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 Background: Remodeling of maternal spiral arteries after embryo implantation relies on well-regulated trophoblast func-
tions. Although cyclin G2 (CCNG2) is thought to be involved in placental development and function, its role in 
trophoblasts and the mechanisms underlying placental development and function remain unclear. The present 
study investigated the potential role of CCNG2 in trophoblast cell proliferation and their interactions with en-
dothelial cells.

 Material/Methods: CCNG2 levels were modified by stable infection of HTR8/SVneo cells with lentiviruses overexpressing and si-
lencing CCNG2. Cell proliferation was measured using CCK-8 assays. Network formation assays were performed 
using trophoblasts alone and co-cultured trophoblasts and endothelial cells to measure angiogenesis of tro-
phoblasts and trophoblast-endothelial interactions. Levels of angiogenic factors (VEGF and sFlt-1) in the su-
pernatant were measured by ELISA, and the expression of cell cycle regulatory (cyclin D1) and invasive (MMP2, 
MMP3, MMP9) markers implicated in artery remodeling were measured by western blotting.

 Results: Ectopic expression of CCNG2 blocked the proliferation of HTR8/SVneo cells, as well as their abilities to form 
networks and integrate into human umbilical vein endothelial cells, whereas CCNG2 inhibition had the oppo-
site effects. CCNG2 upregulation significantly reduced the expression of VEGF, cyclin D1, MMP2, MMP3, and 
MMP9, but enhanced the expression of sFlt-1. In contrast, CCNG2 downregulation had the opposite effects.

 Conclusions: CCNG2 plays a critical role in trophoblast proliferation and trophoblast-endothelial cell interactions by signif-
icant affecting cell cycle, angiogenic, and invasive markers. CCNG2 may thus be a novel marker for the treat-
ment of placental disorders.
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Background

Appropriate remodeling of spiral arteries is essential for suc-
cessful fetal growth and pregnancy. During the first trimester 
of human pregnancy, extravillous trophoblasts (EVTs) differen-
tiate into 2 invasive subpopulations: interstitial (inEVTs) and 
endovascular (enEVTs) EVTs. InEVTs invade the decidual stro-
ma and the first third of the myometrium before finally reach-
ing the outer aspects of the arterial walls. In contrast, enEVTs 
migrate across the inner wall of spiral arteries and adopt an 
endothelial-like phenotype, followed by trophoblast integra-
tion and the subsequent replacement of endothelial cells via 
their apoptosis and the catabolism of the extracellular ma-
trix [1–6], a process called spiral artery remodeling. The ves-
sels are characterized by high perfusion and low resistance to 
meet the requirements of the developing fetus [7].

Failure of spiral artery remodeling is closely associated with se-
rious pregnancy-associated disorders, such as early pregnancy 
loss, fetal growth restriction, and preeclampsia. Preeclampsia 
is the major cause of maternal and perinatal mortality, with 
a worldwide incidence of 2–8% [8–13]. In addition, excessive 
invasion leads to placenta accrete [14]. However, the specific 
molecular mechanisms involved in this process have not been 
fully explored. Further research into possible regulators of tro-
phoblast proliferation [15], differentiation [16], invasion [17], 
and angiogenesis [18] should enhance understanding of spiral 
artery remodeling, as well as placental development.

Cyclin G2 (CCNG2), which is encoded by the CCNG2 gene, is 
an atypical cyclin. It negatively regulates the cell cycle and 
is expressed in cycle-arrested and terminally differentiated 
cells [19,20]. As a tumor suppressor, CCNG2 is inversely asso-
ciated with the progression of multiple types of cancer [21–27]. 
CCNG2 has been shown to inhibit gastric cancer cell growth 
and migration by suppressing Wnt/b-catenin signaling [28]; to 
repress glycolysis by interacting with lactate dehydrogenase 
A (LDHA) [29]; and to inhibit glioma tumor progression [29]. 
Moreover, CCNG2 was found to bind to Dapper1 and protect 
against renal injury and fibrosis in diabetic nephropathy by 
suppressing Wnt/b-catenin signaling [30].

Although evidence has suggested that CCNG2 may be in-
volved in embryo implantation and trophoblast cell differen-
tiation [31,32], the precise functions of CCNG2 in the remod-
eling of spiral arteries remain unclear. The present study was 
designed to examine the roles and potential mechanisms of 
CCNG2 in the regulation of trophoblast proliferation and tro-
phoblast-endothelial cell interactions, and thereby identify a 
novel marker for the treatment of placenta-related diseases

Material and Methods

Cell culture

The human first trimester EVT cell line HTR8/SVneo was the 
kind gift of Dr. Charles Graham of Queen’s University, Kingston, 
Ontario, Canada [33]. Human umbilical vein endothelial cells 
(HUVECs) were obtained from the Type Culture Collection of 
the Chinese Academy of Sciences (Shanghai, China). HTR8/
SVneo cells and HUVECs were cultured in Roswell Park Memorial 
Institute-1640 medium (RPMI-1640; Gibco, Carlsbad, CA, USA) 
and Dulbecco’s modified Eagle’s medium (DMEM; Gibco), re-
spectively. Both media were supplemented with 100 IU/ml 
penicillin (Gibco), 100 mg/ml streptomycin (Gibco), and 10% 
(v/v) fetal bovine serum (FBS; Biological Industries, Kibbutz 
Beit Haemek, Israel), and both cell lines were cultured at 37°C 
with 5% CO2 in a humidified incubator.

Lentivirus infection

To generate cell lines stably overexpressing CCNG2, HTR8/
SVneo cells were infected with lentiviral particles carrying 
FLAG-tagged CCNG2 or control vector (GeneChem, Shanghai, 
China), yielding cells overexpressing CCNG2 (LV-CCNG2) and 
control cells (LV-NC), respectively. To generate CCNG2 knock-
down cells using the CRISPR/Cas9 gene editing system, lenti-
viral Cas9, lentiviral sgRNA targeting the human CCNG2 gene, 
and empty control vector were constructed and synthesized 
by GeneChem. At 72 h after their infection with lentiviral Cas9, 
HTR8/SVneo cells were selected by culture with 3.0 μg/mL pu-
romycin for 48 h, followed by infection with lentiviral sgRNA 
to yield CCNG2 knockdown (CCNG2-sgRNA) and control (NC-
sgRNA) cells. The efficiency of lentiviral infection was deter-
mined 72 h later by measuring green fluorescent protein (GFP) 
expression under a fluorescence microscope (Olympus, Tokyo, 
Japan). CCNG2 overexpression and knockdown were determined 
by quantitative real-time reverse transcriptase PCR (qRT-PCR) 
and western blotting 72 h after infection.

RNA extraction and qRT-PCR

Total RNA was extracted from infected HTR8/SVneo cells us-
ing TRIzol reagent according to the manufacturer’s proto-
col (Qiagen, CA, USA). cDNA was synthesized using a reverse 
transcription kit (RR036A; Takara, Tokyo, Japan). qRT-PCR was 
performed using a SYBR Green PCR kit (Takara) on a Roche 
LightCycler480 Real-Time PCR system and primers for
CCNG2 (sense, 5’-TCTCGGGTTGTTGAACGTCTA-3’;
antisense, 5’-GTAGCCTCAATCAAACTCAGCC-3’) and
GAPDH (sense, 5’-TGTTGCCATCAATGACCCCTT-3’;
antisense 5’-CTCCACGACGTACTCAGCG-3’).
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The level of expression of the CCNG2 gene was normalized to 
that of GAPDH, and relative expression of CCNG2 was calcu-
lated using the 2–DDCt method [34].

Western blot analysis

Cells were harvested and lysed with radioimmunoprecipita-
tion assay (RIPA) buffer supplemented with Protease Inhibitor 
Cocktail and PhosSTOP Phosphatase Inhibitor Cocktail (Roche, 
Basel, Switzerland). The protein concentrations of the cell lysate 
supernatants were quantified using a BCA Assay Kit (Beyotime, 
China). Equal amounts of protein samples were separated by 
SDS-PAGE and transferred to polyvinylidene fluoride (PVDF) 
membranes (Millipore, Billerica, MA, USA). After being blocked, 
the membranes were incubated at 4°C overnight with one of 
the following primary antibodies: anti-CCNG2 (1: 1000; Abcam, 
USA), cyclin D1 (1: 1000; Abcam), anti-matrix metalloprotein-
ase-2 (MMP2) (1: 1000; CST, USA), MMP3 (1: 1000; CST), anti-
MMP9 (1: 1000; CST), or GAPDH (as loading control; 1: 5000; 
Proteintech, USA). After washing, the membranes were incu-
bated with secondary horseradish peroxidase-conjugated anti-
rabbit IgG antibody (1: 10000; Abcam) at room temperature for 
1  h, with the bands subsequently visualized by chemilumines-
cence (DNR Bio-Imaging Systems, Jerusalem, Israel). Band inten-
sity was quantified using ImageJ software (National Institutes 
of Health, USA) and was normalized to GAPDH expression.

Cell proliferation

Cell proliferation was assessed using a Cell Counting Kit-8 
(CCK-8; Dojindo Molecular Technologies, USA), according to 
the manufacturer’s instructions. Briefly, cells were seeded in 
96-well plates at a density of 4×103 cells per well in 100 μl 
complete medium and incubated for 0, 1, 2, 3, 4, or 5 days. To 
each well was added 10 μl CCK-8 solution, followed by further 
incubation at 37°C for 3 h. The OD450 was measured by a mi-
croplate reader (Thermo Fisher Scientific, Waltham, MA, USA), 
and cell proliferation curves were plotted.

HTR8/SVneo network formation

For Matrigel network formation assays, each well of a 96-well 
plate was coated with 40 μl ice-cold Matrigel (BD Biosciences, 
USA) and polymerized for 30 min at 37°C. HTR8/SVneo cells (4×104 
cells/well) were seeded on the upper layer of the coated wells and 
cultured in 100 μl medium. Six hours later, the plates were im-
aged using a microscope (Nikon, Japan). Total network length and 
numbers of branch points were quantified using ImageJ software.

HUVEC labeling

HUVECs were labeled with red fluorescent CM-Dil (Yeasen, 
Shanghai, China), which stains viable cell membranes, according 

to the manufacturer’s protocol. Briefly, HUVECs with high con-
fluency were collected, digested, washed, and dissociated into 
single cell suspensions at a concentration of 1 × 106 cells/ml. 
Prepared CM-Dil stock was added to each cell suspension at 
2 μg/ml, followed by incubation at 37°C for 5 min and then 
at 4°C for another 15 min. Following centrifugation and re-
moval of the supernatants, labeled cells were washed in PBS 
to eliminate residual fluorescent dye and cultured. Cell flu-
orescence was monitored under a fluorescence microscope 
(Olympus, Tokyo, Japan).

Co-culture of labeled HUVECs and HTR8/SVneo cells on 
Matrigel

To assess the ability of HTR8/SVneo cells to integrate into en-
dothelium, green fluorescent trophoblasts and red fluorescent 
endothelial cells were co-cultured as described, with minor 
modifications [35–38]. Briefly, 24-well culture plates were coat-
ed with undiluted Matrigel (BD Biosciences) (300 μl/well) and 
polymerized at 37°C for 30 min. Labeled HUVECs were seed-
ed at 1.0×105 cells/well and grown for 4 h in DMEM to devel-
op endothelial cellular networks. HTR8/SVneo cells (1.0×105 
cells/well) were seeded onto the HUVEC monolayer and the 
1: 1 mixtures were cultured in DMEM/RPIM-1640 medium 
for 24 h. Images were taken with a fluorescence microscope 
(Olympus). HTR8/SVneo cell integration into endothelial cells 
was calculated as the ratio of the green to the red fluorescent 
network formation area using ImageJ software.

ELISA

Vascular endothelial growth factor (VEGF) and soluble fms-
like tyrosine kinase receptor 1 (sFlt-1) concentrations in the 
conditioned media of infected HTR8/SVneo cells were deter-
mined with commercially available human VEGF and sFlt-1 
ELISA kits (Uscn Life Science Inc., Wuhan, China), respectively, 
according to the manufacturer’s protocols. The optical density 
of each well at 450 nm was measured on a microplate reader 
(Thermo Fisher Scientific Inc., USA), with concentrations de-
termined from standard curves. Results are shown as the con-
centration (pg/ml) compared with control.

Statistical analysis

Quantitative data are presented as the mean±standard devia-
tion of triplicate determinations and compared using Student’s 
t tests. Statistical analyses were performed using the SPSS 
20.0 statistical software package (SPSS Inc., Chicago, IL, USA) 
and GraphPad Prism 5 software (GraphPad, San Diego, CA, 
USA). P values <0.05 were considered statistically significant.
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Results

Confirmation of CCNG2 overexpression and knockdown

To explore the effect of CCNG2 on the regulation of trophoblast 
cell function during the remodeling of the maternal spiral ar-
tery in vitro, CCNG2 was successfully overexpressed in HTR8/
SVneo cells by infection with a lentivirus carrying the CCNG2 
gene; similarly, CCNG2 expression was sufficiently silenced af-
ter treatment of these cells with Cas9/sgRNA vector. The over-
expression and silencing of CCNG2 were verified at the mRNA 
and protein levels in whole cell lysates. The level of CCNG2 
mRNA after infection of cells with the overexpression vector 
was 25.2-fold higher than control (P<0.001), whereas the lev-
el of CCNG2 mRNA after infection of cells with the knockdown 
vector was 9.1% that of control (P<0.05) (Figure 1). Similarly, 
CCNG2 protein levels in whole cell lysates following infection 
with the overexpression and knockdown vectors were 2.3-fold 
higher than (P<0.01) and 42.7% (P<0.01) of control, respectively.

CCNG2 blocks the proliferation of HTR8/SVneo cells

CCK-8 assays of HTR8/SVneo cell proliferation following stable 
overexpression and silencing of CCNG2 showed that CCNG2 
overexpression significantly reduced HTR8/SVneo cell prolifer-
ation, to 68.5% of control at 5 days (P<0.01), whereas CCNG2 
knockdown enhanced cell proliferation to 1.3-fold higher than 
control at 5 days (P<0.05) (Figure 2). Taken together, these 
findings indicate that CCNG2 blocks the proliferation of tro-
phoblast cells.

CCNG2 impairs the formation of HTR8/SVneo cell networks

Because the angiogenic property of trophoblast cells is criti-
cal for spiral artery remodeling, we also evaluated the effects 
of CCNG2 on the network formation capacity of HTR8/SVneo 
cells. Overexpression of CCNG2 significantly decreased the total 
network length to 23.3% of control (773±223 μm vs. 3318±361 
μm, P<0.01) and reduced the number of branch points to 65.8% 
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Figure 1.  Effects of CCNG2 overexpression and knockdown in HTR8/SVneo cells. (A) qRT-PCR assays of relative CCNG2 mRNA 
expression showing its overexpression and knockdown in HTR8/SVneo cells. (B) Western blot assays of relative levels 
of CCNG2 protein showing its overexpression and knockdown in HTR8/SVneo cells. (C) Densitometric quantification of 
western blot results using ImageJ software. Each experiment was independently performed 3 times. * P<0.05, ** P<0.01, and 
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of control (12.7±2.1 vs. 19.3±1.2, P<0.05) (Figure 3). In con-
trast, knockdown of CCNG2 significantly increased the total 
network length to 1.4 times that of control (5173±400 μm vs. 
3708±189 μm, P<0.05) and increased the number of branch 
points to 1.2 times that of control (22.3±1.5 vs. 18.7±0.6, 
P<0.05). Thus, these findings indicated that CCNG2 represses 
the angiogenic activity of trophoblast cells.

CCNG2 reduces the capacity of HTR8/SVneo cells to 
integrate into HUVECs

Green fluorescent-labeled trophoblast HTR8/SVneo cells and 
red fluorescent-labeled HUVECs were co-cultured on Matrigel 
to study the interaction of trophoblasts and endothelium. In 
the images, the capacity of HTR8/SVneo cells to integrate 
into HUVECs is represented by the ratio of green fluorescent 
to red fluorescent network areas. CCNG2 overexpression was 
found to reduce the capacity of HTR8/SVneo cells to replace 
endothelial networks to 27.6% of control (P<0.01), whereas 
CCNG2 knockdown increased the migration and integration 
of HTR8/SVneo cells into HUVECs by 2.3-fold relative to con-
trol (P<0.05) (Figure 4). These findings indicated that CCNG2 
inhibits trophoblast integration into endothelial cells during 
spiral artery remodeling.

CCNG2 suppresses the level of VEGF but simulates that of 
sFlt-1

To assess the impact of CCNG2 on trophoblast cell angio-
genesis, we assessed its effects on the levels of the pro-an-
giogenic factor VEGF and the anti-angiogenic factor sFlt-1. 
Overexpression of CCNG2 reduced the concentration of VEGF 
in cell supernatants to 20.2% of control (8.5±2.9 pg/ml vs. 
42.0±6.5 pg/ml, P<0.01), while increasing the concentration 
of sFlt-1 to 1.3-fold higher than control (362.4±8.4 pg/ml vs. 
278.9±11.2 pg/ml, P<0.01) (Figure 5). Conversely, silencing of 
CCNG2 increased the concentration of VEGF to 1.7-fold high-
er than control (82.7±4.1 pg/ml vs. 49.4±6.7 pg/ml, P<0.05), 
while reducing the concentration of sFlt-1 to 65.5% of control 
(83.2±6.7 pg/ml vs. 127.1±7.5 pg/ml, P<0.05). Thus, CCNG2 
can inhibit angiogenesis by suppressing VEGF expression and 
increasing sFlt-1 expression.

CCNG2 reduces the expression of cyclin D1, MMP2, MMP3, 
and MMP9

To further confirm the potential molecular mechanism under-
lying the regulation of spiral artery remodeling by CCNG2, its 
effects on the levels of the cell cycle regulator cyclin D1 and 
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the cell invasion markers MMP2, MMP3, and MMP9 were as-
sessed by western blotting. CCNG2 overexpression significant-
ly reduced the levels of expression of cyclin D1, MMP2, MMP3, 
and MMP9 proteins, whereas CCNG2 knockdown significantly 
increased the levels of all 4 (Figure 6). Taken together, these 
results indicate that CCNG2 participates in spiral artery remod-
eling by regulating cyclin D1 and MMPs.

Discussion

Successful fetal growth and pregnancy outcomes are deter-
mined by appropriate remodeling of spiral arteries during ear-
ly pregnancy. The mechanism underlying the accurate remod-
eling of spiral arteries remains to be determined, although 
abnormally regulated trophoblasts likely play a crucial role in 
this process. The present study showed that CCNG2 could dra-
matically reduce the proliferative and angiogenic capacities of 

trophoblasts, as well as reducing their ability to integrate into 
endothelial cells. These findings suggest that CCNG2 is involved 
in the regulation of trophoblast cell differentiation to an en-
dovascular trophoblast-like phenotype and the replacement 
of endothelial cells of uterine spiral arteries.

CCNG2 also has effects on the placenta. For example, a glob-
al analysis of gene expression profiles at the maternal-fetal 
interface found that CCNG2 expression in the placental bas-
al plate region was 2.03-fold lower at term than during mid-
pregnancy [39]. Similarly, transcriptome profiling of placental 
tissue identified a peak in placental CCNG2 gene expres-
sion at mid-gestation, followed by a reduction at term [40]. 
Moreover, immunohistochemical analysis showed that CCNG2 
was highly expressed in preeclampsia placenta [40]. CCNG2 
is also present in the mouse uterus, where it may be involved 
in implantation and decidualization [31]. In addition, CCNG2 
was found to promote trophoblast cell differentiation into the 
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syncytiotrophoblast pathway but not the invasive EVT path-
way [32]. Downregulation of CCNG2 participates in the pro-
line-rich protein 15 (PRR15)-induced enhancement of tropho-
blast viability and proliferation during early implantation and 
placentation [41]. Our in vitro results, indicating that CCNG2 
may directly affect interactions between trophoblasts and en-
dothelial cells, suggest that CCNG2 may be involved in early 
placental development and that its expression may correlate 
with the pathogenesis of placenta-associated diseases such 
as preeclampsia.

The present study showed that CCNG2 downregulated the 
expression in trophoblast cells of cyclin D1, a positive regula-
tor of cell DNA synthesis and proliferation that promotes pas-
sage through the G1 to S checkpoint by associating with cy-
clin-dependent kinase (CDK) 4/6 [42]. Cyclin D1 is expressed 
in the nuclei of cytotrophoblasts in human placentas dur-
ing the first trimester and is strongly expressed in the nuclei 
of endothelial cells during the third trimester [43], suggest-
ing that cyclin D1 regulates the proliferation of trophoblast 
cells during early pregnancy and placental angiogenesis dur-
ing late pregnancy. Moreover, placental cyclin D1 expression 
is decreased in women with fetal intrauterine growth restric-
tion (IUGR) and preeclampsia complicated with IUGR [44], sug-
gesting that abnormal regulation of cyclin D1 disturbs cell pro-
liferation and compromises placental development. Because 
it is a link between growth signaling and cell division, cyclin 
D1 is a downstream target of several mitotic signals, such as 
AKT [45], ERK [46], NF-kB [47], and Wnt/b-catenin [48]. In ad-
dition to studying the relationship between CCNG2 and the 
Wnt/b-catenin signaling pathway [28,30], further research is 
required to determine whether other signaling pathways par-
ticipate in the cyclin D1 abnormality mediated by CCNG2 dur-
ing placental development.

During the physiological process of spiral artery remodeling, 
invasive EVTs produce extracellular matrix-degrading enzymes 
that proteolytically degrade musculoelastic layers around spiral 
arteries [49,50]. These enzymes are mainly induced by MMPs. 
In our study, the ability of CCNG2 to regulate the expression 
of MMP2, MMP3, and MMP9 was determined in HTR8/SVneo 
cells to assess the effects of cell invasion on CCNG2-mediated 
trophoblast-endothelial cell interactions. MMPs are a large fam-
ily of zinc-dependent endopeptidases that are classified ac-
cording to the proteins they degrade in the extracellular ma-
trix. MMPs include the gelatinases MMP2 and MMP9 and the 
stromelysin MMP3 [51]. Downregulation of MMP2, MMP3, and 
MMP9 expression in preeclamptic placentas has been found to 
result in defective trophoblast invasion and impaired placenta-
tion [52–54]. Similarly, the present study showed that CCNG2 
significantly reduced the levels of expression of MMP2, MMP3, 
and MMP9 in trophoblast cells, indicating that the ability of 
CCNG2 to interfere with the integration of trophoblasts into 
endothelial networks was due to its effects on invasive path-
ways, including the production of MMPs.

Our study revealed that overexpression of CCNG2 in HTR8/
SVneo cells induced defects in network formation and integra-
tion into endothelial networks in vitro. Therefore, insufficient 
maternal spiral artery transition results from an imbalance be-
tween proangiogenic growth factors and anti-angiogenic fac-
tors [55]. The downregulation of the angiogenic factor VEGF 
and the upregulation of the anti-angiogenic factor sFlt-1 are 
involved in the pathophysiology of preeclampsia [56,57]. We 
found that CCNG2 affected the expression of these angiogen-
esis-related factors in the supernatants of HTR8/SVneo cells, 
in that CCNG2 reduced VEGF concentration while increasing 
sFlt-1 expression. These findings suggested that CCNG2 regu-
lates angiogenesis during spiral artery remodeling. The binding 
of VEGF to its membrane-bound receptor promotes angiogen-
esis and maintains an endothelial balance by initiating PI3K 
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Figure 5.  CCNG2 suppresses the expression of VEGF but increases that of sFlt-1. (A, B) Statistical analyses of the concentrations of 
VEGF (A) and sFlt-1 (B) in the conditioned media of infected HTR8/SVneo cells (pg/ml). Each experiment was independently 
performed 3 times. * P<0.05 and ** P<0.01 vs. control.
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and PLCg signaling, whereas the binding of sFlt-1 to free VEGF 
prevents these events, reducing VEGF levels while promoting 
defective uteroplacental vascularization [58]. Studies are un-
derway to decipher the regulatory pathways linking CCNG2 
with VEGF and sFlt-1.

Conclusions

These results demonstrate that CCNG2 participates in con-
trolling trophoblast functions by impairing their proliferation, 

angiogenesis and integration into endothelial networks. This 
process is likely mediated by downstream effectors, including 
cell cycle proteins, MMPs, and the angiogenic factors VEGF and 
sFlt-1. CCNG2 may therefore be a regulator of trophoblast cell 
behavior that modulates placentation, suggesting a novel ther-
apeutic approach to placental disorders.
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