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Abstract

Many insect species are associated with bacterial partners that can significantly influence

their evolutionary ecology. Compared to other insect groups, aphids harbor a bacterial

microbiota that has the reputation of being poorly diversified, generally limited to the pres-

ence of the obligate nutritional symbiont Buchnera aphidicola and some facultative symbi-

onts. In this study, we analyzed the bacterial diversity associated with the dogwood-grass

aphid Anoecia corni, an aphid species that spends much of its life cycle in a subterranean

environment. Little is known about the bacterial diversity associated with aphids displaying

such a lifestyle, and one hypothesis is that close contact with the vast microbial community

of the rhizosphere could promote the acquisition of a richer bacterial diversity compared to

other aphid species. Using 16S rRNA amplicon Illumina sequencing on specimens collected

on wheat roots in Morocco, we identified 10 bacterial operational taxonomic units (OTUs)

corresponding to five bacterial genera. In addition to the obligate symbiont Buchnera, we

identified the facultative symbionts Serratia symbiotica and Wolbachia in certain aphid colo-

nies. The detection of Wolbachia is unexpected as it is considered rare in aphids. Moreover,

its biological significance remains unknown in these insects. Besides, we also detected

Arsenophonus and Dactylopiibacterium carminicum. These results suggest that, despite

its subterranean lifestyle, A. corni shelter a bacterial diversity mainly limited to bacterial

endosymbionts.

Introduction

Insects maintain a variety of symbiotic relationships with heritable bacteria that can deeply

influence their evolutionary ecology [1–3]. Thanks to their well-studied associations with a

wide range of heritable symbiotic bacteria, aphids (Hemiptera: Aphididae) are valuable model

systems for studying the evolution of bacterial mutualism in insects [4–6]. Like many insect

species that feed on nutrient-deficient diets, aphids typically harbor an ancient nutritional obli-

gate endosymbiont, Buchnera aphidicola, confined in specialized cells called bacteriocytes and
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stably maintained in host populations by vertical transmission [5,7]. In addition to their obli-

gate partner, aphids can also host various facultative endosymbionts that can positively or neg-

atively affect a variety of host phenotypes, depending on the ecological context [4,6].

The functional diversity of facultative symbionts associated with aphids includes γ-pro-

teobacteria [e.g. Arsenophonus sp. [8,9], Regiella insecticola [10,11], Serratia symbiotica
[12,13], Hamiltonella defensa [14,15], Rickettsiella viridis [16,17] and Candidatus Fukatsuia
symbiotica [18,19]], α-proteobacteria [e.g. the genus Rickettsia [20,21] and Wolbachia
[22,23]] and Mollicutes of Spiroplasma genus [24,25]. Ecological effects associated with these

bacterial partners include defense against parasites [26–30], body color modification [31,32],

heat stress tolerance [33], host plant use and nutrition [34,35] and host reproductive manip-

ulation [36].

In addition to intracellular endosymbiotic bacteria, the aphid microbiota may also include

bacterial partners involved in less lasting interactions, which may be transient or even antago-

nistic, and include gut bacteria, plant associates, pathogens, and environmental contaminants

[1,2,37–44]. In aphids, these microorganisms have received limited consideration, notably

because of the virtual absence of bacteria in the plant-phloem [45]. However, high-throughput

sequencing approaches provide the opportunity to get more complete pictures of the bacterial

communities associated with these insects. In this regard, recent studies suggest that the

microbiota of some aphid species may be more diverse than previously thought, involving a

wider a bacterial diversity that includes members of the genera Pseudomonas, Erwinia, Acine-
tobacter, Staphylococcus and Pantoea among others [40,42,46]. Tackling this diversity is

crucial to understanding how heritable bacterial endosymbioses are established from free-liv-

ing lineages. Indeed, recent studies suggest that heritable endosymbionts derive from free-liv-

ing bacteria, which can sometimes reside in the host plant and in the digestive tract of aphids

[39,47–51].

The diversity of the microbiota associated with aphids is linked to their living environment,

and the evolutionary acquisition of certain symbionts is probably due to particular habitats. In

this context, the soil is an extraordinary reserve of microbiological diversity whose functions

are essential to the functioning ecosystems [52]. We therefore hypothesize that aphid species

living in close association with the soil, such as the dogwood-grass aphid Anoecia corni, are

likely to harbor a more diverse and original microbiome than the aphid species strictly present

in the areal parts of plants. This particular species notably has access to the xylem tissues of the

roots, the first gateway through which many soil-borne bacteria, sometimes pathogenic, transit

[53–56].

A. corni is a holocylic dioecious species belonging to a genus that includes about twenty

aphid species widely distributed in the Holarctic, many whose ecological and taxonomic posi-

tion remain largely unknown [57,58]. In temperate areas, overwintering eggs hatch on dog-

wood (Cornus sanguinea) during spring, giving rise to a generation of fundatrices. In summer,

the alates leave dogwood and migrate onto the roots of grasses and sedges (Poaceae, Cypera-

ceae) where they are often attended by ants [59]. The microbiota associated with A. corni is

unknown, and its subterranean lifestyle makes it an ideal candidate to test the hypothesis that

close contact with the vast microbial community of the rhizosphere could promote the acquisi-

tion of a richer bacterial diversity compared to other aphid species. In this study, we sampled

A. corni colonies on wheat roots in two regions of Morocco. The 16S rRNA amplicon Illumina

sequencing approach was used to examine the composition of the microbiota associated with

aphid samples and to clarify the relationship between these two organisms. For this, the evolu-

tionary history was inferred using the Neighbor Joining (NJ). Our results are discussed in light

of previous studies on the microbiota associated with other aphid species.
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Materials and methods

Sample collection and DNA extraction

Apterous adults of A. corni were collected during August 2014 on roots of wheat plants (Triti-
cum sp.) in Morocco with the kind permission of the landowners. A total of 16 colonies were

sampled in two important regions in terms of cereal crops: eight colonies were collected in the

locality of Béni Mellal-Khénifra and eight colonies were collected in the locality of Casablanca-

Settat (Fig 1; S1 Table in the Supporting Information). Aphid collection consisted of three

wingless parthenogenetic adult females per colony, which were immediately immersed in 95%

ethanol during collection and preserved at 4˚C until use.

DNA extraction, PCR amplification, library preparation and sequencing

Prior to DNA extractions, aphid samples, each comprising three adult aphids of the same col-

ony, were surface-sterilized with 99% ethanol, 10% bleach and rinsed with sterile water to

remove surface contaminants. The genomic DNA was extracted using the DNeasy Blood &

Tissue kit (QIAGEN) following the instruction of the manufacturer. The quantity and quality

of the DNA extractions were measured with a NanoDrop spectrophotometer (Thermo Scien-

tific, USA). Extractions were then stored at -20˚C. After extraction, the genomic 16S rRNA has

Fig 1. Geographical location of collection sites of A. corni colonies analyzed in this study (for details, see S1 Table in the supporting information).

https://doi.org/10.1371/journal.pone.0256019.g001
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been diluted using sterilized ultrapure water in equal concentration (5 ng/μl) from each sample

for further steps.

PCR amplification, library preparation and sequencing

Sequencing libraries were prepared according to the Illumina MiSeq system instructions 16S

workflow and as described previously [40]. First, DNA was amplified using universal primers

with overhang adapters attached (F: 5’ TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTA
CGGGNGGCWGCAG and R: 5΄GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVG
GGTATCTAATCC) and which targets the V3-V4 variable region of the 16S bacterial rRNA

gene. This first PCR step (PCR1) was carried out using a kit 2x KAPA HiFi HotStart ReadyMix

in a mixture total volume of 25 μl. The conditions of this first PCR were 95˚C for 3 min (1

cycle); 95˚C for 30 s, 55˚C for 30 s and 72˚C for 30 s (25 cycles), followed by 72˚C for 5 min.

PCR products were cleaned with AMPure XP beads. A second-stage PCR (PCR2) was carried

out using 5 μl PCR1 purified to attach dual indices and Illumina sequencing adapters using the

Nextera XT Index Kit. Different combinations of index (i5 and i7) were used for each sample.

The PCR2 was executed under the same conditions of PCR1 but with eight PCR cycles. A

clean-up of the PCR2 products with AMPure XP beads was performed before quantification.

PCR2 products were quantified and normalized at 7 ng/μl using PicoGreen dsDNA Quantita-

tion Assay and were generated an equimolar pool (7 ng/μl). Before proceeding to high-

throughput sequencing (HTS), the final pool was quantified by qPCR (kit KAPA SYBR FAST

qPCR ABI Prism readymix KK4604) and 7 pM of denatured final pool was loaded on MiSeq

reagent kits v3 (600 cycles). All the processes were carried out by the GIGA-Research Center

of the University of Liège (ULiège, Belgium) using Illumina MiSeq Technology for paired-end

sequencing (2 × 300 bp reads).

Data analysis

The data analysis was achieved as previously described [40]. The 16S rRNA Illumina Miseq

sequencing reads were analyzed using UPARSE [60] bioinformatics pipeline. For each aphid

sample, forward and reverse sequences from paired-end reads were assembled and the

resulting consensus sequences were filtered based on their respective quality (expected num-

ber of errors <1.0 and a length >450 nt). Sequences with� 97% similarity were assigned to

the same operational taxonomic units (OTUs). Chimera were removed using a reference-

based filtering with UCHIME and the gold database of the corresponding software. A sec-

ond level of quality-filtering was carried out in order to discard OTUs with a number of

sequences <0.005% of the total number of sequences, as recommended previously [61]. As

previously recommended [62,63], an additional filtering was performed by analyzing the

negative controls in order to remove OTUs corresponding to potential contaminations. Bac-

terial taxonomic assignments of each OTU were obtained using the dada2 R package [64]

and the Greengenes (v.13.8) database [65]. Finally, to improve the taxonomic assignment,

the representative OTUs were compared to the sequences in the GenBank using BLASTn.

To compare samples, the number of sequences was standardized or rarefied to 50,000 per

sample. After rarefaction, the OTU table was analyzed (See S2 Table. Commands and

options used to build the OUT table). All bacterial sequences found in A. corni are given in

S3 and S4 Tables (Supporting information). Raw data were deposited European Nucleotide

Archive (ENA) as a file under accession number PRJEB35700.

Phylogenetic relationships of bacteria associated with A. corni and representative endosym-

bionts of other aphids were established using SeaView v4.6.1 to align 16S rRNA sequences [66]

and GBlocks v0.91b [67] to remove poorly aligned positions and divergent regions of DNA
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alignments. We selected the best fit evolutionary models using PartitionFinder v1.1.0 [68]. The

phylogenetic tree was reconstructed using the neighbor joining method with SeaView v4.6.1

and bootstrap values were computed for each branch node (N = 1000).

Results

Library basic statistics

On average, NGS sequencing produced 187,592 bacterial 16S rRNA reads per sample (Table 1).

The assembly of paired sequences resulted in consensus sequences with an average length

of 466 bp. The quality-based filtering of the consensus sequences resulted in an average num-

ber of high-quality sequences per sample of 150,605.

OTU clustering and taxonomic assignment

Initially, high-quality reads were clustered using>97% sequence similarity into 23 OTUs.

Based on the analysis of the negative controls, 13 OTUs that count for 0.23% of the total num-

ber of reads were identified as contaminants and removed (S4 Table). Reads were therefore

clustered into 10 biologically relevant OTUs (Table 2 and S3 Table).

All OTUs correspond to the group of Proteobacteria and include three bacterial orders:

Enterobacteriales, Rhodocyclales and Rickettsiales. Our results indicate that the microbial pro-

file of A. corni is dominated by the order of Enterobacteriales, which includes the obligate sym-

biont B. aphidicola and the facultative symbionts S. symbiotica and Arsenophonus.
B. aphidicola was detected in all the samples (100%) and was represented by 5 OTUs

(OTUs 1, 2, 3, 7 and 10) that account for 96.23% of all reads. OTUs 1, 7 and 10 differed by only

3 to 4 bp whereas OTUs 2 and 3 differed from these OTUs by 20 to 38 bp. Different B. aphidi-
cola haplotypes are present in an aphid colony with the dominance of a single haplotype (Fig

2). The vast majority of the reads clustered into a single OTU for most aphid species (OTUs 1,

2 or 3) and many minor OTUs (OTUs 7 and 10) were detected in all samples. In aphid colonies

from the Casablanca-Settat region, The OTU1 (with related minor OTUs 2, 3, 7 and 10) was

detected and matched a sequence of B. aphidicola previously reported on Geoica urticularia.

OTUs 2 and 3 were common to all samples from Béni Mellal-Kénifra region and OTU3 was

detected on the Anoecia genus.

The next most abundant OTUs were presented by the facultative symbiont S. symbiotica
(OTUs 4 and 5) that account for 3.52% of all reads. Taxonomic identification of bacterial

OTUs resulted in three additional taxa includingWolbachia (OTU 6), Arsenophonus (OTU 8)

and D. carminicum (OTU 9). Phylogenetic analyses including the symbionts associated with

Table 1. Summary of sequencing data.

Raw data
Average size (Mb) per sample 3

Raw number of sequence per sample 187,592

After assembly of paired sequences
Average size (Mb) per sample 169.4

Average number of sequence per sample 173,117

Average of the median sequence length 466

After quality filtering
Average size (Mb) per sample 72.7

Average number of sequence per sample 150,605

Sequence length (min; median; max) (450; 465; 584)

https://doi.org/10.1371/journal.pone.0256019.t001
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A. corni (i.e. B. aphidicola, S. symbiotica, Arsenophonus andWolbachia) and representative

symbionts of other species of aphids and insects are shown in S1–S4 Figs (Supporting

information).

Diversity of bacterial communities in the samples

The bacterial communities of the samples were mainly composed of the obligate symbiont B.

aphidicola and mostly complemented by the facultative symbionts S. symbiotica (with a high

abundance of reads from three samples) andWolbachia (with reads detected from four sam-

ples) (Fig 2).

The facultative symbiont Arsenophonus was detected in most of the samples (13/16), but

with an extremely low number of reads. D. carminicum was also found in most of the samples

with an extremely low number of reads.

Table 2. Taxonomic assignment of OTUs by Greengenes and GenBank, including the three top BLAST hits, GenBank accession numbers and % identity.

OTU no. PC reads. Greengenes identification Id% GenBank identification Accession Id%

Taxon Three closest GenBank matches

OTU_01 58.77 Buchnera 98.28 Buchnera aphidicola/Geoica urticularia AJ296751.1 98.28

Buchnera aphidicola/Myzus persicae CP002703.1 96.34

Buchnera aphidicola/Myzus persicae CP002701.1 96.34

OTU_02 20.08 Buchnera 96.15 Buchnera aphidicola/Pemphigus matsumurai KF311221.1 96.15

Buchnera aphidicola/Pemphigus sinobursarius KF311219.1 96.15

Buchnera aphidicola/Pemphigus yunnanensis HQ792326.1 96.15

OTU_03 17.34 Buchnera 91.24 Buchnera aphidicola/Anoecia oenotherae CP033012.1 97.85

Buchnera aphidicola/Anoecia fulviabdominalis JX998094.1 97.2

Buchnera aphidicola/Eulachnus mediterraneus LT600356.1 94.22

OTU_04 2.62 Serratia 99.14 Serratia symbiotica/Aphis fabae KT176010.1 99.35

Serratia symbiotica/soil MG287131.1 99.14

Serratia symbiotica/soil KX900450.1 99.14

OTU_05 0.89 - 90.15 Serratia symbiotica/Prociphilus longianus MG831336.1 99.35

Serratia symbiotica/Prociphilus longianus MG835393.1 98.92

Serratia symbiotica/Prociphilus longianus MG835392.1 98.92

OTU_06 0.04 Wolbachia 96.64 Wolbachia pipientis/Pentalonia nigronervosa KJ786950.1 96.64

Wolbachia pipientis/Pentalonia nigronervosa KJ786949.1 96.64

Wolbachia pipientis/Pentalonia nigronervosa KC522606.1 96.64

OTU_7 0.01 Buchnera 98.21 Buchnera aphidicola/Geoica urticularia AJ296751.1 98.21

Buchnera aphidicola/Myzus persicae CP002703.1 95.92

Buchnera aphidicola/Myzus persicae CP002701.1 95.92

OTU_8 0.01 Candidatus Phlomobacter 95.05 Arsenophonus/Aleurodicus dispersus AY264664.1 95.91

Arsenophonus/Macrosteles sexnotatus AB795344.1 95.27

Arsenophonus/Stomaphis takahashii FJ655541.1 95.27

OTU_9 0.01 Uliginosibacterium 98.92 Dactylopiibacterium carminicum/Dactylopius opuntiae GQ853370.1 98.92

Dactylopiibacterium carminicum/Dactylopius opuntiae GQ853369.1 98.92

Sphingomonas/soil JX944513.2 96.34

OTU_10 0.01 Buchnera 98.06 Buchnera aphidicola/Geoica urticularia AJ296751.1 98.06

Buchnera aphidicola/Myzus persicae CP002703.1 96.13

Buchnera aphidicola/Myzus persicae CP002701.1 96.13

OTUs 11–23 0.23 Contaminants identified from negative control analysis

PC reads, cluster size in percent; Id, identity %.

https://doi.org/10.1371/journal.pone.0256019.t002
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Discussion

Our approach based on 16S rRNA enabled us to identify five bacterial genera in the dogwood

aphid A. corni, a species that spends most of its life cycle on Poaceae roots. Due to its subterra-

nean lifestyle, we expected to find in this species a bacterial diversity that includes environ-

mental bacteria such as gut bacteria, plant associates, pathogens and environmental

contaminants. Xylem vessels are the primary entry routes for many soil-borne bacteria infect-

ing plants [56]. Although primarily phloem-feeders, aphids are also capable of ingestion from

the xylem vessels, a strategy displayed for maintaining water balance [69,70]. OTUs that were

identified correspond to five bacterial genera, mostly related to symbionts already found asso-

ciated with aphids: Buchnera, Serratia,Wolbachia, Arsenophonus and Dactylopiibacterium. All

these genera have been previously described as symbiotic partners of insects. We did not find

any bacterial partners that can be considered as environmental-related (e.g. Pseudomonas spp.,

Erwinia spp., etc.) as in the case of other aphid species, including those that feed on cereal

crops [40,42].

The nutritional obligate symbiont Buchnera was found in all samples with distinctive 16S

haplotypes in a single aphid colony. These results might be a consequence of Buchnera poly-

ploidy, as evidenced by the 16S rRNA copy-number variation. Alternatively, a clone from a

single colony may contain Buchnera strains with different haplotypes. Co-infection with multi-

ple B. aphidicola strains was reported in several aphid genera [71,72].

The secondary endosymbiont S. symbiotica is one of the most common symbiont species in

aphid populations [73] and was identified in three of the eight colonies surveyed. This symbi-

ont includes a wide variety of strains ranging from co-obligate nutritional partners, that are

mainly found in the Lachninae and the Chaitophorinae subfamilies [12,74], to facultative

strains whose reported associated effects in the pea aphid Acyrthosiphon pisum are heat stress

resistance and protection against parasitoids [75–77]. Strains detected in this study are proba-

bly of facultative nature, as S. symbiotica was not found in all colonies.

Fig 2. Relative abundance of bacterial taxa from Illumina sequencing of 16S rRNA amplicons, represented as a heat map based

on the log-transformed values. The warm colors indicating higher and cold colors indicating lower abundance. Each color bar

corresponding to one sampled colony.

https://doi.org/10.1371/journal.pone.0256019.g002
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Interestingly, Wolbachia was detected in four colonies. This symbiont, an α-proteobacter-

ium, is commonly found in insects and studies suggest thatWolbachia is present in at least

65% of arthropod species [78]. It is known to manipulate the reproduction of their host [79],

promote the oogenesis in certain wasp species [80], display a nutritional function in certain

bedbug and whiteflies species by producing B vitamins [81,82], and is associated with antiviral

protection by influencing the vector competence of several species of mosquitoes for viruses

[83,84]. Although some studies have reported the presence ofWolbachia in aphid populations,

it is considered rare in these insects [85–90]. The biological significance ofWolbachia in

aphids is still unknown. It has been hypothesized that the symbiont play a role in the prolifera-

tion of asexual lineages [87], and its role in the production of B vitamins in the banana aphid

Pentalonia nigronervosa is currently debated [86,91,92].Wolbachia infections in aphids could

also be acquired by horizontal transmission from other insects such as parasitoid wasps,

known to be infected by this symbiont [93,94]. To our knowledge, the stability ofWolbachia
infections in aphids has never be tested and A. corni could be a suitable candidate to elucidate

the biological significance of this symbiont in aphids.

The genera Arsenophonus and Dactylopiibacterium were also detected in most of the sam-

pled aphids, but with a much lower read abundance than for S. symbiotica andWolbachia.

Arsenophonus is a bacteria found in many insect species including aphids, scale insects, leaf-

hoppers, whiteflies and wasps [8,82,95–97]. Despite the fact that the prevalence of Arsenopho-
nus can reach up to 70% in species of the Aphis genus [98], the phenotypes associated with this

symbiont remain unclear in aphids. Bacteriophages required for protective symbiosis were

found in various strains of the symbiont [99], but no defensive properties were found in Aphis
glycines infected by Arsenophonus [98]. Recent studies suggest that Arsenophonusmay be

involved in host nutrition, probably by mediating host plant range [35,100–102]. In whiteflies,

comparative genomics suggests that Arsenophonus is a source of B vitamins [82]. However, no

genome of strains associated with aphids has yet been sequenced. While the presence of a sym-

biont in specialized host cells such as bacteriocytes and sheath cells are important clues for

determining the mutualistic and heritable nature of a symbiont [4], no such information are

available for this particular symbiont.

One OTU was assigned to D. carminicum (β-proteobacteria, family Rhodocyclaceae). So

far, this bacterial species has only been reported in the scale insect species Dactylopius coccus
(Hemiptera: Coccoidea: Dactylopiidae), where it has been described as a nitrogen-fixing sym-

biont [103,104]. Dactylopius coccus is now well established in Morocco where it ravages the

plants of Opuntia ficus-indica. Although D. carminicum is considered a symbiont capable of

passing through the reproductive organs in scale insects, this species remains largely undocu-

mented. It cannot be excluded at present that this newly discovered species resides in the soil,

in the host plant or lives in other insects.

In recent years, several studies have characterized overall all the bacteria present in aphids

by deep sequencing of 16S rRNA [40,42,45]. A common point throughout these studies is the

reduced abundance of environmental bacteria relative to the primary and secondary endosym-

bionts. Besides theses heritable symbionts and in contrast to our results, many environmental

bacteria have been reported in R. padi, e.g. the phytopathogenic members of the Pseudomonas

genus and some saprophytes of plant and soil (Acinetobacter and Staphyloccocus genera).

Moreover, gut symbiotic bacteria of aphids were also found, i.e. Pantoea and Erwinia genera

[40,42].

In conclusion, although A. corni lives in the rhizosphere, an environment that is very rich

in bacteria and other microorganisms, the number of bacterial taxa detected in this species is

surprisingly low [105]. Despite its subterranean lifestyle, A. corni shelter a bacterial diversity

mainly limited to known bacterial endosymbionts. Few species of facultative endosymbionts
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have been detected in the context of this study. It is now recognized that some species of aphids

are more likely to harbor facultative symbionts than others [4,73,106]. It should be noted that

our sampling covers only a small part of Morocco, and the diversity of symbionts of aphid

populations can change dramatically in response to various environmental conditions [4].

However, our study provides a snapshot of the bacterial community associated with a poorly

studied aphid species, and identified bacterial taxa that may play a role in the biology of A.

corni, in particular the facultative symbionts Arsenophonus andWolbachia whose associated

phenotypes in aphids are still elusive. A. corni could represent a suitable species to investigate

the role of these symbiotic bacteria in aphids. Finally, insect-associated bacterial communities,

and in particular heritable symbionts, have received much attention in recent decades, some-

what overshadowing the diversity of other types of microorganisms that can associate with

insects, such as fungi. For example, in some species of cicadas, grasshoppers, and aphids, cer-

tain fungi species have become obligate symbionts by replacing ancestral bacterial symbionts

[107–111], suggesting that fungi may establish more or less long-lasting relationships with

insects and become an established part of their microbiota. Although fungal diversity was not

explored in our study, it would likely deserve more attention in future work, and insects with a

subterranean lifestyle are likely interesting candidates for such an investigation.
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