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Abstract: Hepatocyte growth factor (HGF) ligand and its receptor tyrosine kinase (RTK)
mesenchymal-epithelial transition factor (MET) are important regulators of cellular processes such as
proliferation, motility, angiogenesis, and tissue regeneration. In healthy adult somatic cells, this ligand
and receptor pair is expressed at low levels and has little activity except when tissue injuries arise.
In cancer cells, HGF/MET are often overexpressed, and this overexpression is found to correlate with
tumorigenesis, metastasis, and poorer overall prognosis. This review focuses on the signaling of
these molecules in the context of malignant brain tumors. RTK signaling pathways are among the
most common and universally dysregulated pathways in gliomas. We focus on the role of HGF/MET
in the following primary malignant brain tumors: astrocytomas, glioblastomas, oligodendrogliomas,
ependymomas, and embryonal central nervous system tumors (including medulloblastomas and
others). Brain metastasis, as well as current advances in targeted therapies, are also discussed.
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1. HGF/MET Signaling

Hepatocyte growth factor (HGF), also known as scatter factor (SF), is a secreted protein that is
involved in paracrine cellular signaling. It was discovered serendipitously, in 1984, in an effort to
understand the extraordinary regenerative properties of the liver [1,2]. Prior to this discovery, SF, later
resolved to be the same as HGF, was purified from fibroblasts and shown to promote epithelial cell
motility and tissue morphogenesis [3,4]. A few years later, the proto-oncogene mesenchymal-epithelial
transition factor (MET) was identified as the receptor for HGF [5].

Structurally, HGF is a 103 kDa soluble heterodimer, comprising an «- and a 3-chain. MET
is a 170 kDa glycosylated membrane protein, comprising an extracellular ligand-binding region,
a single-pass transmembrane domain, and a catalytic intracellular domain [6].

When active HGF binds the extracellular portion of the 3 domain of MET, it causes receptor
dimerization followed by the downstream auto-phosphorylation of two tyrosines located on the
intracellular portion of the 3 domain (Y1349 and Y1356) [6]. This leads to the recruitment and binding
of various important Src homology-2 (SH2) domain-containing proteins [7-9]. These proteins include
phosphatidylinositol 3-kinase (PI3K), phospholipase C gamma (PLCy), the non-receptor tyrosine kinase
SRC and signal transducer and activation of transcription 3 (STAT3), adaptor proteins such as growth
factor-bound protein (GRB2), GRB2-associated binding protein 1 (GAB1), and SH2 domain-containing
transforming protein (SHC). From this, several important downstream pathways can be activated.
The SOS-RAS-RAF-MEK-ERK-MAPK pathway is activated by GRB2. GAB1 is a scaffold protein that
allows for the recruitment of additional signaling proteins such as PI3K, SHP2, and p120RasGap.
Cell survival and proliferation are regulated by the RAS-MAPK and PI3K-AKT pathways as well as
the transcription factors that are activated, STAT3 and NF-«B. Cell motility and migration are also
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activated by the GRB2-RAS-RAC1/CDC42-PAK and GAB1-CRK-C3G-RAP1 pathways. HGF can also
form a ternary complex with MET that leads to cytoskeleton reorganization through the recruitment of
proteins such as N-WASP, ARP2/3, cadherins, paxillin, focal adhesion kinase, and integrins.

As a result of this wide network of signaling molecules being activated upon HGF/MET binding,
this receptor-ligand interaction is heavily involved in several important biological processes including
embryonic development, tissue regeneration, and wound healing in normal adult cells.

1.1. Embryonic Development

Rodent models have been used to study HGF and MET functions in early embryonic development.
For example, studies have found that mice lacking HGF and MET genes die in utero from severely
impaired placentas and other organs [10]. In the mouse embryo, HGF is highly expressed in the
limb bud, and mutant mice are not able to form the skeletal muscles of the limb and diaphragm [11].
HGEF is also critical to the development of the nervous system, functioning to spatially direct axonal
development for sensory, sympathetic, parasympathetic, and cortical neurons [12,13]. In addition to
neuronal development, HGF is involved in normal glial development based on experiments done
during postnatal development in the rat [14]. Organ culture experiments have shown that HGF
and MET regulate mesenchymal and epithelial interactions and are expressed on the two cell types,
respectively [15]. The paracrine interactions subsequently drive epithelial growth, morphogenesis,
and differentiation through the differential spatial expression of HGF and MET [16].

1.2. Tissue Regeneration and Wound Healing

In addition to hepatic regeneration, which is the initial context in which HGF was first isolated
and discovered, HGF and MET expression is also observed to be upregulated in injured organs
such as the kidney, lung, heart, stomach, intestines, etc. [17]. This upregulation promotes tissue
regeneration and wound healing in adult tissues [18]. Various animal studies have shown that
endogenous HGF/MET is crucial to organ regeneration through treatment with blocking anti-HGF
IgG antibodies and subsequently finding proliferation to be suppressed and organ repair or wound
healing to have failed [17,19]. Because organ injury is caused by apoptotic events on the cellular
level, one explanation for the role of HGF in tissue regeneration is that it can block apoptosis [20].
This occurs through the inhibition of caspase-3 or the induction of molecules such as Bcl-xL, which is
known to be cytoprotective [21,22]. While HGF is a potent inhibitor of apoptosis in certain organs,
it can also facilitate apoptosis in other organs. In this case, HGF signaling induces proteases that
breakdown extracellular matrix scaffolding through activating matrix metalloproteinases (MMPs) such
as membrane-type MMP and MMP-9 [20]. This activation is also seen in cancer cells and helps to
promote spreading and invasion.

As described in the previous section, HGF is involved in the development and survival of a variety
of different neurons. As such, it has also been implicated in neuronal therapy in amyotrophic lateral
sclerosis (ALS) [23]. Mice models have shown that neuronal overexpression of HGF leads to reduced
motor neuron death and axonal degeneration [24].

Given the importance of this ligand/receptor pair, especially in the context of nervous system
growth and development, it is no surprise that this and its many associated signaling pathways are
hijacked by cancer cells for growth and survival. The following sections will first give an overview of
malignant brain tumors (Section 2) and then discuss HGF/MET signaling in this specific dysregulated
context (Section 3).

2. Malignant Brain Tumors

In the United States, at any given time, more than 76,000 people are living with brain and other
central nervous system (CNS) tumors [25]. In one year’s time, more than 19,000 people will have died
from the malignant forms of these cancers, the most common being glioblastoma. Nearly 90,000 people
will be newly diagnosed with a brain tumor each year. White men in their 80s are the most susceptible
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group within the world population. This has been hypothesized to be attributable to hormonal
differences, genetic differences, and micro-environmental changes in the cell of origin [26]. Despite
significant understanding and advances over the past half-century, malignant brain tumors remain
largely incurable [27]. There are several reasons for this.

First, malignant brain tumors are genetically heterogeneous and contain a complex array of somatic
genetic alterations. This characteristic of these tumors can significantly weaken the effectiveness
of monotherapies. Some examples of genetic alterations are recurrent mutations in the isocitrate
dehydrogenase genes 1 and 2 (IDH1 and IDH?2), receptor tyrosine kinase (RTK) amplification associated
with genetic abnormalities (as this review will focus on in terms of HGF/MET), mutations in the
promoter region of the telomerase reverse transcriptase (TERT) gene, mutations of the canonical
“guardian of the genome” tumor protein p53 (TP53), etc. [28-30]. Oftentimes, more than one of these
alterations are present in the tumor and give rise to a heterogeneous population of cells.

Second, the brain is an immune privileged organ and is protected by the blood and brain barrier
(BBB) which results from tight junctions formed between endothelial cells that make up the vasculature
of the brain’s outer layer [31]. This can be a great obstacle for most available, Food and Drug
Administration (FDA) approved drugs as only small molecules can cross [32,33]. More details on
current therapies as well as chemical and physical methods to overcome BBB semi-permeability are
presented in Section 6.3.

Third, surgical resection within the brain is difficult given the confined space and its essential
contents. Studies on the effect of surgical resection for low-grade gliomas showed that patients whose
tumors were >90% resected by volume had a 91% chance of being alive eight years post diagnosis [34].
This is contrasted with patients whose tumors were <90% resected by volume and had a 60% chance of
being alive eight years later. These studies have been adjusted for age, tumor location and subtype,
and the respective Karnofsky Performance Scores (KPSs) of each patient. The KPS is a measurement
of the patient’s ability to carry out ordinary tasks and is reflective of the impact of the disease [35].
In other words, although surgery can greatly improve disease prognosis, it does not entirely remove
the tumor and does not cure the patient.

Fourth, diagnosis is complicated by the often vague symptoms that present and the expense of
imaging using magnetic resonance imaging (MRI). This is because symptoms are often convolved with
other pathologies. For example, up to 80% of patients may present seizures, 30% present headaches,
and 15% present morning nausea and vomiting [36]. Many of these symptoms are often attributed to
other more likely diseases.

All of that said, there is a great need for treatment options for malignant brain tumors. Targeting
RTKs is a useful approach because of how commonly the RTKs become dysregulated and thereby
promote cancer growth and survival. The following sections will focus on the RTK MET and its ligand,
HGE. As discussed in Section 1, this signaling pair is responsible for various aspects of normal cell
growth, development, and tissue regeneration. Because of this, it is also important in cancer as these
properties are used by cancer cells for growth, proliferation, invasion, and survival. The discussion
of malignant brain tumors will include both primary tumors (gliomas, embryonal CNS tumors) and
secondary tumors (brain metastasis).

2.1. Primary Malignant Brain Tumors

Gliomas make up nearly 80% of all primary malignant brain tumors [37]. This review focuses on
astrocytomas, glioblastomas, oligodendrogliomas, ependymomas, and embryonal central nervous
system tumors (including medulloblastomas and others). See Figure 1 for a general summary of the
different primary and secondary malignant brain tumors, their nomenclature-derived cell of origin,
and real-life MRI images.

Astrocytomas derive their name from astrocytes, a star-shaped cell that is the most abundant glial
cell type in the CNS [38]. They help support neuronal cells by mediating synapses and providing
nutrients. The cells of origin of astrocytomas are probably neural stem and/or oligodendrocyte
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progenitor cells in mouse models [39]. Glioblastomas arise from several different cell types. Over the
past many years, the cells of origin for this particular tumor type has been the source of dissension and
heated discussion for many. While its name is derived from glial cells which are the resident immune
cells of the brain, glioblastomas likely arise from neural stem cells or perhaps even oligodendrocyte
progenitor precursor cells [26,40]. In fact, many studies, prompted by this heated discussion, have given
rise to a wealth of evidence showing the presence of glioblastoma stem cells in both mouse models as
well as human tumors [41-44]. One of the most cited studies showing this was performed by Liu et al.
in 2006 [43]. In this research paper, the authors used sorting methods to separate different populations
of cells from primary cultured cell lines established from glioblastoma patient tissue samples. They
found that more than 10% of the cells from the human tumors harbored the CD133 marker, a major
stem cell marker. These cells were further isolated and shown significant resistance to chemotherapy.
Furthermore, the expression of this marker was significantly higher in recurrent glioblastoma tissue
samples of patients compared to the same patient’s newly diagnosed tumors. In 2011, research from
John Laterra’s group showed that MET is activated and functional in glioblastoma neurospheres that
harbor a large population of glioblastoma stem cells, and in fact, MET expression correlates with and
induces the expression of stem cell markers and reprogramming transcription factors [44]. This further
underscores the role of MET in brain tumor progression.

Oligodendrogliomas, despite the name, likely also arise from neural stem cells or glial progenitor
cells [45]. Ependymomas develop from ependymal cells that make up the ventricular system of the
brain [46].

Embryonal central nervous system tumors are formed from embryonic cells in the brain after
birth [47]. Brain tumors in children are the second most common type of cancer in children after
leukemia. There are two main types of central nervous system embryonal tumors: medulloblastomas
and non-medulloblastoma embryonal tumors. Medulloblastomas arise in the cerebellum, likely
from granule progenitor cells [48]. It is the most common type of primary brain tumor in children.
Non-medulloblastomas are rare and include tumor types such as pineoblastoma, atypical teratoid/
rhabdoid, and others [49,50].
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Figure 1. Summary of the different malignant brain tumors that are discussed in this review, their

name-derived cell of origin, and real-life images taken from patients. Classifications are adapted from
the World Health Organization [51]. Drawings of cells and patient tumor magnetic resonance imaging
images are taken from the public domain [52].
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2.2. Secondary Malignant Brain Tumors (Brain Metastasis)

Almost every malignant primary tumor is capable of metastasizing to the brain [53]. However,
the incidence of brain metastases is difficult to quantify because some remain asymptomatic or are
ignored because the patient is often severely ill with advanced primary disease. Autopsy studies
suggest that as many as 30% of adult cancer patients with systemic malignancies have brain metastases
at the time of death [54]. In adults, lung, breast, and melanomas account for 75% of the primary tumor
of brain metastases [55]. In children and young adults, sarcomas such as Ewing’s sarcoma and germ
cell tumors are the most likely to metastasize to the brain [56].

3. HGF/MET in Brain Tumors

Under physiological conditions, regulated HGF and MET signaling is crucial for embryonic
development and tissue regeneration. When dysregulated, HGF/MET signaling promotes tumor
progression and angiogenesis in many cancers including brain tumors (Figure 2).

MET

E | —— ‘
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Figure 2. Select signaling pathways that are triggered by HGF/MET binding and activation, leading to
important survival-promoting pathways in cancer.

In the early 1990s, the first studies of HGF in cancer demonstrated the invasive properties of HGF
through co-culture experiments of stromal fibroblasts and human oral squamous cell carcinoma [57].
The cancer cells become aggressive and invasive only when they are co-cultured with stromal fibroblasts.
These latter cells secrete a protein that was later identified as HGF. Since then, the role of HGF/MET in
cancer invasion has been demonstrated in a variety of cancer cells [58]. While HGF/MET in normal
cells acts in a paracrine manner, HGF/MET signaling in cancer cells is often autocrine-mediated [59].
Mutations in the MET gene also induce tumorigenesis [60]. These mutations include missense
mutations that cause either inherited or sporadic carcinomas. Amplification events are also abundant
in MET-regulated tumorigenesis.

In brain tumors, HGF and MET expression levels correlate with tumor grade in human gliomas [61-63].
When HGF is overexpressed in glioma cells, this functionally increases their tumorigenicity, growth,
and angiogenesis [64,65]. Conversely, inhibition of HGF and MET expression leads to a decrease in
in vivo tumor formation and growth of experimental gliomas [66,67]. Key experiments performed by
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Abounader et al. in the late 1990s demonstrated that when the in vivo expression of HGF is inhibited
with synthetic RNA interference, this leads to substantial inhibition of tumor growth and prolonged
survival in animals with human glioma xenografts [66,67].

At the cellular level, the HGF/MET pathway promotes tumorigenesis through stimulating cell cycle
progressions, tumor cell migration, invasion, angiogenesis, and through inhibiting tumor apoptosis.
For example, stimulation of human glioblastoma cells with HGF allows the cells to escape cell cycle
arrest [68]. MET activation also leads to changes in key cell cycle proteins such as p27, phospho-Rb,
E2F-1, and c-Myc. Additionally, while mechanisms that allow normal tissues to regenerate can be
attributed to HGF/MET signaling, these same mechanisms are hijacked in tumors to protect the cells
from DNA-damaging agents often used in chemo and radio-therapies by activating phosphoinositol
3-kinase-dependent and AKT-dependent anti-apoptotic pathways [69].

Since HGF/MET, in normal somatic cells and as discussed in Section 1, promotes cell motility
and regulates a cohort of cytoskeletal proteins, this role is also hijacked in tumor cells through its
interactions with the tumor microenvironment [70]. The activation of MET triggers Ras-dependent
ERK1/ERK2 activation and STAT2 signaling. These signaling pathways in turn promote proliferation,
survival, and migration of cancer cells. MET activation by HGF also leads to the activation of pathways
that regulate epithelial-mesenchymal transition (EMT), a hallmark of cancer progression.

Angiogenesis

Angiogenesis is the process by which new blood vessels are developed [59]. This process often
accompanies tumorigenesis because rapidly growing cancer cells need nutrients and resources to build
the growing colony. Angiogenesis occurs in several steps and involves at first, the breakdown of
the pericellular and extracellular matrix to create a pathway for endothelial cells. Soon after, these
endothelial cells form into a new blood vessel by forming the tubules and basement membrane of
the vessel. The mechanisms involved here are the degradation of the ECM, vascular endothelial
proliferation, migration, survival, and tubule formation. All of these mechanisms are regulated by
HGEF secreted by tumor cells and MET expressed on tumor endothelial cells.

In the brain, for both developing and tumor cells, HGF/MET is highly expressed and functional.
For example, neural endothelial cells that can form new blood vessels have been shown to express high
levels of endogenous and active HGF [63]. In addition, immunofluorescence staining experiments
have shown HGF/MET to localize more to regions of endothelial cells in the perivascular and vascular
areas of higher grade brain tumors [61]. For brain tumors, in particular, HGF/MET induces endothelial
cell proliferation and migration, expression of vascular endothelial growth factor (VEGF), and tubule
formation [59].

Section 4 will focus on HGF/MET in specific types of primary and brain tumors and brain
metastases. Primary malignant brain tumors that will be discussed are astrocytomas, glioblastomas,
oligodendrogliomas, ependymomas, and embryonal central nervous system tumors. HGF/MET in
brain metastases will be discussed subsequently. There are many similarities between HGF/MET
signaling in the different malignant brain tumors.

4. HGF/MET in Primary Malignant Brain Tumors

Gliomas are the most common primary malignant brain tumors. They account for 80% of all
malignant primary brain and central nervous system tumors, with an annual age-adjusted incidence of
5.55 per 100,000 in the United States [71]. Genetic alterations in gliomas occur frequently. Approximately
80% of low-grade gliomas harbor recurrent mutations in the isocitrate dehydrogenase genes 1 and 2
(commonly referred to as IDH1 and IDH2, respectively) [28,72]. Because these genetic alterations are
so common, current classifications of gliomas, spearheaded by scientific discovery and adopted by
the World Health Organization (WHO), have taken into account the IDH mutation status and have
come up with three distinct categories of classification based on this genetic property: (1) IDH mutated
with chromosome 1p/19q co-deleted; (2) IDH mutated without chromosome 1p/19q co-deleted; and
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(3) IDH wild-type [73]. Other gene amplifications or mutations have included RTK/RAS/PI3K, TP53,
ATRX loss, and RB signaling pathways [74]. IDH mutations are seen in gliomas such as astrocytomas
and oligodendrogliomas whereas IDH wild-type is present 90% of the time in glioblastomas [51].
The expression status of MET has been studied in the context of IDH mutations and has been found to
be a useful prognosis marker, easier to evaluate than chromosome deletion status, correlating with
prognosis prediction in IDH mutant astrocytomas and oligodendrogliomas as well as IDH wild-type
glioblastomas [75]. HGF/MET are key determinants of malignancy in brain tumors, and their expression
often correlates with the malignancy grade of gliomas [76,77]. The aberrant expression of MET in
high-grade gliomas and embryonal brain tumors is associated with poor clinical outcomes. HGF binds
to the receptor MET and induces several biological activities involved in cancer progression, such as
growth, survival, motility, and metastasis [70,78]. According to the World Health Organization (WHO),
there are four grades of gliomas and they are classified as low-grade gliomas (grades I and II) and
high-grade gliomas (grades III and IV) [51].

4.1. Astrocytomas

Astrocytomas are classified by the WHO grading system by four histological grades of increasing
malignancy [79]. Four malignancy grades are recognized with very different prognosis [80]. They
include pilocytic astrocytoma (grade I), diffuse astrocytoma with IDH mutations (grade II), anaplastic
astrocytoma with IDH mutations (grade III), and glioblastoma with either IDH mutations or wild-type
(grade IV). Each has different degrees of aggressiveness to assess for similarities and differences at
the level of individual genes, signaling pathways, molecular subtypes, and regulatory networks [79].
Malignant astrocytomas are associated with HGF overexpression [81]. HGF/MET signaling can
stimulate various downstream signaling pathways in tumor cells, such as PI3K/AKT, JAK/STAT,
Ras/MAPK, SRC, and Wnt/f3-catenin [82], and it can enhance tumor malignancy by inducing biological
processes such as tumor proliferation, invasion, and metastasis [76]. The binding of MET by HGF can
induce structural changes in the protein, which can eventually lead to the activation of mitogen-activated
protein kinases (MAPKSs) [82]. Previous studies have also shown that an increase in activated AKT and
MAPK, downstream of MEK, correlates with the progression of astrocytoma to glioblastoma [83].

4.2. Glioblastomas

Glioblastoma (grade IV astrocytoma) is the most common malignant primary brain tumor making
up to 54% of all gliomas and 16% of all primary brain tumors, with an incidence rate of 3.19 per
100,000 persons in the United States and a median age of 64 years [84]. GBM is known by its highly
mutated genome, which is associated with the dysregulation of many key signaling pathways involving
growth, proliferation, survival, and apoptosis [85]. Aside from IDH mutations, which exist in about
10% of GBMs, there are three additional commonly deregulated pathways in glioblastoma: p53,
retinoblastoma (RB), and RTK. In this context, the most commonly mutated one is the RTK/PI3K
pathway, and there is approximately 88% of glioblastoma samples that harbor at least one genetic event
in this core pathway [74]. MET is one of the deregulated RTKs, which promote malignant phenotypes
in GBM. The MET pathway can increase levels of VEGFA and VEGFR2 on endothelial cells and
promote proliferation, metastasis, and angiogenesis [86]. In addition, activation of the HGF/MET axis
prevents apoptosis through activation of phosphatidylinositol-3-kinase (PI3 kinase) and subsequent
AKT activation [87]. Furthermore, according to Cruickshanks et al., upregulation of the PI3K/AKT
pathway in GBM leads to the growth and survival of uncontrolled tumor cells through the nuclear
factor kappa-light-chain-enhancer of activated B cells (NF«B) that activates many cell survival and
anti-apoptotic genes [88]. Another dysregulated pathway is RAS. By activating this pathway, MET
can induce other signaling pathways such as MAPK, allowing tumor cells to grow and survive [88].
Moreover, upregulation of RTKSs such as signal transducer and activator of transcription 3 (STAT3)
can affect multiple signaling pathways in GBM [89]. It has been found that STAT3 and focal adhesion
kinase (FAK) have a role in the promotion of GBM cell invasion and migration [90].
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4.3. Oligodendrogliomas

Oligodendrogliomas are another type of glioma and are the second most common
intraparenchymal brain tumor in adults [91], constituting 5-20% of all gliomas. According to
the WHO classification, oligodendroglioma with IDH mutations and chromosome 1p/19q co-deletion is
classified as a grade I. Anaplastic oligodendroglioma, differing from oligodendroglioma for histological
reasons, with IDH mutations and chromosome 1p/19q co-deletion is classified as a grade III. They occur
predominantly in adults, with a peak between 40 and 60 years of age and patients with low-grade
tumors being slightly younger than those with high-grade, anaplastic tumors [92].

Ohba et al. showed that MET expression was correlated with progression-free survival in
oligodendroglial tumors with IDH mutations [75]. However, at the cellular level, MET expression in
oligodendroglial tumors seems to be lacking, and earlier reports state that MET positive cells were very
rarely recognized in oligodendroglioma [75]. Furthermore, Pierscianek et al. investigated MET gain in
diffuse astrocytomas and found that only 16% of oligodendroglioma had MET expressed [75,93].

4.4. Ependymomas

Another type of gliomas is ependymomas. Tumors of glial origin such as ependymomas have an
incidence of 0.29 per 100,000, with approximately 240 cases in 2018 [94]. This type of glioma is classified
in three different grades. Grade I ependymomas include sub-ependymomas, grade II are designated as
ependymomas, and grade III tumors are called anaplastic ependymomas [95]. The five-year survival
of pediatric ependymoma is approximately 57%, despite the advancement in therapies [96]. Aberrant
expression of vascular endothelial growth factor receptor 2 (VEGFR-2), platelet-derived growth factor
receptor 3 (PDGFRp), the epidermal growth factor receptor family (ErbB1-4), and hepatocyte growth
factor receptor (another name for MET) have been found in ependymomas [59,96]. Deregulated
expression of RTKs and related growth factors such as VEGF, HGF, and PDGF can result in specific
signaling that enhances tumor growth [97].

4.5. Embryonal Central Nervous System Tumors

Embryonal central nervous system (CNS) tumors include medulloblastoma (MB), atypical
teratoid/rhabdoid tumor (AT/RT), pineoblastoma, and others [98]. Medulloblastomas are primary
embryonal tumors of the central nervous system [99] and are classified by the WHO as a grade
IV tumor [100]. Therapy for MB includes surgery, radiation, and chemotherapy, however, despite
the advances in treatments, current five-year survival rates are approximately 60% [101]. Studies
have shown that it is crucial to target important signaling pathways involved in medulloblastoma
progression in order to have better therapeutic strategies [102]. HGF/MET is a key signaling pathway
in these tumors as it has been implicated in the pathogenesis of medulloblastoma [101]. Li et al.
showed that MET levels correlate with patient prognosis and that activation of the pathway has
widespread and multi-functional tumor-promoting effects [102]. Moreover, HGF-activated MET
paracrine signaling on endothelial cells can enhance their angiogenic activity [103]. Moreover, in the
context of medulloblastoma, MET activation leads to the expression of proteins such as matrix
metalloproteinases and vascular endothelial growth factor, which are known for their important roles
in tumor promotion through angiogenesis [104].

5. HGF/MET in Brain Metastases

One of the most frequent malignant tumors of the central nervous system (CNS) are brain
metastases (BMs), and about 20—40% of patients with cancer will develop BM in their clinical
course [105]. Despite the use of various combinations of treatments such as surgery and radiotherapy,
brain metastases are very difficult to treat. The response rates to single-agent chemotherapy are less
than 10%, and treatment only slows but does not arrest or reverse disease progression [106]. It is
becoming clear that the genetic background of a certain patient or a tumor should dictate its treatment
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regimen, and that targeted therapy against these tumor-specific alterations may be more efficacious
(discussed in the next section) [106].

According to Demkova and Kucerova, one of the important signaling pathways that has been
implicated in many cancers’ metastatic spread is signaling by HGF/MET [107]. HGF/MET has a key
role in invasion, metastasis, and especially radio-resistance [108]. Moreover, the cellular functions
regulated by this receptor and ligand pair include the entire process of metastasis such as migration,
invasion, extravasation, anionic resistance in the vasculature, survival in unfamiliar microenvironments,
and neovascularization [109]. HGF expression also plays a role in the different stages of metastasis.
According to Mizuno and Nakamura, stroma-secreted HGF is required for cancer cells to infiltrate
neighboring tissues, such as vascular beds, across the basement membrane [110].

Section 6 discusses current approaches to target HGF/MET for therapy, with a sub-section on
methods to facilitate the crossing of the blood and brain barrier by HGF/MET-targeting agents.

6. HGF/MET Targeted Therapies

6.1. Monoclonal Antibodies

The significant role that HGF/MET plays in tumor progression and metastasis has made it a
prime therapeutic target in oncology [111]. Monoclonal anti-HGF antibody functions by blocking HGF
binding and thereby preventing MET activation. This can result in inhibiting the activation of signaling
pathways downstream of MET [112].

For example, Onartuzumab/MetMAD is a monoclonal, monovalent anti-MET antibody designed
by Genentech, Inc. It was created in an effort to overcome the obstacles of non-specific agnostic activity
that can occur when divalent antibodies are used. It competes with HGF for binding to MET [74] and
has been demonstrated to inhibit glioblastoma growth in preclinical testing [113]. MetMADb has been
used in conjunction with bevacizumab but has not demonstrated effective therapy in a phase III clinical
trial in lung cancer [114]. Another antibody, AMG102/Rilotumumab, is a human IgG2 monoclonal
antibody designed by Amgen, Inc. [115]. This antibody has completed phase I and II clinical trials.
This therapy, in combination with bevacizumab or temozolomide despite showing effectiveness in
stabilizing disease progression, had failed in recent clinical trials due to increased risk of death [116].
Recently, ABT-700/Telisotuzumab, an anti-MET antibody developed by Laboratoires Pierre Fabre was
tested in a phase I clinical trial with human patients with MET-amplified metastatic solid tumors [117].
The results showed that this antibody inhibitor was reasonably safe and had clinical activity. Similarly,
LY2875358/Emibetuzumab is another anti-MET antibody developed by Eli Lilly and Company that
has recently completed testing in a phase I clinical trial in human patients with non-small cell lung
cancer [118]. As a result, some of the patients were able to achieve stable disease.

One major obstacle with monoclonal antibodies, although specific and effective, is the difficulty in
drug delivery. Antibodies are big and often show decreased penetration across the BBB. Section 6.3 will
discuss ways to overcome this obstacle with both physical methods as well as chemical modifications.

6.2. Small-Molecule Inhibitors

While antibodies are large and therefore cannot easily penetrate the BBB, small-molecules overcome
the drug delivery obstacle by being small and often hydrophobic. As such, there has been a wide range
of small-molecule inhibitors that have been tested in preclinical and clinical settings. They range from
type I to VI based on a range of properties such as binding kinetics, structure, and degenerate binding
of multiple RTKs [119].

Type I inhibitors are reversible ATP-competitive inhibitors with specific robust targeting of
RTKs [120]. For example, AMG 337, developed by Amgen, is a type I small molecule inhibitor of
the inactive activation loop of MET [121]. Once it binds, it locks MET into an inactive conformation
and prevents downstream signaling. In mouse xenograft models, this inhibitor showed low toxicity
and good toleration. Another common type I inhibitor is PF-02341066 developed by Pfizer, Inc. [87].
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PF-02341066 was shown to be effective against MET-dependent growth, invasion, and survival and
has been tested in phase II clinical trials for CNS and solid brain tumors. It is currently used as a
commercially available treatment for non-small cell lung cancer. Recently, a phase I clinical trial was
completed using PLB1001, a selective MET inhibitor, in patients with recurrent high-grade gliomas.
This inhibitor showed a partial response in a small population of the patients with low significant side
effects [122]. APL-101, another selective MET inhibitor, has shown anti-tumor effects in a variety of
human tumors in mice models. Apollomics Inc. has announced that this inhibitor will be used in an
upcoming clinical trial for glioblastoma patients with MET amplifications and fusions.

Type Il inhibitors are also ATP-competitive inhibitors but they are less specific and can target
multiple RTKSs [120]. This is advantageous for the reason that certain cancers can have high levels of
MET mutations and each MET mutant will need to be inhibited for the therapy to be most effective [123].
Cheng and Guo have reported INCB28060, produced by Selleck Chemicals LLC, type I/II, to be a potent
and selective inhibitor of MET kinase and to show strong anti-tumor activity in MET-dependent mouse
tumor models [74]. Furthermore, Liu et al. reported INCB28060 to be effective against not only MET
signaling but other pathways such as EGFR and HER-3 that are regulated by MET [124]. This may
help to reduce drug resistance in some patients [124].

Type Il and VI inhibitors are non-ATP-competitive, meaning that they are allosteric or covalent
inhibitors [119]. The first example of this to enter clinical trials is ARQ197 developed by Arqule, Inc.
It acts to prevent HGF-dependent MET phosphorylation. It has been tested in phase I trials for patients
with metastasis [87].

Additionally, there is a rare inhibitor of HGF called SRI 31215, developed by Eli Lilly and Company
that has shown promise in preclinical studies and is now part of clinical trials to be tested in patients
with colorectal cancer [125].

In addition to specific designs to target HGF and MET, there have been advances in the strategies
to cross the BBB that are discussed in the next section. These strategies could be used in combination
with the HGF/MET inhibitory drugs to enhance delivery and efficacy.

6.3. Delivery Strategies to Cross the BBB

The BBB makes drug delivery for many brain-related diseases difficult. Evolutionarily, it is
designed to protect and provide a sanctuary for the brain [126]. As such, it acts as both a chemical
as well as a physical barrier. Chemically, it comprises transport, metabolic, and enzymatic barriers.
Physically, it is composed of an elaborate network of tight and adherens junctions between endothelial
cells [127]. Because of these properties, strategies to cross the BBB have focused on chemical and
physical stimuli aimed to disrupt the barrier and create temporary openings.

6.3.1. Chemical Stimuli to Create Openings

Chemical methods to disrupt the BBB involve using toxins, vasoactive compounds, synthetic
peptides, hyperosmolar solutions, detergents, etc. [126]. Many of these have only been investigated
in an in vitro setting and are rather invasive since the degree of disruption is hard to control.
For example, zonula occludens toxin, naturally excreted by bacteria, has been tested to induce a
reversible, concentration-dependent opening of the tight junctions in cultured bovine brain capillary
endothelial cells [128]. Histamine and VEGF have been investigated as vasoactive and inflammatory
stimuli [129]. In brain tumors in rats, these compounds when used in combination with other
therapies have demonstrated significant improvement in drug delivery and BBB permeability [130].
The synthetic peptide, Cereport is designed to mimic bradykinin, a vasoactive compound, and has
demonstrated capabilities in modulating BBB permeability [131]. Hyperosmolar solutions have been
used to encourage the reversible shrinkage of endothelial cells to enhance BBB permeability [126].
They are invasive because administration is done via arterial injection. Another compound that is
commonly used is the detergent sodium dodecyl sulfate (SDS) [132]. SDS is a chemical surfactant
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and strongly interacts with lipids and proteins in the cell membrane, acting to solubilize these
hydrophobic molecules.

6.3.2. Physical Stimuli to Create Openings

Physical methods tend to be less invasive because they do not require surgical intervention
for chemical injections but rather rely on energy-based fields such as acoustic, microwave, or
electromagnetic [133,134]. The focused ultrasound technique uses acoustic energy that can be focused
on a particular spot deep within the body while minimizing the effect on tissues elsewhere [135]. When
this is coupled with synthetic microbubbles, the BBB can reversibly and temporarily open without
acute neuronal damage or ischemia [136]. The bubbles serve two roles. First, they localize the effect of
the ultrasound to the vasculature, and second, they reduce the energy required to open the BBB, and
therefore, no surgery is needed and the ultrasound can be applied over the intact skull. Using magnetic
resonance imaging (MRI) as a guide, this is a non-invasive approach to open specific regions of the BBB
allowing for drug delivery [133]. As such, this technique has been used to deliver drugs to the brain
of human cancer patients [137]. Electromagnetic field (EMF) pulses have also been used to increase
the permeability of the BBB and have demonstrated efficacy in in vitro models [138]. The degree of
permeability can be fine-tuned by changing the wave shape, frequency, and amplitude of the EMF.

Overall, focused ultrasound is one of the few commercially available strategies to induce changes
to the BBB because of its low invasiveness [133]. When coupled with MRI, this strategy is both
diagnostic as well as therapeutic. It can be used to enhance permeability to HGF/MET-targeting small
molecules and large proteins alike as well as liposomes and nanoparticles. This physical stimulus to
create openings in the BBB is a promising area of active research.

7. Conclusions and Outlook

In this review, we discussed HGF/MET signaling in both well-regulated as well as dysregulated
contexts. Specific focus was placed on malignant brain tumors, current targeted therapies, and strategies
to cross the blood and brain barrier. Because of the significance and importance of the HGF/MET
signaling pathway, more research is needed here to clarify the connections to normal development as
well as cancer growth and proliferation. This, in turn, will help facilitate more creative designs for
antibodies as well as small molecule inhibitors, both of which are in great need to treat malignant brain
tumors. HGF/MET therapies will likely be more effective in combination with cytotoxic therapies and
other targeted molecular therapies.
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