 21 34641507 IL10RB
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= 1.08 (0.90–1.29) vs. ER + : OR = 0.72 (0.53–0.98), p-value = 0.02)
and cg23947138 (ER-: OR = 0.80 (0.68–0.94) vs. ER + : OR = 1.24
(0.93–1.65), p-value = 0.01). This result is shown in Supplemen-
tary Table 3.

Discussion
Genome-wide studies of heritable DNA methylation studies in
the context of familial breast cancer have not been conducted
previously, although ~50% of familial breast cancer cases cannot
be explained by what we currently know about genetic risk27. In
this study, we tested whether heritable DNA methylation marks
are associated with breast cancer risk in multiple-case breast
cancer families that do not carry pathogenic mutations in known
breast cancer susceptibility genes.

The hierarchical clustering analysis of all detected probes
demonstrated that genome-wide methylation patterns were
similar within some families, indicating that shared genetics
might have an influence on DNA methylation, as shown in
previous studies28. However, overall genome-wide methylation
did not appear to segregate with affected status in any families
(Supplementary Fig. 1).

We developed a new statistical methodology, based on an
expectation–maximisation algorithm and genetic segregation
analysis, to identify heritable DNA methylation marks using the
HM450 K platform (see Methods). We validated this analytic
approach by showing that it identifies probes that are known to
overlap SNPs (the methylation measurements at these probes are
likely to be influenced by the underlying SNPs). We then
removed all SNP-overlapping probes from the analysis, screened
the remaining probes for those with the most Mendelian-like
inheritance patterns and tested some of the most heritable
methylation marks for association with breast cancer. Note that

our screening for probes with Mendelian-like inheritance patterns
removed many probes that cannot be associated with
familial breast cancer, so this screening step greatly increased our
statistical power for detecting probes associated with familial
breast cancer.

We found 24 probes associated with breast cancer risk after
adjusting for multiple testing (Table 1). Five of these 24 CpG
probes were adjacently located at the promoter region of a vault
RNA, VTRNA2-1 (previously known as nc886 or miR886; Fig. 2).
This vault RNA has been shown to be involved in the inhibition
of protein kinase R (PKR) activity29 and acts as a tumour sup-
pressor in several cancer types29–32. It is located at chromosome
5q13, which is often associated with cancer-associated LOH
including basal-like breast cancers33,34. Hypomethylation at this
promoter, suggestive of loss of imprinting, occurs systematically
in specific individuals in diverse populations, at least partially due
to periconceptional environment and is stable for at least 10
years35. Silver et al. (2015) also noted that VTRNA2-1 exhibits all
the hallmarks of ‘metabolic imprinting’ and is likely to be a
determinant of cancer risk35. Here we have shown that methy-
lation at the VTRNA2-1 promoter is also associated with heritable
breast cancer risk that is measurable in DNA extracted from
blood.

All 210 DNAs included in this study had hemi- or hypo-
methylation across all CpG probes at the VTRNA2-1 locus
(Fig. 2) indicating potential allele-specific DNA methylation
(ASM). ASM at this locus has been reported previously by studies
utilising clonal bisulfite sequencing of multiple tissue types25,26.
However, these studies did not explore nearby genetic variation
that could be superimposed on imprinting to influence the allelic
methylation pattern. Hemimethylation patterns generally
associated with genomic imprinting were only observed in 170 of
the 210 DNAs (~80%) included in our study (Fig. 2). Genomic

Table 2 Associations between heritable DNA methylation marks (associated with breast cancer in multiple-case families) and
risk of breast cancer in the general population (Melbourne Collaborative Cohort Study)

Site Chr. Position Gene name ORa 95% CI p

cg06536614 5 135416381 VTRNA2-1 (MIR886) 0.95 0.83–1.10 0.497
cg10306192 11 102576374 MMP27 1.09 0.94–1.27 0.235
cg18110333 6 292329 DUSP22 0.96 0.83–1.11 0.588
cg00124993 5 135416412 VTRNA2-1 (MIR886) 0.97 0.84–1.12 0.667
cg26328633 5 135416394 VTRNA2-1 (MIR886) 0.98 0.85–1.13 0.761
cg25340688 5 135416398 VTRNA2-1 (MIR886) 0.95 0.82–1.09 0.441
cg18514595 22 49579968 unannotated 1.14 0.99–1.31 0.077
cg26896946 5 135416405 VTRNA2-1 (MIR886) 0.94 0.82–1.09 0.426
cg11035303 3 43465503 ANO10 1.01 0.88–1.16 0.894
cg23012654 14 97493395 unannotated 0.95 0.83–1.10 0.503
cg26773954 13 111969980 unannotated 1.02 0.88–1.17 0.813
cg22901919 4 141317067 CLGN 0.91 0.78–1.06 0.224
cg04417708 17 4043867 ZZEF1 1.00 0.87–1.15 0.989
cg18584561 2 11682017 GREB1 1.18b 1.03–1.36 0.015
cg11608150 5 135415948 unannotated 0.93 0.80–1.07 0.311
cg01741999 2 219137824 PNKD 1.26 1.03–1.54 0.027
cg01074083 16 17516862 XYLT1 0.98 0.84–1.13 0.749
cg02096220 4 129212177 unannotated 1.02 0.89–1.18 0.743
cg03916490 7 1080558 C7orf50 0.83 0.72–0.96 0.012
cg27639199 15 81666528 TMC3 1.19 1.03–1.36 0.018
cg25188166 3 119420208 unannotated 0.96 0.83–1.10 0.551
cg05865327 14 102274741 PPP2R5C 1.04 0.90–1.20 0.589
cg23947138 13 114782778 RASA3 0.89 0.78–1.02 0.091
cg05187003 21 34641507 IL10RB 1.00 0.86–1.15 0.950

a Odds ratio from conditional logistic regression of the risk of breast cancer on M-values (per 1 s.d.), adjusting for body mass index, tobacco smoking, alcohol drinking, time between blood collection and
cancer diagnosis, and sample type (dried blood spots, peripheral blood mononuclear cells, and buffy coats). Cases and controls were individually matched on year of birth, year of blood draw, country of
birth, and sample type for the vast majority of them (97%))
b Results are presented here using the methylation values as continuous, although the association was not linear. A better model fit was obtained by categorising into hypo/hemi/hypermethylated
groups (i.e., peaks). Bold text indicates statistically significant associations
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imprinting is usually highly effective and loss-of-imprinting is
often associated with growth retardation syndromes or tumour
development36. In reference to other typically imprinted region
(e.g., H19/IGF2), the methylation at VTRNA2-1 seemed excep-
tionally variable in the families included in our study. Romanelli
et al. also report an atypical imprinting pattern at this locus and
concluded this region was a polymorphically imprinted differ-
entially methylated region26. By performing clonal bisulfite
sequencing within families, we confirmed the polymorphic
imprinting of this locus as reported by above studies (Supple-
mentary Fig. 4).

We hypothesised that breast cancer arising in multiple-case
breast cancer families with no known genetic mutation might be
in part due to the contribution of heritable DNA methylation
marks (including epimutations and mQTLs). As discussed above,
methylation at the VTRNA2-1 promoter is a strong epimutation
candidate but many of the other identified heritable methylation
marks are likely to be mQTLs. More work is required to char-
acterise these marks further. It is not likely that common genetic
variation currently recognised to be associated with breast cancer
risk (already identified via genome-wide-association-studies)
underlies these methylation marks. The currently published risk-
associated SNP closest to any of the identified heritable methy-
lation marks is located ~1.5b MB from cg18584561 (GREB1). We
found a strong linear association between the DNA methylation

pattern at cg18584561 (GREB1) and 8 proximal common genetic
variants (Supplementary Fig. 6). The genotypes of all 8 SNPs
strongly correlated with the methylation pattern (e.g., DNAs
hypermethylated at cg18584561 were homozygous across this
region). This suggests a potential mQTL at this locus.

The other 19 CpG probes were all located in different genomic
regions. We showed that a single CpG overlapping the
transcription start region of the GREB1 gene is associated with
heritable breast cancer risk. This gene codes for the protein
‘growth regulation by oestrogen in breast cancer 1’ and has
been shown to play a critical role in hormone dependent breast
cancer37,38. There is currently no direct evidence of epigenetic
regulation of this gene.

Four of the 24 methylation marks were associated with breast
cancer risk in an independent nested case–control study of
methylation and breast cancer risk (Table 2). This outcome
provides information with which one could use to hypothesise
further about the relative frequency of the 24 methylation marks.
For some marks, such as the one at GREB1, approximately half of
the families appear to be methylated which is consistent with
replication being possible in a population-based sample, another
fraction (~10%) of the population are hypermethylated at this
CpG. Interestingly, both the hypomethylated and hypermethy-
lated profiles were associated with a decreased breast cancer risk,
with similar estimated risk reduction of 40–45%. At cg03916490

Table 3 Associations between heritable DNA methylation marks (associated with breast cancer in 608 multiple-case families)
and risk of breast cancer in the general population (Melbourne Collaborative Cohort Study), M-values categorised into 2 or 3
groups according to observed bimodal or trimodal 610 distribution (i.e., peaks)

Site Chr. Position Gene name Smaller peak
definition

N cases/controls in
peak

ORa 95% CI p

cg06536614 5 135416381 VTRNA2-1
(MIR886)

M< −1.8 98/90 1.12 0.80–1.57 0.503

cg10306192 11 102576374 MMP27 M> −2.5 186/172 1.13 0.84–1.51 0.420
cg18110333 6 292329 DUSP22 M< −2 97/92 1.09 0.77–1.54 0.626
cg00124993 5 135416412 VTRNA2-1

(MIR886)
M< −2.8 96/85 1.17 0.83–1.64 0.379

cg26328633 5 135416394 VTRNA2-1
(MIR886)

M< −2 100/91 1.15 0.82–1.61 0.414

cg25340688 5 135416398 VTRNA2-1
(MIR886)

M< −2 100/83 1.12 0.80–1.57 0.521

cg18514595 22 49579968 Unannotated −2<M< 2 183/156 1.35 1.00–1.82 0.048
M> 2 30/28 1.06 0.61–1.83 0.842

cg26896946 5 135416405 VTRNA2-1
(MIR886)

M< −1.5 100/92 1.13 0.81–1.59 0.477

cg11035303 3 43465503 ANO10 M> −2 33/36 0.89 0.54–1.46 0.633
cg23012654 14 97493395 unannotated M< 2 83/76 1.12 0.78–1.62 0.545
cg26773954 13 111969980 unannotated M< 2.2 83/83 0.95 0.67–1.34 0.765
cg22901919 4 141317067 CLGN M< 1.5 147/139 1.11 0.80–1.54 0.522
cg04417708 17 4043867 ZZEF1 M< 2.5 116/119 1.00 0.74–1.36 0.984
cg18584561 2 11682017 GREB1 M< −2 188/235 0.60 0.45–0.80 0.00045

M> 1 32/45 0.56 0.34–0.95 0.030
cg11608150 5 135415948 Unannotated M< −2.5 118/102 1.22 0.88–1.67 0.229
cg01741999 2 219137824 PNKD No peak — — — —
cg01074083 16 17516862 XYLT1 M< 2 135/125 1.12 0.82–1.53 0.493
cg02096220 4 129212177 Unannotated M< 1.5 151/153 1.03 0.77–1.38 0.825
cg03916490 7 1080558 C7orf50 M< 2.5 130/101 1.61 1.16–2.24 0.0047
cg27639199 15 81666528 TMC3 −1.5<M< 1.5 189/181 1.23 0.92–1.64 0.157

M> 1.5 47/26 2.16 1.25–3.72 0.0059
cg25188166 3 119420208 Unannotated M< −0.5 29/27 1.07 0.62–1.86 0.809

−0.5<M< 1.5 71/78 0.92 0.64–1.32 0.661
cg05865327 14 102274741 PPP2R5C M< 2.2 106/106 0.95 0.68–1.32 0.760
cg23947138 13 114782778 RASA3 M< 1.5 115/95 1.33 0.97–1.82 0.075
cg05187003 21 34641507 IL10RB No peak — — — —

a Odds ratio from conditional logistic regression of the risk of breast cancer on M-values (per 1 s.d.), adjusting for body mass index, tobacco smoking, alcohol drinking, time between blood collection and
cancer diagnosis, and sample type (dried blood spots, peripheral blood mononuclear cells, and buffy coats). Cases and controls were individually matched on year of birth, year of blood draw, country of
birth, and sample type for the vast majority of them (97%)). Bold text indicates statistically significant associations (Table 2)
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(C7orf50), about 30% of the nested case–control participants were
not strongly hypermethylated, which was associated with a 60%
increase in risk. It is possible that the marks that did not validate
in the nest case–control sample were either not present or at a
very low frequency. Fig 3 graphically illustrates our analytical
approach using 2 CpGs with different ‘carrier’ probabilities as
examples (cg06536614 and cg18584561).

Two thirds of the bloods collected from affected members of
the multiple-case breast cancer families were collected after breast
cancer diagnosis. Reverse causation is therefore a potential reason
for non-replication of some of the methylation marks in the
nested case–control study where blood samples were collected
several years before breast cancer diagnosis.

Our study has two advantages over previous genome-wide
studies. First, our approach utilises DNA methylation levels,
which are important intermediate biomarkers that have not been
incorporated into previous studies. Second, screening methylation
marks for heritability is an effective way of greatly reducing the
set of marks to test for association with breast cancer risk, but
because all germline genetic variants are heritable by definition,
this screening step could not be applied to previous studies.

Heritable methylation sites are interesting, regardless of whe-
ther or not they are associated with breast cancer susceptibility.
We have devised a method for identifying heritable methylation
sites and we have used this as a screening step to increase our
power for detecting heritable methylation marks that are asso-
ciated with breast cancer. This work could found a new area of
exploration in the context of disease susceptibility. Specifically for
breast cancer, this work provides new opportunities for increasing
the precision of current risk prediction models, new strategies for
cancer control (including screening) and new opportunities for
the development of (or repurposing of) epigenetic therapeutics
targeting these risk factors including chemo-prevention.

Methods
Study subjects. Multiple-case breast cancer families. Subjects were members of 25
multi-generational families with multiple cases of breast cancer. The families were
participants in the Kathleen Cunningham Foundation Consortium for Research
into Familial Breast Cancer (kConFab) and the Australian Breast Cancer Family
Registry (ABCFR)39,40. The present study was based on samples and phenotypic
data from a total of 210 family members (87 affected and 123 unaffected) from 25
families and phenotypic data on their relatives.
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Fig. 3 Analytical study approach. An overview of the analytical approach for each of the 1000 most-Mendelian probes in the multiple-case family-based
analyses (a) and for the replication study of 24 probes in the population-based, case–control analyses (b). A measure of Mendelian heritability was
calculated for all probes not on a sex chromosome or within 10 base pairs of a SNP (not depicted). For each of the 1000 most-Mendelian probes, a
Mendelian model was fitted to the probe’s M-values and this was used to calculate carrier probabilities (e.g., for a hypothetical genetic variant that causes
aberrant DNA methylation at the probe), then these carrier probabilities were tested for association with breast cancer (note that unbiased p-values could
be calculated but unbiased risks could not because we could not adjust for ascertainment). This gave 24 highly heritable methylation marks that were
associated with breast cancer, and a nested case–control study was used to test the M-values of each of these probes for association with breast cancer
and to estimate the corresponding odds ratios (ORs)
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One or more members of these families had undergone previous genetic testing
and were not found to carry a mutation in a known breast cancer susceptibility
gene. Genomic DNA was isolated from blood samples or (if no blood specimen was
available) from Epstein-Barr virus transformed cell lines (Supplementary Data 2).
All participants provided signed informed consent to participate in the relevant
research resources. This study was approved by the Human Research Ethics
Committee of The University of Melbourne (1441955) and meets the principles of
the Declaration of Helsinki.

Melbourne Collaborative Cohort Study (MCCS). Data from an independent
nested case–control study of methylation as a risk factor for breast cancer within
the Melbourne Collaborative Cohort Study (MCCS) were used to test the findings
from the family analysis41. This included breast cancer cases with a first diagnosis
of invasive adenocarcinoma of the breast (International Classification of Diseases
for Oncology, C50) occurring between blood collection and 31 December 2007 and
ascertained by record linkage to the population-based Victorian Cancer Registry
(VCR), and to the Australian Cancer Database. Controls were selected through
incidence density sampling and matched with cases on year of birth, year of
baseline attendance, country of origin and, when possible, type of baseline blood
specimen (dried blood spot, buffy coat, or lymphocyte). The HM450K array was
used to measure genome-wide methylation in DNA prepared from peripheral
blood sample collected prior to cancer diagnosis of the cases as described by Severi
et al. (2014)2. All participants provided signed informed consent to participate in
the relevant research resources.

Bisulfite conversion and the HM450K array. A total of 500 ng of genomic DNA
per sample was bisulfite converted using Zymo Gold EZ-DNA kit (Irvine, CA).
Prior to processing the bisulfite converted samples on the Infinium HM450 K
BeadArray, the conversion was confirmed using bisulfite-specific PCR designed in-
house42. The Infinium HM450 K (San Diego, CA) was performed using the
TECAN automated liquid handler (Männedorf, Switzerland) according to the
manufacturer’s instruction.

HM450K data processing. All bioinformatic processing was performed with R
version 3.2.043. Raw intensity signals were imported and processed using the minfi
package44. All samples had an average detection p-value < 0.001, indicating good
quality data. Therefore, no sample was removed from the analysis. Wherever
possible, individuals from the same families were run on the same chips. Individual
CpG probes with detection p-value greater than 0.05 (3949 CpG probes) were
deemed unreliable and excluded from further analyses. All samples were Illumina
and SWAN normalised to reduce technical bias between Type 1 and Type 2
probes45. β-values and M-values were calculated in minfi24,44. β-values denote
relative methylation percentage calculated from the ratio of the methylated probe
intensity and the overall intensity, where 0 indicates 0% methylation and 1 indi-
cates 100% methylation24. Due to the heteroscedastic nature of β-values and
unsuitable for many statistical tests, M-values, which are the log2 of β-values, are
also calculated24. Methylation measures from twelve technical duplicates were used
for testing the reproducibility of methylation measures and removed from sub-
sequent analysis. No further batch correction method was performed.

Clonal bisulfite sequencing. Clonal bisulfite sequencing was performed to test for
the parent-of-origin allelic methylation patterns of the VTRNA2-1 locus as pre-
viously described25. Germline DNA provided by 8 families, including 16 children
were included in this analysis. All DNAs were first genotyped for rs2346019,
(located at the downstream region of VTRNA2-1) using High-Resolution Melt
curve analysis run on a RotorGene thermocycler (Qiagen, Hilden, Germany).
Families where the allelic-specific methylation could be discriminated using this
genotype information were selected for the bisulfite sequencing analysis (i.e.,
parents with disparate genotypes whose children were heterozygote at rs2346019).
A set of previously published bisulfite-specific primers were used for amplifying the
VTRNA2-1 locus25. Cloning was performed using a TOPO-TA kit and at least 10
colonies per individual? were selected for Sanger Sequencing.

Statistical methods. Our method for identifying heritable methylation marks is
based on a generalisation of the standard expectation–maximisation (EM) algo-
rithm for Gaussian mixtures to allow for non-independent group memberships.
These calculations were performed using custom code implemented in R version
3.1.143 because existing general segregation analysis software was too slow to make
the calculations feasible for almost half a million probes.

For each methylation site (CpG probe), two statistical models were fitted to the
site’s M-values: a mixture model, in which the M-values were modelled as a
mixture of two normal distributions (with means and variances to be estimated);
and a Mendelian model, which is the same as the mixture model except that group
membership was modelled as the carrier status (e.g., for a rare variant) at an
autosomal genetic locus. Therefore, group memberships are independent under the
mixture model but not under the Mendelian model. The maximised log-
likelihoods, lmix and lMendel, for these models were calculated using the EM
algorithm, with lmix obtained from the standard EM algorithm for Gaussian
mixtures46 and lMendel calculated using the modification of this algorithm described

in The EM algorithm for the Mendelian model, below. For each model, setting the
means and variances for the two groups to be equal corresponds to a Gaussian
model in which the M-values follow a normal distribution, so this Gaussian model
is nested inside both the mixture and Mendelian models. Using the likelihood ratio
test to compare these models to the Gaussian model is uninformative because
many probes appear to have a bimodal distribution, so instead we compared lmix to
lMendel. A maxim from the field of statistical model selection is that the maximised
log-likelihood quantifies how well a model fits the observed data47. Therefore, Δl =
lMendel − lmix is a measure of how Mendelian the probe’s M-values are, over and
above how bimodal they are. Note also that since the mixture and Mendelian
models have the same number of model parameters, Δl is the difference between
the AICs for these two models, so the AIC model-selection approach would select
the Mendelian model in preference to the mixture model whenever Δl> 0 (and
similarly for the BIC)47.

To validate the ability of the Δl statistic to identify methylation sites with
Mendelian-like inheritance patterns, we calculated Δl for all 481,563 methylation
sites and used logistic regression and the likelihood ratio test to test whether or not
the proportion of probes within 10 bp of a known SNP increases with Δl. This is a
test on the efficacy of our statistic Δl, because the observed M-values of
methylation probes with nearby SNPs are likely to have Mendelian-like inheritance
patterns, just as an artefact of how the HM450 K array measures methylation48.
The HM450K probes are 50mer oligonucleotides in design with the interrogated
target CpGs at the last base. A technical limitation of the platform is that a large
proportion of probes overlap one or more known SNPs48. As the accuracy of
methylation measurements relies on the efficient hybridising of probes to target
complementary DNA fragment, SNPs within probes potentially interfere with this
binding and interrupt the actual methylation measurements48. The observed
methylation values are therefore biased by nearby SNPs and will tend to follow
Mendelian patterns of inheritance. We could therefore assess if Δl identified
heritable sites by testing whether probes with higher values of Δl were more likely
to have nearby SNPs. In addition to the formal test above, we also binned probes by
their values of Δl and graphed the proportion of probes within 10 bp of a known
SNP for each bin. Known SNPs were defined by Illumina’s HM450 K Manifest v1.2
(see Web resources).

To identify heritable methylation marks associated with breast cancer, we first
excluded all methylation probes on sex chromosomes or within 10 bp of known
SNPs. Then we screened the remaining 365,169 probes for those most consistent
with a Mendelian pattern of inheritance, using the statistic Δl. Note that this
screening was based on the structure of the 25 families and did not use any data on
breast cancer-affected status or age. For each of the 1000 most Mendelian sites
(those with the highest values of Δl), we calculated carrier probabilities for the
hypothetical genetic variant that determines group membership in the Mendelian
model. These calculations used standard techniques from segregation analysis49, in
which the observed M-values played the role of the ‘phenotypes’ and the Gaussian
densities (with the model parameters equal to their maximum likelihood estimates
from the Mendelian model) played the role of the ‘penetrance’ function. The
calculation of these carrier probabilities also only used pedigree structure and M-
values, not age or breast cancer data.

Cox proportional hazards survival analysis was then used to test for associations
between breast cancer and the carrier probabilities for the 1000 most Mendelian
methylation marks. These analyses were conducted in R version 3.1.143 using the
coxph function of the survival package50. To adjust for multiple testing, a
Bonferroni-corrected p-value threshold of 0.05/1000 was used to determine
statistical significance. Note that the effects of multiple testing were greatly reduced
in our study because we screened the methylation sites for those with Mendelian
inheritance patterns before testing for association with breast cancer.

The families in this study were ascertained because they each contained
multiple breast cancer cases, and no adjustment for this ascertainment criterion
was made. This means that our hazard ratio estimates are biased, so we do not
report these here, but since the ascertainment criterion has no effect on the test
statistic under the null hypothesis, our p-values for association with breast cancer
are valid. These p-values were based on the likelihood ratio test, not the Wald test,
so variances for the hazard ratios were not needed and hence were not estimated
using either standard maximum likelihood or robust variance estimators.

The EM algorithm for the Mendelian model. This section gives a detailed,
mathematical description of our generalization of the standard EM algorithm for
Gaussian mixtures to allow for non-independent group memberships, as well as a
precise description of the above statistic Δ‘ and its two related statistical models.

The statistic Δl for measuring how Mendelian the inheritance pattern of a given
site is: for each of the methylation sites, we fitted two statistical models to the sites’
M-values x1,…,xn, where n is the number of people with epigenome-wide data and
xi is the site’s M-value for person i. The first model is a mixture of two Gaussians,
so under this model there are binary random variables y1,…,yn so that: the n
bivariate random variables (x1,y1),…,(xn,yn) are independent; and for each j = 0 or
1, P(yi = j) = αj and (xi|yi = j) ~N(μjσj2), where θ = (α0,α1,μ0,μ1,σ0,σ1) is a vector of
parameters to be estimated while satisfying the constraint α0 + α1 = 1. In this paper,
we will also impose the additional constraint that α1 = 0.01, so α0 and α1 are fixed
constants. The second model is the same as the first, except that the group
membership variables y1,…,yn are modelled as the carrier status for a rare,
autosomal genetic variant, with yi = 1 if individual i is a carrier and yi = 0 if he or
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she is a non-carrier. Note that yi and yj will generally be dependent random
variables if individuals i and j belong to the same pedigree, though we still assume
that x1,…,xn are conditionally independent given y1,…,yn.

We will refer to these models as the mixture and Mendelian models,
respectively. Setting μ0 = μ1 and σ0 = σ1in either of these models gives a third model
for the M-values, in which x1,…,xn are independent and follow a univariate normal
distribution, that we call the Gaussian model. The maximised log-likelihoods ‘mix,
‘Mendel , and ‘Gauss of these three models measure the goodness-of-fit of each model
to the site’s M-values47. Since the Gaussian model is nested inside the other two
models, ‘mix and ‘Mendel can both be formally compared to ‘Gauss using a likelihood
ratio test in order to determine if either of these models gives a more parsimonious
fit to the data than the Gaussian model. However, the M-values of a very large
number of the sites are bimodal, so these tests very often prefer both of the other
models to the Gaussian model. To discover sites whose methylation patterns are
Mendelian, we therefore compare ‘Mendel to ‘mix, even though the mixture and
Mendelian models are not nested. Since these models have the same number of
parameters, Δ‘ ¼ ‘Mendel � ‘mix is the difference in both the AIC and BIC of the
two models, so if Δ‘>0 then the AIC and BIC would both favour the Mendelian
model over the mixture model as the more parsimonious description of the data47.
Also, since ‘mix and ‘Mendel measure the goodness-of-fit of these models to the site’s
M-values47, the better the Mendelian model fits the data compared to the mixture
model, the larger Δ‘ should be. We therefore interpret Δ‘ as a statistic which
measures how ‘Mendelian’ the site is, i.e. how consistent the observed M-values at
the site are with a Mendelian pattern of inheritance within families.

Note that we have assumed that all familial aggregation of aberrant DNA
methylation is due to a major gene, so ‘Mendel and hence Δ‘ will be upwardly biased
if part of this familial aggregation is caused by multiple genes of small effect (i.e., a
polygenic effect), or if our model is misspecified in other ways. However, note that
we only use Δ‘ to rank the methylation sites, and this ranking is completely
insensitive to a wide range of biases. Also, while there are good theoretical and
empirical reasons for using Δ‘ to screen the methylation sites, this screening is not
a formal statistical procedure, so even if Δ‘ were biased then this would have no
effect on the validity of our tests for association with breast cancer (the only formal
part of our analysis). Finally, we note that replacing the Mendelian model with a
mixed model (a model that incorporates a polygene in addition to a major gene)
would possibly identify sites with polygenic but not Mendelian patterns of
inheritance, which we are not interested in here.

A detailed description of the EM algorithm for the Mendelian model: since our
analysis included approximately 480,000 sites, efficient algorithms were needed to
maximise the likelihoods. For the mixture model this was straight-forward, because
the EM algorithm for a mixture of Gaussians results in analytical update
formulae46, which can be iterated to rapidly converge (in most cases) to the
maximum likelihood estimates. For the Mendelian model, we used a modification
of this algorithm that we now describe in detail.

In the EM algorithm for the Mendelian model, we took the M-values x1,…,xn of
a given site as the observed data and the binary carrier statuses y1,…,yn as the
hidden data. For now, the reader can simply think of y1,…,yn as variables defining
group memberships, as in the standard EM algorithm for Gaussian mixtures46,
though with the caveat that y1,…,yn are not independent. With model parameters
θ = (α0,α1,μ0,μ1,σ0,σ1) as above, if θt is the estimate of these parameters at iteration t
then the EM algorithm chooses the estimate θt + 1 at the next iteration to be the
argument which maximises the function of θ given by

Qðθ; θtÞ ¼ E½logPðx; yjθÞjx; θt �

where x = (x1,…,xn), y = (y1,…,yn), E½�� is the expectation functional and P(x,y|θ) is
the likelihood of the full data at parameter value θ. More precisely, if Y = {0,1}n is
the set of all binary vectors of length n, then

Qðθ; θtÞ ¼
P

y2Y
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since the M-values x1,…,xn are assumed to be conditionally independent given the
carrier statuses y, with the distribution of xi only a function of yi. The first sum in
(1) is a function only of the parameters μ0, μ1, σ0, and σ1, while the second sum
only depends on α0 and α1. So, to find θ that maximises Q(θ,θt), we can maximise
these two functions separately. In the analysis presented in this paper, however, α0
and α1 were fixed to the values 0.99 and 0.01, respectively, so we focus on
maximising the first term of (1) here.

Let δij denote the Kronecker delta, and for each j = 0 or 1, let φ(xi|μj,σj) be the
probability density function for the normal distribution N(μj,σ2) evaluated at xi, so

that P(xi|yi,θ) = ϕ(xi|μyi,σyi). Then the first sum in (1) is

P

y2Y

Pn

i¼1
Pðyjx; θtÞlogPðxijyi; θÞ

¼ P

y2Y

Pn

i¼1
Pðyjx; θtÞlogϕðxijμyi ; σyi Þ

¼ P

y2Y

Pn

i¼1
Pðyjx; θtÞ

P1

l¼0
δlyi logϕðxijμl ; σlÞ

¼ Pn

i¼1

P1

l¼0
qtil logϕðxijμl ; σlÞ

ð2Þ

where

qtil ¼
X

y2Y
δlyi Pðyjx; θtÞ ð3Þ

so that qtil is the carrier probability for person i corresponding to x and the
parameter values θt when l = 1 (note that the t in qtil is a general superscript, not a
power). Therefore, (2) is a weighted log-likelihood of normal distributions, so it can
be maximised in exactly the same way as for the standard EM algorithm for
Gaussian mixtures46. This gives the following parameter values at iteration t + 1,
for each l = 0,1:
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where wt
il ¼ qtil=

Pn

j¼1
qtjl and, as before, the superscripts t and t + 1 are not exponents.

To calculate these estimates, we used the definition (3) of qtil and the following
expression for P(y|x,θt). Let F be the partition of {1,…,n} into families, so that F is a
set of sets of indices, with each f∈F of the form f = {i1,…,ik}, where i1,…,ik are all of
the people in a given family with epigenome-wide methylation data. For any such
f∈F, let xf = (xi1,…,xik) and yf = (yi1,…,yik) be the observed and hidden data for the
family, respectively. Then since the carrier statuses and M-values of people from
different families are independent,

Pðyjx; θtÞ ¼
Y

f2F
Pðyf jxf ; θtÞ ¼

Y

f2F

Pðxf jyf ; θtÞPðyf jθtÞ
Pðxf jθtÞ ð5Þ

To calculate P(y|x,θt) from the right-hand side of (5), we note that, as before,

Pðxf jyf ; θtÞ ¼
Y

i2f
Pðxijyi; θtÞ ¼

Y

i2f
ϕðxijμtyi ; σtyi Þ

Also, P(yf|θt) can be calculated using standard techniques from segregation
analysis49, as described in more detail in Statistical methods, above. Finally, the
denominator P(xf|θt) in the right-hand side of (5), which is just a normalising
constant, can be obtained by summing the numerator overall values of yf.
Therefore, P(y|x,θt) can be calculated from (5), so substituting this into (3) gives qtil
which, by (4), gives the updated parameters for the EM algorithm.

Improving calculation speeds: our analyses of ~480,000 sites would not be
feasible without a number of techniques to improve the speed of the EM algorithm
for the Mendelian model, so we briefly describe two of these techniques now.

The Mendelian model is a segregation analysis model49, and for such models
the most time-consuming part of the calculation is summing overall possible
genotype combinations for all family members in each family. However, this part of
the calculation is essentially common to all methylation sites, so we obtain
considerable improvements in speed by performing this calculation once and
storing the results for later use.

More precisely, the update equations (4) for the EM algorithm depend on the
carrier probabilities P(yf|θt) via (3) and (5), where we recall that yf is a set of carrier
statuses for all of the members of family f with epigenome-wide data. Using
standard techniques from segregation analysis49, P(yf|θt) can be expressed as a sum
over all genotype combinations for the family which are consistent with the
genotypes yf. Evaluating these sums is usually very time-consuming, however P(yf|
θt) depends on αt0 and αt1 but not on μt0, μ

t
1, σ

t
0 or σ

t
1, and αt0 and αt1 are held fixed

for all t, so P(yf|θt) does not depend on t or the M-values xf. Therefore, we
calculated P(yf|θt) once for every possible combination yf of genotypes, and stored
these values of P(yf|θt) for later use in the update equations (4) (via (3) and (5)) for
each methylation site.

We also used a simplifying assumption. To reduce the number of genotype
combinations yf for which we had to store values of P(yf|θt), we assumed that no
more than 1 of the founders in each family is a carrier and that no founder is a
homozygote carrier (as usually holds if the variant is rare). This assumption is not
essential, however, and it can be weakened (e.g., to allow 2 variants or less among
the alleles of the founders) or entirely dispensed with (if the families are not too
large and not too many family members have epigenome-wide data).
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Testing 24 methylation marks in the MCCS. For each of the 24 CpG sites of
interest, we first estimated odds ratios (OR) for breast cancer risk using conditional
logistic regression models, for a one standard deviation increase in the methylation
M-values in blood HM450K data set of 433 cases and their matched controls from
the MCCS. The models were adjusted for body mass index, tobacco smoking,
alcohol drinking, time between blood collection, and cancer diagnosis, and sample
type (DNA extracted from dried blood spots, peripheral blood mononuclear cells,
and buffy coats, although the vast majority (97%) of case–control pairs were suc-
cessfully matched on sample type). For methylation marks exhibiting a bimodal or
trimodal distribution, we categorised the methylation variables into groups corre-
sponding to the observed ‘peaks’ of hypo, hemimethylated or hypermethylated,
based on visual inspection of the M-value distribution (Supplementary Fig. 4). We
used the same models as for the continuous variable analyses. The larger peak was
chosen as the reference category. Sensitivity analyses were conducted: (1) further
adjusting the models for blood cell composition as estimated by the algorithm by
Houseman et al.51; (2) further adjusting the models for age at menarche, meno-
pausal status, number of live births, and use of hormonal replacement therapy; (3)
restricting the analyses to DNA prepared from dried blood spots.

Associations between genetic variants and DNA methylation. Data for all
variants with 1 kb of the GREB1 probe that were genotyped or imputed using the
iCOGS array were retrieved for MCCS participants included in the Breast Cancer
Association Consortium52. A total of 251 participants (231 cases and 20 controls)
had iCOGS and HM450K data available. Association between genotype and
methylation was assessed using linear regression, with beta-value as the outcome
variable and allele count as the explanatory variable. The allele count was estimated
by rounding the allele dose to an integer value.

Web resources. Illumina Infinium HumanMethylation450K manifest was
downloaded from http://support.illumina.com/array/array_kits/
infinium_humanmethylation450_beadchip_kit/downloads.html

Data availability. All DNA methylation data (HM450K array) has been deposited
to GEO (Accession No. GSE104942) and all bisulfite sequencing data has been
deposited into BankIt2071934 (MG686237-MG686418) and is freely available.
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