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Novel deep learning radiomics model for preoperative
evaluation of hepatocellular carcinoma differentiation
based on computed tomography data

Dear Editor,

The evaluation of tumor differentiation is an urgent clin-
ical issue that would facilitate the establishment of indi-
vidualized therapeutic strategies.' Our team developed a
deep learning radiomics model based on computed tomog-
raphy (CT) data for preoperative evaluation of hepato-
cellular carcinoma (HCC) differentiation (low vs. high
grade) and preliminarily explored the biological basis of
the radiomics model.

We included 1047 patients from the First Affiliated Hos-
pital, College of Medicine, Zhejiang University (Institu-
tion 1) and 187 patients from the Ningbo Medical Cen-
ter Lihuili Hospital (Institution 2). Data from Institution 1
were divided into training and internal validation cohorts
by stratified sampling at a 3:1 ratio, while data from Institu-
tion 2 constituted the independent test cohort (Figure SI).
Patient characteristics are shown in Table 1; there were no
significant differences in the distribution of clinical char-
acteristics among the three cohorts.

The radiomics pipeline (Figure 1) mainly involved data
acquisition from CT images (Method S1), segmentation
of regions of interest, feature extraction (Table S1) and
selection, model construction and evaluation and multi-
omics analysis (Method S2). In total, 707 radiomics fea-
tures were extracted from CT image data; 614 were filtered
out because of low reproducibility or high redundancy, and
25 features with a significant impact on the target were
ultimately selected (Table S2). A radiomics signature was
established using the random forest (RF) method (Table
S3, Figure S2). The AUCs in the training, internal vali-
dation and external test cohorts were 0.82, 0.76 and 0.75,
respectively (Figure S3). Violin plots of selected features
are shown in Figure 4A. The accuracy of the radiomics
signature in the training, validation and test cohorts were
0.75, 0.72, and 0.66, respectively; the sensitivity was 0.76,

0.70, and 0.74, respectively; and the specificity was 0.72,
0.75, and 0.54, respectively.

The deep learning model in this study was modified
from VGG19* (Table S4). A illustration of deep learning
model structure is shown in Figure 2. The AUCs of the
deep learning model in the training, internal validation
and test cohorts were 0.85, 0.81, and 0.75, respectively
(Figure S4). The model had an accuracy of 0.77, 0.75,
and 0.66, respectively; sensitivity of 0.76, 0.81, and 0.62,
respectively; and specificity of 0.66, 0.66, and 0.72, respec-
tively in the three cohorts. In the comparison of the
deep learning model with the radiomics signature, p
values from the DeLong test® were 0.09, 0.17, and 0.62
in the training, validation, and test cohorts, respectively.
There were no significant differences between the deep
learning model and radiomics signature, although the
former had a slightly higher AUC. To see how much value
radiomics or deep learning can bring to some risk factors
about tumor morphology and size, the features (origi-
nal_shape2D_Sphericity, original_shape2D_Elongation,
original_shape2D_MajorAxisLength) were used to con-
struct a morphological model (Figure S5).

Predictions based on clinical characteristics were deter-
mined from the clinical model established from RF of clin-
ical characteristics. After visualizing the predicted prob-
abilities of the clinical model, radiomics signature, and
deep learning model, we found that the three predictors
showed good discriminatory power for groups with differ-
ent pathologic grades (Figure 3B). The performance of the
clinical model is unsatisfactory (Figure S6). Next, the clin-
ical model, radiomics signature, and deep learning model
served as the base models for inputting predicted proba-
bilities into the logistic regression model for multi-model
predictions fusion. ROC curves of the fused model applied
to the three cohorts are shown in Figure 3C. The results
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TABLE 1 Patient characteristics of three cohorts
Training Internal p value (training Independent  p value (training
Characteristics cohort validation cohort vs. validation) test cohort vs. test)
Age (year) 56.56 + 11.47 56.79 +10.62 0.4726 60.32 + 38.30 0.0867
Sex 0.6997 0.6296
Female 125 42 26
Male 674 206 161
Maximum tumor diameter (cm)  4.73 +2.92 4,78 +2.82 0.2342 4.59 + 3.12 0.1150
Multiple tumors 0.1575 0.4914
No 678 220 163
Yes 121 28 24
Serum AFP level 0.9889 0.3647
Normal 227 71 60
Abnormal 572 177 127
Clinical stage 0.9275 0.6359
I/11 692 216 165
II/IvV 107 32 22
Hepatitis B 0.2578 0.7733
Yes 116 44 25
No 683 204 162
Cirrhosis 0.3310 0.0005
Yes 349 99 55
No 450 149 132
Symptoms 0.8340 0.0037
Yes 597 183 159
No 202 65 28

Abbreviation: AFP, alpha-fetoprotein.

of the DeLong test showed that AUCs of the fused model
were significantly improved over those of the base models.

FM = —6.81 +3.63XCM + 7.51 X RS + 3.79 Xx DL
(CM, clinical model; DL, deep learning model;
FM, fused model; RS, radiomics signature)

Quantitative indices in the comparisons between the
clinical model, radiomics signature, deep learning model,
and fused model and the results of the DeLong test are
summarized in Table 2. The fused model showed the best
performance in the training, validation, and test cohorts,
with an AUC of 0.89, 0.83, and 0.80, respectively; accu-
racy of 0.82, 0.77, and 0.73, respectively; sensitivity of 0.85,
0.81, and 0.71, respectively; specificity of 0.76, 0.71, and 0.75,
respectively; PPV of 0.84, 0.80, and 0.79, respectively; NPV
of 0.78, 0.73, and 0.66, respectively; and F1 score of 0.77,
0.72, and 0.71 respectively. The calibration curves showed
that the fused model had better concordance between pre-
dicted and actual probabilities than the other models (Fig-
ure 3D). Comparison of the decision curves of the four

models in the test set indicated that the fused model had
greater clinical utility (Figure 3E), and the IDI indicated
that the predicted probabilities of the fused model were sig-
nificantly improved compared to those of the other mod-
els (Figure S7). A nomogram for preoperative prediction of
HCC pathologic grade was established based on the fused
model (Figure 3F).

A total of 69 patients with CT data were included in
the multiomics analysis. After data preprocessing, 19723
genomics, 42807 transcriptomics, and 3658 proteomics
variables with differential expression between high- and
low-grade HCC (valid data > 80%) were extracted. Pear-
son’s correlation coefficients between radiomics features
and multiomics variables are shown as correlation heat
maps (Figure 4A). The selected radiomics features recon-
structed 65.54%, 64.65%, and 72.69% of the differentially
expressed genes, transcripts, and proteins (Figure 4B). The
coverage of each type of -omics was 60% with just 15
radiomics features. The radiomics-related multiomics vari-
ables showed significant differences between the different
pathologic grades (high vs. low grade) (Figure 4C).
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TABLE 2 Comparison of quantitative indices of the clinical model, radiomics signature, deep learning model and fused model applied to

the three cohorts

Training cohort Internal validation cohort Independent test cohort

Methods CM RS DL FM CM RS DL FM CM RS DL FM
AUC 0.7044 0.8223 0.8510 0.8941 0.6264 0.7616 0.8073 0.8301 0.6626 0.7475 0.7513 0.8042
ACC 0.6383 0.7459 0.7735 0.8160 0.6264 0.7177 0.7500 0.7702 0.6150 0.6578 0.6631 0.7273
SENS 0.6157 0.7622 0.8535 0.8535 0.5724 0.6965 0.8137 0.8137 0.6698 0.7453 0.6226 0.7075
SPEC 0.6707 0.7225 0.6585 0.7622 0.5825 0.7476 0.6601 0.7087 0.5432 0.5432 0.7160 0.7531
PPV 0.7286 0.7978 0.7821 0.8375 0.6587 0.7953 0.7712 0.7973 0.6574 0.6810 0.7416 0.7895
NPV 0.5486 0.6790 0.7578 0.7837 0.4918 0.6363 0.7157 0.7300 0.5570 0.6197 0.5918 0.6630

F1 score 0.6036 0.7001 0.7047 0.7728 0.5333

Significance level of DeLong test for models compared with FM

CM
Training cohort <0.0001
Internal validation cohort <0.0001
Independent test cohort 0.0005

0.6875 0.6868 0.7192 0.5499 0.5789 0.6480 0.7052

RS DL

<0.0001 <0.0001
0.0035 0.1083
0.0295 0.0132

Abbreviations: AUC, area under curve; ACC, accuracy; CM, clinical model; DL, deep learning model; FM, fused model; NPV, negative predictive value; PPV,
positive predictive value; RS, radiomics signature; SENS: sensitivity; SPEC, specificity.

The results of the gene enrichment analysis of 25
radiomics features are summarized in Figure 4D. In the
enrichment result for wavelet LL_first-order_entropy,
21 GO terms and pathways were identified that are
potentially related to HCC development. For example,

wavelet_LL_first-order_entropy was associated with
abnormal alcohol dehydrogenase activity, which leads
to abnormal development and cell apoptosis. Key genes
associated with original_shape2D_sphericity were related
to the phosphatidylinositol 3-kinase (PI3K)/protein
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FIGURE 3 Construction and evaluation of the deep learning radiomics model for preoperative hepatocellular carcinoma (HCC)

pathological grading. (A) Violin plots of six selected radiomics features, including ‘original_shape2D_Sphericity’,

‘original_firstorder_l0Percentile’, ‘original shape2D_Elongation’,'original firstorder Minimum’,‘original_glcm_Correlation’ and

‘original_glcm_DifferenceEntropy’. (B) 3D scatterplot of predicted probabilities for the clinical model, radiomics signature, deep learning
model and fused model. (C) ROCs and AUCs of the deep learning radiomics model in the three cohorts. (D) Calibration curves of the different
models. (E) Decision curves of the different models. (F) Nomogram for preoperative prediction of HCC pathologic grade
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kinase B (AKT) signaling pathway (Figure 4F), which
is involved in apoptosis, cancer cell proliferation, DNA
repair, and cancer differentiation, among other biological
processes.

In conclusion, we established a deep learning radiomics
model that can be used for preoperative pathological grad-
ing of HCC and served as a noninvasive prediction tool to
guide clinical decision-making.
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