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Abstract
Huntington’s disease (HD) is caused by an expansion of the CAG repeat in the huntingtin gene leading to preferential neu-
rodegeneration of the striatum. Disease-modifying treatments are not yet available to HD patients and their development 
would be facilitated by translatable pharmacodynamic biomarkers. Multi-modal magnetic resonance imaging (MRI) and 
plasma cytokines have been suggested as disease onset/progression biomarkers, but their ability to detect treatment efficacy 
is understudied. This study used the R6/2 mouse model of HD to assess if structural neuroimaging and biofluid assays can 
detect treatment response using as a prototype the small molecule p75NTR ligand LM11A-31, shown previously to reduce 
HD phenotypes in these mice. LM11A-31 alleviated volume reductions in multiple brain regions, including striatum, of 
vehicle-treated R6/2 mice relative to wild-types (WTs), as assessed with in vivo MRI. LM11A-31 also normalized changes in 
diffusion tensor imaging (DTI) metrics and diminished increases in certain plasma cytokine levels, including tumor necrosis 
factor-alpha and interleukin-6, in R6/2 mice. Finally, R6/2-vehicle mice had increased urinary levels of the p75NTR extra-
cellular domain (ecd), a cleavage product released with pro-apoptotic ligand binding that detects the progression of other 
neurodegenerative diseases; LM11A-31 reduced this increase. These results are the first to show that urinary p75NTR-ecd 
levels are elevated in an HD mouse model and can be used to detect therapeutic effects. These data also indicate that multi-
modal MRI and plasma cytokine levels may be effective pharmacodynamic biomarkers and that using combinations of these 
markers would be a viable and powerful option for clinical trials.
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Introduction

Huntington’s disease (HD) is a fatal neurodegenerative dis-
order that manifests clinically with motor impairments, cog-
nitive deficits, and psychiatric symptoms. It is caused by a 
mutation in the exon 1 region of the huntingtin (HTT) gene 
resulting in an expansion of the polyglutamine region of the 
mutant huntingtin (mHtt) protein. Prominent degenerative 

changes in HD include early pathology in the striatum, 
including intranuclear mHtt aggregates, neuroinflammation, 
iron accumulation, and eventually neuronal loss [1–3]. With 
disease progression, neurodegeneration is more pervasive, 
extending beyond the striatum to the cortex and other sub-
cortical regions as well as white matter [3, 4]. Therapies 
capable of slowing disease progression and thereby delaying 
or preventing symptom onset are not yet available to HD 
patients.

Key mechanisms underlying HD neurodegeneration 
involve mHtt-induced loss of neurotrophic support which 
can be largely attributed to brain-derived neurotrophic fac-
tor (BDNF) down-regulation and disrupted signaling via the 
neurotrophin receptors (NTR) tropomyosin receptor kinase 
B (TrkB) and p75NTR [5]. Dysfunctional p75NTR signaling 
critically contributes to dendritic spine loss as well as cor-
ticostriatal and hippocampal plasticity deficits that occur in 
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HD mouse models [6–9]. p75NTR levels are elevated in the 
striatum and hippocampus, but not the cortex, of HD patients 
and in all three brain areas of multiple HD mouse models [7, 
10–13]. Targeting p75NTR signaling has therefore emerged as 
a promising HD therapeutic strategy [5, 9]. Accordingly, our 
laboratory has developed an orally bioavailable small mol-
ecule p75NTR ligand, LM11A-31, which selectively binds to 
the receptor and functions as a modulator to promote trophic 
signaling while abating degenerative signaling [14, 15]. In 
HD mouse models (R6/2 and BACHD), LM11A-31 normal-
ized aberrant p75NTR signaling. This effect was accompanied 
by improved motor and cognitive abilities as well as a reduc-
tion in characteristic HD pathologies, including intranuclear 
mHtt aggregates, dendritic spine loss, and neuroinflamma-
tion. Notably, LM11A-31 also increased the survivability of 
R6/2 mice [8]. These preclinical results position LM11A-31 
as ripe for HD clinical testing since the compound is cur-
rently in a phase 2a clinical trial for Alzheimer’s disease 
(ClinicalTrials.gov: NCT03069014).

Eventual HD clinical testing of LM11A-31 and devel-
opment of other HD disease-modifying therapeutics would 
benefit from non-invasive biomarkers that are translatable 
from mouse-to-human and can detect a disease-relevant bio-
logical response to putative treatments. Our previous efforts 
to address this need revealed that positron emission tomog-
raphy (PET) imaging with [18F]PBR06, a radiotracer target-
ing translocator protein 18 kDa (TSPO) to detect microglial 
activation, discerned the reductive effect of LM11A-31 on 
neuroinflammation in the brains of multiple HD mouse mod-
els [16]. The PET imaging results are encouraging, but com-
bining multiple biomarkers with specific and complementary 
advantages will further contribute to preclinical therapeutic 
screening and clinical trials. As HD is an inherited autoso-
mal dominant disease, genetic testing can establish the pres-
ence of the mutation years before motor symptom onset, and 
many clinical, biochemical, and neuro-/molecular imaging 
biomarkers have been validated as potential biomarkers of 
disease state and/or progression (for reviews, see [17–19]). 
However, few, if any, of these identified biomarkers have 
been interrogated for their ability to discern disease-modi-
fying treatment response in HD patients or animal models, 
a requisite for translational purposes. Thus, this study aimed 
to establish whether one or more of the biomarkers previ-
ously shown to track disease progression in HD patients and/
or other neurodegenerative diseases can discern therapeutic 
effects in an HD mouse model using LM11A-31 as a pro-
totype therapy.

In choosing biomarkers to investigate in this study, pref-
erence was given to those that are readily translatable from 
preclinical to clinical studies, applicable to a broad range of 
therapeutic strategies, and minimally invasive [e.g., mag-
netic resonance imaging (MRI), blood/urine collection]. 
MRI is a modality with the potential to be translatable from 

mouse studies to human clinical trials. Gray and white mat-
ter changes in the basal ganglia detected via structural MRI 
have been heralded as one of the most powerful discrimina-
tors between pre-symptomatic HD patients and healthy con-
trols [20]. This study investigated whether LM11A-31 could 
prevent volume loss and connectivity changes in pre-defined 
brain regions of HD mice and if this effect could be detected 
with structural or diffusion MRI techniques. We examined 
other potential biomarkers for their ability to detect LM11A-
31 effects, including cytokines in plasma and p75NTR extra-
cellular domain (ecd) levels in urine. Both of these fluid 
biomarkers have been used to evaluate disease progression 
in HD and/or other neurodegenerative conditions, including 
amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease 
[21, 22]. To our knowledge, very few studies have used a 
comprehensive multi-modal in vivo neuroimaging approach 
paired with a contemporaneous examination of fluid bio-
markers in an HD mouse model. Even fewer have utilized 
this strategy to empirically test its efficacy in elucidating the 
treatment response of potential HD therapeutics. Using this 
approach and machine learning techniques, we found that 
multi-modal in vivo MRI and levels of plasma cytokines 
and urinary p75NTR-ecd may be effective pharmacodynamic 
biomarkers preclinically and have a high potential for trans-
lation to HD clinical trials, with combinations of these mark-
ers as the most powerful option.

Methods

Study Design

This study was designed to identify non-invasive biomarkers 
to monitor the treatment response of potential HD therapeu-
tics using as a prototype the small molecule p75NTR ligand, 
LM11A-31, in the R6/2 mouse model of HD. R6/2 mice 
are transgenic for the 5′ end of the human HD gene carry-
ing 100–190 glutamine (CAG) repeats [23] and are a good 
model of the anomalous splicing of mutant huntingtin that 
occurs in HD [24]. R6/2 mice are widely used for HD pre-
clinical studies because they rapidly and reliably develop 
robust HD-related motor/cognitive deficits and pathology 
[23, 25]. They develop nuclear aggregates of mHtt and 
microglial ferritin accumulation as early as 4 weeks of age 
and progressive cognitive and motor deficits starting at 
5–7 weeks [23, 25, 26]. These experiments utilized a 2 × 2 
cross-sectional study design [wild-type (WT)/R6/2 × vehi-
cle (Veh)/LM11A-31] with random group assignment. A 
cross-sectional study design was used since longitudinal 
studies of R6/2 mice are impractical, especially in those 
with shorter CAG repeats (< 130), given their severe phe-
notype, short lifespan, and proclivity to handling-induced 
seizures. Male and female R6/2 mice and their age-matched 
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WT littermates were given LM11A-31 (50 mg/kg, P.O., once 
daily by oral gavage 5–6 days/week) for ~ 7–8 weeks start-
ing at 4 weeks of age (n = 13–17 mice/group; n = 9–12 male 
and 4–5 female mice/group). MRIs were performed on a 
subset of these mice (n = 8–16 mice/group) as determined 
by scanner availability. The number of mice contributing to 
each analysis is provided in the figure captions. The group 
size needed to obtain statistical significance was determined 
based on previously published studies using these mice [8, 
27]. As illustrated in the experimental timeline (Fig. 1a), 
urine was collected from mice at 10–11  weeks of age, 
neuroimaging studies were performed ~ 5–7 days later at 
11–12 weeks of age, and plasma and brains were collected at 
the time of euthanasia (~ 2–5 days after MRIs). Quantitative 

neuroimaging and histological analyses were conducted by 
experimenters that were blind to treatment and genotype.

Mice, Husbandry, and Genotyping

All animal procedures were conducted in accordance with 
the National Institutes of Health Guide for the Care and Use 
of Laboratory Animals using protocols approved by the 
Institutional Animal Care and Use Committee at Stanford 
University. These protocols included efforts to minimize ani-
mal suffering and the numbers used. Breeding pairs of R6/2 
mice were purchased from Jackson Laboratories [female 
hemizygous ovarian transplant B6CBA-TgN (HD exon1)62; 
JAX stock #006494]. Males and females from litters born to 

Fig. 1   Experimental timeline and brain regions of interest. a Experi-
mental timeline showing that oral gavage dosing of male and female 
R6/2 mice and their wild-type (WT) littermates with LM11A-31 
(50 mg/kg, once daily 5–6 days/week) started at 4 weeks of age until 
euthanasia ~ 7–8 weeks later. At 4 weeks, nuclear mutant huntingtin 
(mHtt) aggregates and microglial ferritin accumulation have been 
detected in R6/2 striatum and, at 5–7 weeks of age, motor and cogni-
tive symptoms manifest. Age ranges at which urine, blood, and brain 
collection occurred and MRI was performed are noted. Created with 

BioRender.com. b T2-weighted MR images showing the delineation 
of the brain regions of interest (ROIs) used for analysis of volume-
try, relaxometry, and DTI metrics. Representative MR images show-
ing the anatomical localization of the following ROIs in one hemi-
sphere: cortex (CX, purple), striatum (STR, red), corpus callosum 
with contiguous external capsule (CC, yellow), globus pallidus (GP, 
turquoise), dorsal hippocampus (Hipp, green), and rostral thalamus 
(Thal, orange). All measures were taken bilaterally.
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these breeding pairs (R6/2 mice and WT littermates) were 
used in this study. Mice were group-housed in a pathogen-
free animal facility with a 12-h light-dark cycle (on 6 am, off 
6 pm); genotypes were mixed in a cage but genders were not. 
All mice received cotton nestlets and paper tubes with water 
and food freely available. Tail DNA was used for genotyping 
via real-time PCR by TransnetYX Inc. (Cordova, TN) and 
CAG repeat number measurement via ABI GeneMapper 4.0 
by Laragen Inc. R6/2 mice in this study had an average of 
128 ± 1.9 (mean ± SD) CAG repeats.

Treatment with the p75NTR Ligand LM11A‑31

LM11A-31 is a small molecule p75NTR ligand with a half-
life in mouse brain of 3–4 h (single oral gavage dose of 
50 mg/kg) [14, 28, 29]. Previous reports from our laboratory 
detail its chemical structure, pharmacokinetics, and pharma-
codynamics [14, 29, 30]. LM11A-31 was custom-manufac-
tured by Ricerca Biosciences at > 99% purity in a sulfate salt 
form (50 mg of salt contains 30 mg of the free base). It was 
dissolved in sterile water and given to experimental groups 
after 4 h of fasting at 50 mg/kg (10 ml/kg) via oral gavage 
once daily 5–6 days/week. Vehicle groups received water 
using the same paradigm. The LM11A-31 dose was chosen 
based on brain concentrations and biological effects deter-
mined in previous in vivo studies [14, 29]. This dose and 
dosing paradigm was used previously by our laboratory in 
multiple HD mouse models, including R6/2 mice, to reduce 
mHtt-related neuropathology and neuroinflammation and to 
improve motor and cognitive outcomes [8].

Magnetic Resonance Image Acquisition 
and Post‑acquisition Processing

In vivo MRI was performed using a horizontal bore Magnex 
Scientific scanner (Bruker Biospec) with 7.0 T field strength 
and Paravision v6.0.1 software at the Stanford University 
Small Animal Imaging Facility. To improve signal-to-noise 
ratio and resolution, a Bruker MRI CryoProbe was used as 
a receive coil, increasing the sensitivity of in vivo probes 
by a factor of 2.5–5 compared with room temperature 
coils by reducing the operating temperatures of the radi-
ofrequency coil and preamplifier. Mice were anesthetized 
with isoflurane gas (2–3% induction, 1.5–2% maintenance 
with 40% O2), and a sterile lubricant was applied to their 
eyes to prevent drying. Mouse heads were immobilized 
in a plastic bed with a bite and ear bar and a nose cone 
for anesthesia delivery. Body temperature and respiration 
rate were monitored throughout the scan and appropriately 
adjusted (36–37 °C, 30–90 breaths per min). The head was 
positioned using a localizer scan. During a single scan ses-
sion of ~ 40 min, images were acquired using three dif-
ferent sequences in the following order: T2-weighted fast 

spin-echo, diffusion-weighted multiple spin echo, and multi-
echo gradient echo (MGE). Due to time limitations on MRI 
access, some mice (n = 1–3 mice per treatment group) only 
received T2 and/or MGE scans (for the exact number of 
mice per scan, see figure captions). Acquisition parameters 
are detailed below.

T2-Weighted Images. Images of coronal brain slices 
were obtained within a sample box positioned at the caudal 
end of olfactory bulbs spanning the forebrain and midbrain 
to the start of the cerebellum. Images were acquired over 
7 min using T2-weighted fast spin-echo sequences with 
a repetition time (TR) of 4000 ms, an echo time (TE) of 
58.5 ms, a field of view (FOV) of 20 × 20 mm2, a matrix size 
of 256 × 256, 36 slices of 0.3 mm thickness, and the number 
of excitations was 9. For volumetric analysis, a study-spe-
cific atlas was constructed by combining T2-weighted MR 
images from 10 WT and 10 R6/2 mice using the advanced 
normalization (ANTS) and multivariate template construc-
tion tools [31] (https://​github.​com/​ANTsX/​ANTs/​blob/​
master/​Scrip​ts/​antsM​ultiv​ariat​eTemp​lateC​onstr​uctio​n2.​
sh). Pre-defined regions of interest (ROIs) from both brain 
hemispheres were manually delineated on each slice of 
the T2-weighted images (orthogonal view) using an over-
lay in FSLView (v4.0.1) [32, 33]. The Franklin and Paxi-
nos (2008) mouse brain atlas was used as a guide. ROIs 
included (Fig. 1b) striatum (dorsal, consisting of caudate 
and putamen) [Bregma (Bg) 1.54 mm to − 0.34 mm], globus 
pallidus [Bg − 0.22 mm to − 0.46 mm], cortex [including 
the frontal, motor (M1, M2), and somatosensory (S1) cor-
tices; Bg 2.80 mm to − 1.70 mm], dorsal hippocampus [Bg 
− 1.06 mm to − 2.54 mm], rostral thalamus [Bg − 1.06 mm 
to − 2.54 mm], and corpus callosum + external capsule (ec) 
[1.70 mm to − 2.54 mm]. Right and left sides were traced 
separately except for midline structures (e.g., thalamus, 
corpus callosum). The ROIs were saved in Neuroimaging 
Informatics Technology Initiative (NIfTI) format, and the 
T2-weighted images from each scan were registered to the 
study-specific atlas using the ‘reg_aladin’ tool from the 
niftireg toolkit (http://​cmict​ig.​cs.​ucl.​ac.​uk/​wiki/​index.​php/ 
​Nifty​Reg). Transformations were applied to the manually 
traced study atlas ROIs resulting in individualized ROIs 
for each scan in subject space. These ROIs were visually 
inspected for each scan and manually edited to exclude spu-
rious voxels by a blinded rater using FSLview. Volumet-
ric data on the subject-specific ROIs and total brain vol-
ume were obtained via ITK-SNAP’s c3d command (http:// 
​www.​itksn​ap.​org/​pmwiki/​pmwiki.​php?n=​Conve​rt3D.​
Docum​entat​ion) [34]. Sex differences in regional brain vol-
umes, including striatum, cortex, and/or hippocampus, were 
not evident in mid- to end-stage R6/2 mice or YAC128 mice 
[35–39]; thus, we pooled males and females for analysis of 
the T2-weighted images and subsequent measures. Similarly, 
hemispheric differences are infrequent with HD-related 
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atrophy [40]; thus, right and left hemisphere ROI volumes 
were summed to compute the total ROI volume for each 
structure. In addition to absolute volumes, ROI volumes 
were divided by total brain volume to assess whether the 
volumes of individual brain structures were reduced relative 
to whole brain changes.

Diffusion Tensor Imaging (DTI) and Neurite 
Orientation Dispersion and Density Imaging

For diffusivity metrics, a diffusion-weighted multiple spin-
echo EPI sequence was used to acquire images (scan duration: 
19 min 24 s) with the following parameters: TR = 400 ms, 
TE = 20.4 ms, one signal average, one repetition, 17 mm 
slice thickness, image size = 40 mm × 40 mm × 52 mm, 
FOV = 13 mm × 13 mm × 17 mm, 25 diffusion directions, 
90° flip angle, and fat suppression on. Diffusion-weighted 
images were reconstructed from DICOM to NIfTI format 
with the ‘dcm2niix’ tool. DTI metrics were computed using 
FSL’s ‘dtifit’ tool (FSL v5.0.10)[32, 33]. For R2* relax-
ometry, eight T2*-weighted gradient-echo volumes (5 ms 
echo spacing) were acquired with a TR of 1456 ms, a TE 
of 3.5 ms (8 images with 5 ms spacing), two signal aver-
ages, one repetition, 50° flip angle, 0.3 mm slice thick-
ness, and a FOV of 14 mm × 20 mm. R2* was computed 
by linear fitting after log transformation. All analyses were 
performed in subject space, and each voxel’s mean diffu-
sivity (MD) and fractional anisotropy (FA) were averaged 
based on the same ROIs described above. NODDI metrics 
were calculated using the publicly available NODDI Mat-
Lab tool box (http://​mig.​cs.​ucl.​ac.​uk/​index.​php?n=​Tutor​ial.​ 
NODDI​matlab). Single shell data allows for the fitting of 
orientation dispersion index (ODI), while two shells are 
required to fit neurite density measures [41]. With our one 
shell of DTI data, only ODI measurements were used. All 
data were calculated in subject space, and average ROI ODI 
was computed based on the individualized ROIs described 
above. Three mice (one R6/2-Veh, two R6/2-C31) were 
excluded from these analyses due to technical errors involv-
ing the diffusion acquisition.

Urine Collection

Mice received a subcutaneous injection of 0.1 ml saline 
1 h before urine collection, which occurred ~ 14–15 h after 
receiving their daily dose of LM11A-31. They were then 
scruffed and held over a disposable plastic container (a new 
container was used with each mouse). Gentle pressure was 
applied to the mouse’s lower back and belly to increase the 
imminence and the amount of urination. This process was 
repeated daily for up to 1 week to collect a sufficient volume 
of urine (~ 250 µl) to assay p75NTR-ecd levels. Voided urine 
was collected with a pipette and transferred to a centrifuge 

tube on ice. Urine was centrifuged (1000×g) for 10 min at 
4 °C, and then, the supernatant was collected and stored at 
− 80 °C until assayed.

Blood Collection and Brain Tissue Preparation

One-hour post-injection with LM11A-31 or vehicle, R6/2 
and WT mice were deeply anesthetized with avertin and 
blood samples were drawn via cardiac puncture with a hep-
arin-coated syringe and placed in EDTA-coated centrifuge 
tubes on ice. Between 30 and 45 min after collection, blood 
samples were centrifuged (1000×g, 10 min, 4 °C), and the 
supernatant was collected and designated plasma, which was 
stored at − 80 °C until use.

After blood samples were drawn, mice were immediately 
transcardially perfused with saline solution, and their brains 
were removed rapidly. The striatum was dissected from one 
brain hemisphere and flash frozen at − 80 °C until use for 
Western immunoblotting. The other brain hemisphere was 
immersion-fixed overnight in 4% paraformaldehyde in 
0.1 M phosphate buffer (PB; pH 7.4), cryoprotected in 30% 
sucrose/PB, and sectioned (40 µm, coronal) using a freezing 
microtome for use in histological procedures.

Quantification of p75NTR‑ecd Levels in Urine

To measure p75NTR-ecd levels in urine, we developed an 
electrochemiluminescence (ECL)-based sandwich immu-
noassay using the Meso Scale Discovery (MSD, Rock-
ville, MD) platform. Multi-Array® 96-well plates (MSD) 
with electrodes at the bottom of the wells were coated 
overnight with capture antibody (anti-p75NTR-ecd made 
in mouse; R & D Systems, cat # AF1157) diluted (1 µg/
ml) in phosphate-buffered saline (PBS). Blocking was per-
formed using 3% MSD Blocker A in PBS for 1 h. Block-
ing and all subsequent steps were performed on an orbital 
shaker (700 rpm) at room temperature (RT) unless other-
wise noted, and incubations were followed by 3 washes 
with wash buffer (MSD). During blocking, samples were 
thawed at 37 °C and diluted 1:4 with Diluent 41 (MSD), 
ensuring the samples had a neutral pH (6.8–7.5) for the 
assay. Lyophilized recombinant mouse p75ecd-Fc standard 
(Biosensis, from ELISA kit cat # BEK2220) was reconsti-
tuted and diluted with Diluent 41. The standard (1 zero and 
7 non-zero concentrations for standard curve) and samples 
from each treatment group were added to the plate (25 µl/
well) in duplicate (per mouse) and incubated overnight at 
4 °C (700 rpm). After 3 washes, the detection antibody 
(anti-p75NTRecd made in rabbit; Advanced Targeting Sys-
tems, cat # AB-N01ap) was diluted to 1 µg/ml with 1% 
MSD Blocker A and added to the wells (25 µl/well) for 
1 h. After washing, an MSD SULFO-TAG™ labeled anti-
rabbit secondary antibody was diluted to 0.5 µg/ml with 
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1% MSD Blocker A and added to the wells (25 µl/well) 
for 1 h. Plates were washed, MSD Read buffer (diluted 1:2 
in dH2O) was added to the wells, and the electrochemilu-
minescent (ECL) signal was detected with a QuickPlex 
SQ120 instrument (MSD). Discovery Workbench 4.0 
software (MSD) was used to generate a calibration curve 
to which ECL signals were fit to determine analyte con-
centrations. To control for variability that may occur with 
total concentrations of urine sample, creatinine levels were 
measured from undiluted samples using a QuantiChrom™ 
Creatinine assay kit (BioAssay Systems, Hayward, CA), 
according to the manufacturer’s instructions. Results 
from duplicate samples were averaged per mouse and are 
expressed as ng p75NTR-ecd/mg creatinine.

Quantification of Plasma Levels of Pro‑inflammatory 
Cytokines

Levels of ten cytokines were measured in the plasma of mice 
from each treatment group using a V-PLEX Pro-inflamma-
tory Panel 1 Mouse Kit (MSD), an ECL-based multiplex 
sandwich immunoassay. Diluent 41 (MSD) was used to 
dilute and/or reconstitute samples (1:2 dilution), calibrators 
(standard), and controls (mouse serum spiked with calibra-
tors at three concentrations, as supplied with the kit) before 
adding to the plate in duplicate for incubation overnight at 
4 °C (700 rpm). Procedures and analysis were performed 
according to the kit instructions and were similar to that 
described above for the p75NTR-ecd MSD assay.

Western Immunoblotting

Brain tissue was prepared for Western blotting, as described 
previously [27]. Briefly, tissue homogenates were pre-
pared in RIPA lysis buffer containing protease and phos-
phatase inhibitors. Protein samples from each genotype and 
treatment group were electrophoresed through a 26 well 
NuPAGE 4–12% Bis-Tris Gel with MOPS SDS running 
buffer (Invitrogen) and transferred to polyvinylidene dif-
luoride membranes (Immobilon-FL, Millpore). Membranes 
were probed using the transferrin receptor antibody (1:1,000 
ThermoFisher) and α-tubulin (Sigma) as a loading control. 
Secondary antibodies (ferritin: IRDye® 800CW, tubulin: 
IRDye® 680RD) were imaged with an Odyssey® CLx near-
infrared fluorescence imaging system (Li-Cor Biosciences). 
Immunoreactive bands were manually outlined, and densi-
ties were measured using Image Studio Lite software (Li-
Cor Biosciences). The densities of immunoreactive bands 
were expressed as a fraction of tubulin in the same lane. 
Samples were run in duplicate per mouse, and the data were 
normalized to the WT-Veh group of that gel then averaged.

Nissl Staining, Immunohistochemistry, and Image 
Analysis

For Nissl staining, every 8th coronal fixed-brain section 
(40 µm) was mounted onto slides and stained with 0.5% 
Cresyl violet in distilled water. Volumes of the striatum, cor-
tex (motor and somatosensory), dorsal hippocampus, and 
corpus callosum (including the contiguous external capsule) 
were estimated in one hemisphere using unbiased stereology 
via the Cavalieri method within StereoInvestigator v11.07 
(MBF). ROIs were delineated using the criteria described 
above and shown in Fig. 1b.

For immunostaining, free-floating sections were processed 
for localization of the iron storage protein ferritin (1:1000; 
Proteintech) using procedures described previously [26]. 
Images of ferritin immunostaining were acquired from 2 
to 3 striatal sections per mouse [2 sample fields/striatum] 
using the quick-full focus option (through 25 μm of tissue 
in the Z-plane) of a Keyence BZ-9000 microscope (20× 
objective). The images were maximally projected and ana-
lyzed with ImageJ using the subtract background and auto-
threshold commands. Data are presented as the mean percent 
area occupied by ferritin immunostaining per section/mouse. 
Immunostaining was performed in multiple sets so quantifi-
cations were normalized to the WT-Veh group of that staining 
set. All figures were created in Adobe Illustrator CS6 v.16.

Statistical Analysis

GraphPad Prism (version 8) software was used for all sta-
tistical analyses. Data normality was assessed using the 
Kolmogorov-Smirnov test. Statistical significance of mean 
differences between normally distributed continuous vari-
ables with equal variances was tested by one-way analysis 
of variance (ANOVA) with a Fisher’s LSD post hoc test with 
planned comparisons. Significant differences between non-
normally distributed variables were assessed using the non-
parametric Mann-Whitney test and those with unequal vari-
ances the Welch’s t test. Multiple comparisons were addressed 
for each MRI metric and the plasma cytokine analysis using 
the Benjamini, Krieger, and Yekutieli method [42], with the 
false discovery rate at 5%. Pearson correlation coefficients (r) 
were used to test for associations. Values that were two stand-
ard deviations from the mean (criteria determined a priori) 
were removed as statistical outliers (as noted in the figure 
captions when necessary). Results are expressed as group 
mean ± standard error of the mean (s.e.m.), and statistical 
significance was set at p ≤ 0.05. Effect size (Cohen’s d) and 
power (determined post hoc; α = 0.05) were computed with 
G*Power (v.3.1.9.4) software (Table 1). Cohen’s d is the effect 
size allowing the standardized differences between groups to 
be compared. The number of mice and the statistical test(s) 
used for each analysis is specified in the figure captions.
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Machine Learning Analyses

Machine learning models, including logistic regression, fea-
ture selection, and classification, were implemented using 
pre-processed standardized data (Z-scores) and scikit-
learn 0.23.2 in Python [43]. Logistic regression is a simple 
machine learning algorithm used to analyze multiple explan-
atory variables and to determine the magnitude of the asso-
ciation between predictor and response variables [44]. The 
27 features (neuroimaging or biofluid markers) that showed 
significant effects in standard statistical analyses were used 
as predictor variables. Logistic regression coefficients were 
computed to compare genotype (WT-Veh versus R6/2-Veh) 
or treatment (R6/2-Veh versus R6/2-C31; n = 12–13 mice 
per group for each comparison).

A more complex two-step machine learning analysis was 
also performed using feature importance ranking by one of 
two algorithms, support vector machine (SVM) with a linear 
kernel or extreme gradient boosting (XGB; v1.3.0), followed 
by classification with recursive feature elimination using 
either k-nearest neighbors (KNN; k = 3) with distance-type 
weighting or random forest classifier (RFC) with 200 esti-
mators [45–48]. The four models (SVM-KNN, SVM-RFC, 
XGB-KNN, or XGB-RFC) were run for iteratively decreas-
ing the number of features, from all 27 to 2, to distinguish 
features that classify subjects by genotype or treatment. For 
these analyses, a subset of the data (training set) is used to 
create an algorithm that uses the remaining data (test set) 
to assess the model’s ability to classify new data. The data 
was randomly divided in about half for the training-test split 
(n = 6 mice/group for the test set, n = 6–7 mice/group for 
training) since the number of samples was low compared 
with features. Given the limited number of animals, 1000 
permutations of randomly selected training and tests sets 
were run for each model setup to promote robustness and 
reliability. Model performance was compared using the 
mean values of prediction accuracy, precision, and recall.

Results

LM11A‑31 Alleviates R6/2 Brain Atrophy as Assessed 
with In Vivo Volumetric MRI: Histological 
Confirmation with Ex Vivo Stereology

Previous in vivo volumetric MRI studies have shown 
decreased regional brain volumes in HD mouse models, 
including R6/2 mice [35, 38, 39, 49]. Here, we investigated 
whether such reductions could be alleviated with LM11A-
31 and if this treatment effect could be detected with MRI 
volumetry in R6/2 mice at 11–12 weeks of age. The absolute 
volumes of each of the ROIs examined were significantly 
smaller in vehicle-treated R6/2 mice than in WTs, as was the 

total brain volume (Suppl. Fig. 1). Given the reduced total 
brain size, we also examined whether the volumes of indi-
vidual brain structures were decreased relative to whole brain 
changes to assess regional rather than global atrophy [50]. 
After normalizing for total brain size, volumes of the striatum 
and cortex were both reduced by 16 ± 1% (mean ± s.e.m.; 
Cohen’s d = 3.13 and 3.66, respectively; see Table 1 for effect 
sizes) and the globus pallidus by 22 ± 1% (Cohen’s d = 2.00) 
in vehicle-treated R6/2 mice relative to WTs (Fig. 2a–d). 
The whole-brain adjusted volumes of the dorsal hippocam-
pus and rostral thalamus were not statistically different from 
WTs (Fig. 2e, f). White matter atrophy was also detectable 
as evidenced by a 9 ± 1% (mean ± s.e.m.; Cohen’s d = 1.90) 
reduction in proportionalized volume of the corpus callo-
sum and contiguous external capsule (ec) in vehicle-treated 
R6/2 mice (Fig. 2g). LM11A-31 did not affect total brain 
size (Suppl. Fig. 1g) or ROI volume in WT mice. However, 
LM11A-31 did alleviate volume reductions in the R6/2 stria-
tum, globus pallidus, cortex, and corpus callosum/ec with 
10 ± 3 to 30 ± 6% larger volumes compared with R6/2-Veh 
mice (Fig. 2) (Cohen’s d = 0.97–2.00; Table 1).

Stereology was performed on Nissl-stained sections from 
MR-imaged mice to provide histological corroboration of 
volume reductions of four ROIs that were evaluated with 
structural MRI. Cavalieri-estimated volumes were reduced 
in R6/2-Veh mice by 27.4 ± 4.3% in the striatum (mean ± 
s.e.m.), 22 ± 3% in cortex (including both the somatosen-
sory and motor cortices), 22 ± 4% in dorsal hippocampus, 
and 18 ± 3% in the corpus callosum/ec compared with WTs 
(Fig. 3a–d). The magnitude of these volume reductions was 
similar to those obtained after manual segmentation of ROIs 
on T2-weighted MR images (Fig. 2). Likewise, LM11A-
31’s ameliorative effect on volume decreases was detected 
on the Nissl-stained sections, again with similar percent 
changes as seen with MRI. The in vivo absolute volumes 
of ROIs assessed via MRI correlated strongly with ex vivo 
volumes assessed using stereology on Nissl-stained sections 
(Fig. 3e–h). In all, in vivo MRI has sufficient sensitivity to 
detect disease-related structural abnormalities as well as 
LM11A-31 treatment effects in both gray and white matter 
of R6/2 mice.

LM11A‑31 Preserves Microstructural Integrity 
of Selective R6/2 Brain Areas

Since LM11A-31’s ameliorative effects on regional brain 
atrophy in R6/2 mice could be detected with MRI, we inves-
tigated if the ligand could also affect HD-related microstruc-
tural changes and disrupted connections, which often occur 
earlier in the disease course, as assessed in vivo using DTI 
[18]. DTI allows measurements of molecular diffusion prop-
erties of water, which can be affected by numerous factors, 
including the density and composition of neurons and their 
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fibers, myelination, as well as intra-/extracellular volume 
and content [17, 18]. Two of the most commonly reported 
diffusion parameters are mean diffusivity (MD), which is 
the molecular diffusion rate, and fractional anisotropy (FA), 
which is the preferred direction of diffusion [17, 18]. Most 

DTI studies of pre-symptomatic HD gene carriers (HDGCs) 
and symptomatic HD patients revealed increased MD and 
decreased FA in white matter regions including the corpus 
callosum, while both MD and FA are increased in gray mat-
ter including the caudate, putamen, and globus pallidum [17, 

Fig. 2   LM11A-31 alleviates regional volume reductions, as assessed 
with MRI, in R6/2 mice. a Representative T2-weighted MR images 
of a coronal section from a WT and R6/2 mice given vehicle (Veh) 
and an R6/2 mouse given LM11A-31 (C31) at 11–12 weeks of age. 
Shown are three of the regions of interest (ROIs) that exhibited sig-
nificant volume reductions: striatum (STR, red), cortex (CX, purple), 
and corpus callosum (cc, yellow)/contiguous external capsule (ec). 
Quantification of the volumes of the b striatum, c globus pallidus, d 
cortex, e dorsal hippocampus, f thalamus, and g corpus callosum as 
measured from T2-weighted MR images and adjusted for total brain 

volume. For absolute volumes (i.e., not adjusted for total brain size), 
see Suppl. Fig.  1. The striatum, globus pallidus, cortex, and cor-
pus callosum/ec were significantly smaller in R6/2-Veh compared 
with WT-Veh mice. C31 alleviated these decreases. WT-Veh n = 12 
mice; WT-C31 n = 8; R6/2-Veh n = 14; R6/2-C31 n = 16. Results 
are expressed as mean ± s.e.m. Statistical significance was deter-
mined with an ANOVA and Fisher’s LSD with an FDR adjustment. 
*p = 0.025, **p ≤ 0.01, and ***p ≤ 0.0005 versus WT-Veh; ++p = 0.01 
and +++p = 0.0005 versus R6/2-Veh.

1046 D. A. Simmons et al.



1 3

Fig. 3   Regional volume reduc-
tions, as assessed ex vivo using 
Nissl-stained sections, correlate 
with those obtained with in vivo 
MRI. a–d Using unbiased ste-
reology on Nissl-stained tissue 
from the MR imaged mice, the 
Cavalieri-estimated volumes of 
the a striatum, b cortex (includ-
ing both the somatosensory and 
motor cortices), c dorsal hip-
pocampus, and d corpus callo-
sum (CC) including the contigu-
ous external capsule (ec) were 
reduced in R6/2-Vehicle (Veh) 
mice compared with WTs. 
n = 6–13 mice/group. Results 
are expressed as mean ± s.e.m. 
Statistical significance was 
determined with an ANOVA 
and Fisher’s LSD or Welch’s 
t test for unequal variance. 
**p ≤ 0.001 and ***p ≤ 0.0001 
versus WT-Veh; +p ≤ 0.05 ver-
sus R6/2-Veh (Welch’s t test for 
striatum and CC comparisons). 
e–h Scatterplots with linear 
regression lines show that the 
absolute (i.e., not adjusted for 
total brain volume) volumes 
(mm3) of the e striatum, f cor-
tex, g hippocampus, and h CC/
ec quantified from T2-weighted 
MR images (x-axis) correlated 
with Cavalieri-estimated vol-
umes (mm3) from Nissl-stained 
sections (y-axis). The experi-
mental groups are combined 
for the analysis (n = 6–13 mice/
group). Pearson correlation 
coefficients (r) and p values are 
shown.
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18, 51–55]. Here, we examined the effects of LM11A-31 on 
the integrity of white matter tracts and the microstructure of 
gray matter using in vivo DTI to measure MD and FA in the 
brains of 11–12 week-old R6/2 mice and age-matched WTs 
with and without LM11A-31 treatment.

R6/2-Veh mice had significantly higher MD values com-
pared with WTs in the striatum (Fig. 4a), globus pallidus 
(Fig. 4b), thalamus (Suppl. Fig. 2), and corpus callosum/
ec (Fig. 4c). MD values did not differ between these groups 
in the cortex or hippocampus (Suppl. Fig. 2). LM11A-31 
prevented these changes in the globus pallidus and corpus 
callosum/ec as mean MD values were significantly lower 
in the R6/2 mice given LMA11-31 versus vehicle and did 
not differ from WTs (Fig. 4b, c). LM11A-31 did not sig-
nificantly affect MD values in WT mice or any of the other 
brain regions examined in R6/2 mice. Regarding FA values, 
vehicle-treated R6/2 mice had patterns of FA changes that 
were similar to those seen in studies of HD patients and 
other mouse models [17, 18]. FA significantly increased in 
the striatum (Fig. 4d) of R6/2-Veh mice but decreased in the 
hippocampus (Fig. 4e), corpus callosum/ec (Fig. 4f), cortex 

(Suppl. Fig. 2), and thalamus (Suppl. Fig. 2) compared with 
WTs; it was unaltered in the globus pallidus (Suppl. Fig. 2). 
LM11A-31 normalized FA values of R6/2 mice in the stria-
tum (Fig. 4d) and hippocampus (Fig. 4e), but not the corpus 
callosum/ec (Fig. 4f), cortex, or thalamus (Suppl. Fig. 2). 
In all, LM11A-31 normalized certain diffusivity metrics in 
subcortical regions of R6/2 mice with the largest treatment 
effects concerning FA in the striatum (Cohen’s d = 1.32; 
Table 1).

Effects of LM11A‑31 on Neurite Orientation 
Dispersion

Diffusion MRI metrics, such as FA and MD, are useful as 
surrogate measures of microstructural tissue damage; how-
ever, alternative measures are needed to examine neurite loss 
and alterations to the arrangement of fibers. The NODDI 
technique was developed to more specifically characterize 
axonal pathology and gray matter changes with MRI [41]. 
One study of HD patients used NODDI metrics to show 
axonal density and organization abnormalities in premanifest 

Fig. 4   LM11A-31 normalizes diffusivity metrics in subcortical 
regions of R6/2 mice. a–c Mean diffusivity (MD) and d–f fractional 
anisotropy (FA) values in the a, d striatum, b globus pallidus, e dor-
sal hippocampus, and c, f corpus callosum (cc)/contiguous external 
capsule (ec) of 11–12  week-old WT and R6/2 mice with and with-

out LM11A-31 (C31) treatment. WT-Veh n = 10 mice; WT-C31 n = 7; 
R6/2-Veh n = 12; R6/2-C31 n = 10. Results are expressed as mean ± 
s.e.m. Statistical significance was determined with an ANOVA and 
Fisher’s LSD with an FDR adjustment. *p ≤ 0.05 versus WT-Veh; 
+p ≤ 0.05 versus R6/2-Veh.

1048 D. A. Simmons et al.



1 3

HDGCs, including a decreased ODI in the white matter 
encompassing the basal ganglia [52]. We used the NODDI 
model to calculate the neurite ODI, which reflects neurite 
spatial configuration and can measure diffusivity in the 
extra-neurite compartment [41, 56]. R6/2 mice given vehi-
cle had lower striatal ODI values than WTs and showed a 
non-significant decrease in the globus pallidus. In both brain 
regions, LM11A-31 prevented the decrease in ODI (Fig. 5). 
ODI values in the other ROIs did not differ significantly 
between genotypes (Suppl. Fig. 3).

LM11A‑31 Normalizes MRI Relaxometry and Iron 
Regulatory Protein Levels in R6/2 Striatum

Many iron sensitive neuroimaging studies of HD patients 
indicate that iron levels increase in the striatum and glo-
bus pallidus and can be detected at pre-symptomatic dis-
ease stages [55, 57–65]. Various MRI techniques, including 
relaxation time, can measure local changes in magnetic sus-
ceptibility, which are often caused by iron bound to ferritin, 
an iron storage protein [64, 66]. Transverse relaxation rate 
(R2*) is one such technique that strongly correlates with 
chemically assessed iron concentrations with high R2* val-
ues associated with increased iron content [67, 68]. A study 
in late-stage R6/2 mice showed a decrease in T2* relaxation 
time (inverse of R2*) [38], which is consistent with a previ-
ous report of increased ferric iron and/or ferritin, particularly 
in dystrophic microglia, in striatum of R6/2 mice and early 
manifest HD patients [26]. Given this increase in ferritin-
containing microglia and LM11A-31’s reductive effect on 
microglial activation in R6/2 mice [8, 26], we measured 
mean R2* in WT and R6/2 mice treated with LM11A-31 
or vehicle predicting R2* increases indicative of increased 
ferritin levels. Unexpectedly, small but significant decreases 
in R2* values were seen in the striatum (Cohen’s d = 2.57), 
globus pallidus (Cohen’s d = 1.6), cortex (Cohen’s d = 1.83), 
thalamus, and corpus callosum/ec of R6/2-Veh mice com-
pared with WTs (Fig. 6, Table 1). R6/2 mice treated with 
LM11A-31 did not differ from WTs and had higher R2* 
values than R6/2-Veh mice in the striatum, globus pallidus, 
and thalamus (Fig. 6).

Increased iron content can account for striatal shrinkage 
which can create bias in regional segmentation and spatial 
variations in relaxometry [69–72]. Moreover, R2* values 
are affected by heterogeneous iron distribution and depth 
gradients of iron concentrations exist [73, 74]. Thus, we 
performed an ROI volume correction of the R2* values, as 
done previously, to calculate iron accumulation per ROI vol-
ume [57]. After adjusting for ROI volume, R2* values were 
increased, which is the predicted direction for elevated iron, 
in each brain area examined in R6/2-Veh mice compared 
with WTs (Suppl. Fig. 4). These elevations were partially 
prevented by LM11A-31 only in the striatum of R6/2 mice 

Fig. 5   Effects of LM11A-31 on the orientation dispersion index (ODI) 
in the striatum and globus pallidus of R6/2 mice. a Representative 
diffusion-weighted image of a coronal section of the striatum (STR) 
and globus pallidus (GP) from an WT-Veh mouse at 11–12 weeks of 
age. Quantification of the ODI in the b striatum and c globus palli-
dus of WT and R6/2 mice given vehicle (Veh) or LM11A-31 (C31). 
n = 7–12 mice/group. Results are expressed as mean ± s.e.m. Statisti-
cal significance was determined with an ANOVA and Fisher’s LSD. 
*p = 0.04 versus WT-Veh; +p = 0.02 versus R6/2-Veh.
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(Suppl. Fig. 4). R2* values did not correlate with the volume 
of the ROIs examined except for the cortex and corpus callo-
sum (Suppl. Fig. 5), similar to findings in HD patients using 
other MR-based relaxometry techniques [75, 76]. Thus, iron 
deposition per volume is increased in all brain areas exam-
ined in R6/2-Veh mice, and LM11A-31 prevents this eleva-
tion in the R6/2 striatum.

Since magnetic susceptibility is mainly due to ferri-
tin-bound iron in gray matter [67, 68], we investigated 
whether the R2* changes seen here are associated with 
ferritin levels in the R6/2 striatum. As shown previously 
[26], the area of ferritin-immunostained cells resembling 
microglia and their processes more than doubled in the 
striatum of R6/2-Veh mice compared with WTs (Fig. 7a, 
b). Treating R6/2 mice with LM11A-31 alleviated this 
increase (Fig. 7b). Notably, the area of ferritin immu-
nostaining negatively correlated with striatal volume 
and positively correlated with R2* values per volume 
(Fig. 7c, d). Another iron regulatory protein altered in 
HD brains is the transferrin receptor, which is involved in 
iron uptake into the cell. Transferrin is down-regulated in 
the presence of excessive iron as a protective mechanism 
against an overload of intracellular iron, and its levels 
are decreased in the R6/2 striatum [77, 78]. In this study, 
striatal levels of transferrin receptor were reduced by 
36 ± 12% (mean ± SD) in R6/2-Veh mice compared with 
WTs (Fig. 7e, f). LM11A-31 slightly increased transfer-
rin receptor levels in R6/2 striatum. Striatal transferrin 

receptor levels positively correlated with striatal vol-
ume and negatively correlated with R2* values/volume 
(Fig. 7g, h).

LM11A‑31 Reduces Plasma Levels of Certain 
Pro‑inflammatory Cytokines

Cytokines are released from activated microglia to medi-
ate inflammatory responses, and their levels are elevated in 
the brains and/or plasma of HD patients and mouse models 
[79–85]. We previously showed that LM11A-31 decreased 
microglial activation in multiple HD mouse models and 
altered the functional phenotypes of microglia by reducing the 
concentrations of several cytokines that were elevated in the 
R6/2 striatum, including interleukin (IL)-6 and tumor necrosis 
factor (TNF)-α [8, 16]. Here, we investigated whether plasma 
levels of cytokines are also affected by LM11A-31. Levels 
of interferon-γ, IL-4, and IL-12p70 were near or below the 
detectable limit of the assay in many of the plasma samples 
(n = 4–10 mice in one or more groups); thus, data for these 
cytokines are not presented. Plasma levels of TNFα, IL-1β, 
IL-6, IL-5, IL-10, and IL-2 were significantly elevated in R6/2 
mice given vehicle compared with WT mice (Fig. 8), while 
KC/GRO was unaltered (data not shown). The increase in 
plasma levels of four of these cytokines (TNFα, IL-1β, IL-6, 
and IL-5) was prevented in R6/2 mice treated with LM11A-31 
(Fig. 8a–d). WT mice treated with LM11A-31 had elevated 
plasma levels of IL-10 compared with WT-Veh mice.

Fig. 6   LM11A-31 normalizes 
mean relaxation rates (R2*) 
without ROI volume correction 
in WT and R6/2 mice. a–f R2* 
values without regional volume 
correction in the a striatum, 
b globus pallidus, c cortex, d 
hippocampus, e thalamus, and 
f corpus callosum (cc)/contigu-
ous external capsule (ec) of WT 
and R6/2 mice given vehicle 
(Veh) or LM11A-31 (C31). WT-
Veh n = 12 mice; WT-C31 n = 7; 
R6/2-Veh n = 14; R6/2-C31 
n = 15. Results are expressed as 
mean ± s.e.m. Statistical sig-
nificance was determined with 
an ANOVA and Fisher’s LSD 
or t test with an FDR correc-
tion. *p ≤ 0.05 versus WT-Veh; 
+p ≤ 0.05 versus R6/2-Veh.
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Urinary p75NTR‑ecd Levels Are Elevated in R6/2 Mice 
and Normalized with LM11A‑31

Brain levels of p75NTR are elevated with injury and neu-
rodegeneration, including the striatum of HD patients and 
mouse models [7, 8, 10, 13]. Levels of the ecd of p75NTR 
are also increased during neurodegeneration, as the recep-
tor is cleaved with pro-apoptotic ligand binding [86], and 

can be excreted in urine as seen in ALS patients and mouse 
models [21, 87]. Thus, urinary p75NTR-ecd levels have been 
suggested as a biomarker for neurodegenerative diseases 
and may be particularly useful as a marker of treatment 
response for LM11A-31 as it is the target receptor for the 
ligand. We investigated this possibility here and found that 
levels of p75NTR-ecd were increased by 44 ± 7% in the urine 
of R6/2-Veh mice compared with WTs (Fig. 9a; Cohen’s 

Fig. 7   Iron regulatory protein levels are normalized in striatum of 
R6/2 mice treated with LM11A-31 and strongly correlate with mean 
relaxation rates (R2*) per volume. a Representative photomicro-
graphs of ferritin immunostaining in the striatum of a WT-Veh mouse 
(left) and R6/2 mice given Veh (middle) or LM11A-31 (right) of MR 
imaged mice. Scale bar = 25  µm. b Quantification of the area occu-
pied by ferritin immunostaining. n = 12–14 mice/group. Results are 
expressed as mean ± s.e.m. Statistical significance was determined 
with an ANOVA and Fisher’s LSD. ***p < 0.0001 versus WT-Veh; 
+p = 0.02 versus R6/2-Veh. c, d The area of ferritin immunostaining 
negatively correlated with striatal volume adjusted for total brain vol-
ume (c) and positively correlated with R2* values adjusted for stri-

atal volume (d). e Representative lanes from western immunoblots 
of striatal homogenates from MR imaged mice probed for transferrin 
receptor (TfR) and tubulin (tub) are shown. f Corresponding densi-
tometric analysis of immunoblots. Means (± s.e.m.) were from 2 
replicated runs for each mouse sample (n = 11–15 mice/group) and 
were normalized to the WT-Veh group run on the same gel. Statisti-
cal significance was determined with an ANOVA and Fisher’s LSD 
(***p < 0.0001 versus WT-Veh) and a t test (+p = 0.048 versus R6/2-
Veh). g, h Transferrin receptor levels positively correlate with stri-
atal volume/brain (g) and negatively correlate R2* values/striatum 
volume (h). The experimental groups are combined for the analysis. 
Pearson correlation coefficients (r) and p values are shown.
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Fig. 8   Increases in plasma 
levels of certain cytokines are 
prevented in LM11A-31-treated 
R6/2 mice. a–f Levels of TNFα 
(a), IL-1β (b), IL-6 (c), IL-5 
(d), IL-10 (e), and IL-2 (f) 
were increased in the plasma 
of R6/2 mice given vehicle 
(Veh) compared with WT-Veh 
mice. LM11A-31 alleviated 
increased levels of the former 
four cytokines. WT-Veh n = 17 
mice; WT-C31 n = 13; R6/2-Veh 
n = 16; R6/2-C31 n = 17. Results 
are expressed as mean ± s.e.m. 
Statistical significance was 
determined with an ANOVA 
and Fisher’s LSD for IL-5 and 
IL-10. Concentrations of the 
other four cytokines in the WT-
Veh and/or R6/2-Veh groups 
did not pass the Kolmogorov-
Smirnov test for normality; 
thus, the non-parametric Mann-
Whitney test was used to test for 
significant differences. FDR was 
applied to account for multiple 
comparisons. One R6/2-Veh 
mouse in the IL-1β analysis and 
one R6/2-C31 mouse from the 
IL-10 analysis were removed as 
statistical outliers. Detectable 
levels of IL-1β were below the 
assay limits for a WT-C31 and 
an R6/2-C31 mouse and for 
IL-10 in an R6/2-C31 mouse. 
*p ≤ 0.05 versus WT-Veh; 
+p ≤ 0.05 versus R6/2-Veh.
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d = 1.71). LM11A-31 treatment reduced these elevated 
levels by 14 ± 7% in R6/2 urine (Cohen’s d = 0.68) but did 
not affect levels in WTs. Interestingly, urinary p75NTR-ecd 
levels negatively correlated with all the absolute regional 
brain volumes calculated from T2-weighted MR images, 
except for the globus pallidus (r = − 0.15, p = 0.18), with 
the strongest correlations involving the striatum, cortex, and 
hippocampus (Fig. 9b–f).

Machine Learning Approaches for Biomarker 
Selection from Multivariate Datasets

Several of the markers investigated in this study showed sta-
tistically significant changes between genotypes and with 

treatment and boast large effect sizes (Table 1) suggesting 
they may be useful as biomarkers of disease state and thera-
peutic efficacy. Single markers have limited clinical rele-
vance; thus, it would be useful to determine if combinations 
of these markers would be more efficacious. One way to 
address this question is to apply machine learning to evalu-
ate multivariate predictions of genotype and treatment sta-
tus. Machine learning approaches have been used to assess 
multidimensional datasets including those involving neuro-
imaging biomarkers in HD patients [20, 88]. Such analyses 
typically require large sample sizes for high accuracy and 
reliability. Although the subject number of the current study 
is small, machine learning can provide constructive informa-
tion on variable importance, with the caveat that the findings 

Fig. 9   Elevated urinary p75NTR-ecd levels are reduced with LM11A-
31 treatment of R6/2 mice and negatively correlate with MRI-assessed 
regional brain  volumes. a Urinary levels of p75NTR-ecd in WT and 
R6/2 mice treated with vehicle (Veh) or LM11A-31 (C31) (n = 9–17 
mice/group) as measured with an ECL-based sandwich immunoas-
say on the MSD platform. Means (± s.e.m.) were from samples run in 
duplicate for each mouse and are expressed as ng p75NTR-ecd/mg cre-
atinine. Statistical significance was determined with an ANOVA and 

Fisher’s LSD test. ***p = 0.0009 versus WT-Veh and +p = 0.04 ver-
sus R6/2-Veh. b–h Scatterplots with linear regression lines showing 
the associations between urinary p75NTR-ecd levels and absolute ROI 
volumes calculated from T2-weighted MR images of the b striatum, c 
cortex, d hippocampus, e thalamus, and f corpus callosum (CC) with 
contiguous external capsule (ec). Experimental groups are combined 
for the analysis. Pearson correlation coefficients (r) and p values are 
shown.
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Fig. 10   Linear regression coefficients and feature importance heat 
map. a, b Bar graphs of the linear regression coefficients of the 27 
z-normalized features (neuroimaging or biofluid markers) that 
showed significant effects in standard statistical analyses were used as 
predictor variables for discriminating between a vehicle-treated WT 
and R6/2 mice (genotype) or b R6/2 mice given vehicle or LM11A-
31 (treatment); n = 12–13 mice/group. For the genotype compari-
son, the WT-Veh group is coded as 0 and the R6/2-Veh group as 1, 
so positive coefficients are features positively associated with R6/2-
Veh and negative coefficients are inversely correlated to the R6/2-
Veh group. For treatment, R6/2-Veh group is coded as 0 and R6/2-

LM11A-31 as 1. c Heat map showing the percentage of times the 27 
features appeared as a top 15 predictor in the 1000 train-test permu-
tations of the data subsets using the SVM-KNN model for genotype 
and the XGB-RFC model for treatment. Abbreviations: CC = cor-
pus callosum; CX = cortex; FA = fractional anisotropy; GP = globus 
pallidus; Hipp = hippocampus; IL = interleukin; KNN = k-nearest 
neighbors; MD = mean diffusivity; ODI = orientation dispersion 
index; R2* = MR-based relaxometry; RFC = random forest classifier; 
STR = striatum; SVM = support vector machine; Thal = thalamus; 
TNF = tumor necrosis factor; vol = volume (by MRI); XGB = extreme 
gradient boosting.
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need to be validated with a much larger sample size. Accord-
ingly, a logistic regression model was used to analyze multi-
ple z-normalized explanatory variables concurrently and to 
determine the magnitude of the association between these 

predictors and the response variables [44]. The 27 features 
(neuroimaging or biofluid markers) that showed significant 
effects in standard statistical analyses were used as predic-
tor variables for discriminating between vehicle-treated WT 

Table 1   Genotype and 
treatment effect size and 
observed power of imaging 
metrics and biofluid markers

WT-Veh versus 
R6/2-Veh

R6/2-Veh versus 
R6/2 LM11A-31

Effect size Power Effect size Power
MRI / DTI metrics

Volume
Striatum / brain 3.13 0.99 0.97 0.88

Globus pallidus / brain 2.00 0.99 2.00 0.99

Cortex / brain 3.66 0.99 1.90 0.99

Corpus callosum / brain 1.90 0.99 1.34 0.96

MD
Striatum 1.29 0.88 0.40 0.24

Globus pallidus 1.13 0.80 0.54 0.34

Corpus callosum 1.10 0.82 0.66 0.47

FA
Striatum 1.01 0.71 1.32 0.91

Hippocampus 1.23 0.84 0.73 0.51

Corpus callosum 0.99 0.74 0.00 0.05

R2*
Striatum 2.57 0.99 0.66 0.54

Globus pallidus 1.60 0.99 0.44 0.28

Cortex 1.83 0.99 0.38 0.26

Hippocampus 0.71 0.53 0.37 0.25

Corpus callosum 0.74 0.55 0.49 0.36

Thalamus 0.75 0.59 0.76 0.60

ODI
Striatum 0.76 0.53 0.94 0.72

Globus pallidus 0.56 0.35 0.89 0.69

Biofluid markers
Urinary levels of p75ecd 1.71 0.99 0.68 0.62

Plasma cytokine levels
TNF 0.67 0.60 0.79 0.71

IL-1 0.71 0.62 0.76 0.68

IL-6 0.63 0.55 0.65 0.57

IL-5 1.35 0.98 0.62 0.54

IL-10 1.25 0.97 0.40 0.29

IL-2 0.73 0.66 0.49 0.40

Effect size (Cohen’s d) and observed power were computed with G*Power software (α = 0.05). A d value 
of 1 indicates the two groups differ by 1 standard deviation and d = 0.8 is considered a large effect. 
Observed power (i.e. post-hoc power) is the probability of determining a significant effect of the test 
based on the effect size.
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and R6/2 mice (genotype) or R6/2 mice given vehicle or 
LM11A-31 (treatment). The features were sorted by their 
logistic regression coefficients and the five top predictors for 
genotype categorization were globus pallidus R2*, cortical 
volume (as assessed with MRI), plasma IL-10 levels, tha-
lamic R2*, striatal volume (MRI), and urinary p75NTR-ecd 
levels (the latter two features were equal in magnitude; 
Fig. 10a). The five top predictors for treatment categoriza-
tion were cortical volume, striatal FA, thalamic R2*, urinary 
p75NTR-ecd, and striatal volume (MRI) (Fig. 10b). Several 
features, namely striatal and cortical volume (MRI) and uri-
nary p75NTR-ecd concentration, were in the top five predic-
tors for both genotype and treatment and had large effect 
sizes (Table 1) suggesting these features may be particularly 
useful as composite biomarkers.

A more complex two-step machine learning approach 
was used to evaluate how many and which features are 
the most informative in combination as predictors of 
genotype or treatment. Feature selection using SVM or 
XGB determined importance which allowed for recursive 
feature elimination examining combinations of 2 to 27 
features [47, 48]. Using two commonly used machine 
learning classifiers (KNN or RFC), we trained and then 
tested models for genotype or treatment prediction using 
the ranked feature sets [45, 46]. These models were each 
run on 1000 permutations of randomly chosen training 
and test subsets of the data. The resulting models from 
the four algorithm combinations (SVM-KNN, SVM-
RFC, XGB-KNN, or XGB-RFC) were compared based 
on mean values of prediction accuracy, precision, and 
recall in classifying the test data (Suppl. Figs. 6 and 7). 
This analysis revealed that, for genotype classification, 
the SVM-KNN algorithm had the highest prediction 
accuracy, precision, and recall, and that ~ 17–20 features 
(biomarkers) can distinguish between the vehicle-treated 
WT and R6/2 mice with ~ 98% accuracy. The XGB-
KNN and XGB-RFC algorithms have a 95% predic-
tion accuracy using ~ 4–7 features. A therapeutic effect 
was discriminated with ~ 84% accuracy using ~ 11–14 
features and the XGB-RFC algorithm. The 27 features 
were ranked according to the percentage of times they 
appeared as a top 15 predictor in the train-test permuta-
tions of the data subsets (Fig. 10c). Cortical and striatal 
volume (MRI) and R2* for globus pallidus, thalamus, 
and striatum were the five features that most frequently 
occurred (88–100%) as top predictors of genotype (i.e., 
occurred as a top 15 predictor in 88–100% of the 1000 
permutations). The features occurring most frequently 
regarding treatment were cortical volume (MRI) and R2* 
as well as plasma levels of TNF-α and IL-6 and striatal 
FA (81–96%). The common features that occur in the 
top 15 when considering both genotype and treatment 
were MRI-assessed cortical volume, striatal FA, urinary 

p75NTR-ecd, plasma TNF-α and IL-5, and R2* for thala-
mus and globus pallidus. Again, given the small sample 
size and that these analyses require the data to be split 
into even smaller training and test subsets, these findings 
need to be validated in future experiments with larger 
datasets to improve accuracy and increase reliability.

Discussion

The inability to translate promising preclinical disease-mod-
ifying therapeutic strategies to successful HD clinical trials 
may be remedied by developing pharmacodynamic biomark-
ers that are applicable from mouse-to-human. This study 
investigated the preclinical efficacy of multiple non-invasive 
techniques, including volumetric MRI, DTI, and biofluid 
assays, as potential pharmacodynamic biomarkers for HD 
using LM11A-31 as a prototype therapy with the expecta-
tion of translating these biomarkers to human clinical trials. 
Few, if any, preclinical HD studies use multiple biomarkers 
encompassing multi-modal in vivo neuroimaging in conjunc-
tion with fluid biomarkers and, many of these potential bio-
markers have yet to be empirically tested for their efficacy in 
elucidating treatment response of putative HD therapeutics. 
The results of this study suggest that volumetric MRI, DTI, 
certain plasma cytokines, and urinary p75NTR-ecd may be 
used in tandem as markers of treatment response in HD. 
MRI-assessed volumes of striatum and cortex, striatal FA, 
and urinary p75NTR-ecd concentration were top predictors 
of genotype and treatment based on machine learning algo-
rithms and had large effect sizes suggesting these features 
may be particularly useful as composite biomarkers.

The current structural MRI analysis indicated regional 
brain atrophy in the striatum, globus pallidus, cortex, and 
corpus callosum/ec of vehicle-treated R6/2 mice compared 
with WTs that was alleviated with LM11A-31 treatment. 
These data support previous structural MRI studies in HD 
patients and mice suggesting that regional brain volume 
reductions, particularly in striatum, are sensitive and reliable 
measures of disease state and/or progression (HD patient 
review: [18]; Mouse studies: [35, 38, 39, 49, 89–93]). A 
recent study using standardized analyses to compare imaging 
data from large scale prospective studies (PREDICT-HD, 
IMAGE-HD, and TRACK-HD) determined that volumes of 
the caudate, putamen, and globus pallidus had consistent 
large effect sizes across studies and provided greater statisti-
cal power than clinical markers [94], suggesting that, to date, 
structural MRI is the strongest candidate marker for use in 
clinical trials. The early detection of striatal atrophy via MRI 
in premanifest HDGCs, including young adults, means that 
neuroprotective treatments could start, and their effects may 
be tracked, as early as 15–20 years before symptoms mani-
fest [18, 52, 95–99]. Despite much evidence showing the 
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usefulness of MRI-detected striatal atrophy in monitoring 
HD state and progression, the current study and only a few 
other preclinical studies have demonstrated the feasibility of 
using in vivo MRI to detect or monitor the effects of neuro-
protective agents in HD mouse models [91, 100–102]. The 
present study found that volumetric MRI represented some 
of the largest genotype and treatment effect sizes in HD mice 
compared with the other biomarkers examined, supporting 
its use as a promising pharmacodynamic biomarker to trans-
late from preclinical to clinical studies.

Microstructural changes, as evidenced by DTI metrics FA 
and MD, often occur before brain atrophy and are sensitive 
to alterations at the cellular and molecular levels indicating 
brain connectivity changes that occur as fibers reorganize 
and/or degenerate [17, 18]. DTI studies of pre-symptomatic 
HDGCs and/or symptomatic HD patients demonstrated 
increased MD compared with healthy controls in multiple 
brain regions, including caudate, putamen, thalamus, hip-
pocampus, and corpus callosum [17, 18, 53, 103–105]. In 
this study, each of these brain areas also showed elevated 
MD values in late-symptomatic R6/2 mice. MD is sensitive 
to gliosis, the density of axon bundles, and cell size and 
integrity; high MD values are associated with unrestricted 
water diffusion, reduced cellular membrane density, and 
white matter atrophy [18, 53]. LM11A-31 reduced MD to 
WT magnitude in the globus pallidus, the primary target of 
medial spiny neurons [106], and corpus callosum indicat-
ing it may prevent loss of neuronal integrity and/or axonal 
degeneration in these regions as it has been shown to prevent 
dendritic/axonal injury and p75NTR can positively regulate 
myelination [8, 11, 107–109]. Concerning FA, diffusivity is 
reliably increased in the striatum and globus pallidum and 
reduced in the corpus callosum of premanifest HDGCs and 
manifest HD patients [17, 18, 53, 55, 103, 104, 110, 111]. 
In this study, R6/2 mice showed FA changes in the same 
directions as in HD patients in the striatum, hippocampus, 
and corpus callosum; LM11A-31 normalized these values in 
the former two areas, with the greatest effect size in the stria-
tum. High FA values, as seen in the striatum, indicate that 
diffusion is mainly occurring along the primary fiber ori-
entation and may arise as the striatum reorganizes after the 
loss of sub-cortical connections (i.e., striatopallidal) or from 
glial responses and increases in ferritin-bound iron due to 
neurodegenerative processes [61, 110, 112]. Taken together, 
LM11A-31’s normalizing effects on diffusivity suggest that 
it may alleviate disrupted connectivity and/or neuronal dam-
age occurring before atrophy, although longitudinal studies 
are needed to test this hypothesis further.

NODDI can be more sensitive to gray matter changes 
than DTI metrics and can be used to interrogate key aspects 
of FA, including spatial orientation (ODI) of axons and den-
drites [113, 114]. Until the present study, NODDI data in an 
HD mouse model or HD gray matter had yet to be evaluated. 

We found that ODI values were significantly reduced in the 
striatum with a trend toward a decrease in the globus palli-
dus and that ODI was restored to WT levels with LM11A-31 
treatment. ODI decrements can indicate reduced fiber com-
plexity and can occur if two fiber bundles cross and only one 
degenerates; thus, the striatal ODI decreases seen here may 
reflect the preferential degeneration of striatopallidal con-
nections that occurs in HD [52, 110, 114]. ODI changes in 
gray matter have also been associated with secondary fiber 
degeneration, dendrite arborization pathology, and micro-
glial density [113, 115]. Therefore, LM11A-31’s effects on 
ODI may reflect its alleviation of neurite degeneration of 
striatal cholinergic interneurons and microglial activation, 
as shown in our previous R6/2 studies [8, 16]. A NODDI 
study of premanifest HDGCs showed that neurite density 
and ODI were reduced in white matter regions (gray matter 
was not investigated) and that ODI correlated with UHDRS 
scores [52], suggesting that early axonal degeneration under-
lies white matter atrophy and contributes to disease severity. 
Thus, with more testing for reliability, NODDI metrics may 
improve the sensitivity and biological specificity of diffusion 
MRI and may have potential as HD biomarkers.

MR-based relaxometry in the current study showed that 
R2* values decrease in all brain regions examined, except 
the hippocampus, in R6/2 mice given vehicle and were 
normalized with LM11A-31 treatment. The R2* decrease 
was unexpected given the immunohistological evidence 
that ferritin was significantly increased in the R6/2 striatum 
in the current and previous reports [26] and that clinical 
studies showed that pre-symptomatic HDGCs and mani-
fest HD patients have elevated R2* values in multiple brain 
areas, particularly striatum and globus pallidus, suggest-
ing elevated iron content [57, 61, 116]. Similar findings 
in HD patients were obtained in more recent studies using 
QSM, which may confer more sensitivity than R2* [62–64]. 
QSM was not possible with our study due to technical fac-
tors. Increased iron content could reflect tissue atrophy if 
regional iron concentrations are elevated while total iron 
remains stable [64, 70]. Here we show that in R6/2 mice 
iron accumulation per volume is increased in each brain area 
examined, as seen in the basal ganglia of HD patients [57], 
and that LM11A-31 selectively ameliorates this elevation in 
the striatum. MR-based relaxometry is primarily responsive 
to ferritin-bound iron deposits, especially in basal ganglia 
structures [67, 68], however, other factors can influence R2* 
values. For example, R2* does not distinguish between high 
iron or calcium-containing structures, is affected by hetero-
geneous iron distribution, can be corrupted by background 
field gradient effects, and has a strong myelin dependence 
[64, 68, 117]. Future studies may control these inconsisten-
cies by using QSM, which may be a more reliable and sensi-
tive method for quantifying iron specifically and it is not as 
affected by microscopic iron distribution or field strength 
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and imaging parameters [68, 117]. Although the absolute 
R2* values in the R6/2 striatum were incongruous with the 
elevated iron levels seen in HD patients and mice, this meas-
ure did show significant differences between R6/2 mice and 
WTs and was able to detect an effect of LM11A-31. Thus, 
MR-based relaxometry, especially QSM, may be useful as a 
treatment response biomarker, particularly if neuroinflam-
mation or metal chelation including iron is being pursued as 
a potential therapeutic strategy [78, 118–120].

In addition to neuroimaging biomarkers, we investigated 
peripheral biofluid markers that have the potential to meas-
ure the response to therapeutics. Given the ample evidence 
that mHtt-induced neuroinflammation contributes signifi-
cantly to HD pathogenesis, the peripheral immune response 
has been investigated as a source of putative biomarkers 
[121–124]. Here, we demonstrated that plasma levels of 
6 of the 10 cytokines investigated were significantly ele-
vated in R6/2 mice and that the increases in IL-6, TNFα, 
IL-1β, and IL-5 were ameliorated with LM11A-31 treat-
ment. Notably, we previously showed that LM11A-31 also 
prevented elevated concentrations of IL-6 and TNFα in the 
R6/2 striatum and that these effects correlated with reduced 
microglial activation as assessed with TSPO-PET imaging 
[16]. Elevated cytokine and chemokine levels have been 
detected in the brain and plasma of HD patients and some 
increased significantly with disease progression [81, 84, 85, 
125–127]. Of these cytokines, IL-6 showed the most reliable 
results with plasma elevations seen in 5 of 8 independent HD 
patient studies and was detected as early as 16 years before 
symptom onset, representing one of the earliest biochemical 
changes identified in HD [19, 81, 85, 121]. Plasma cytokine 
levels may also indicate other non-HD-related comorbidities 
that may arise particularly in late-stage patients; however, 
they may still be useful pharmacodynamic biomarkers in 
pre- and early-stage patients, particularly if used concur-
rently with other markers. Corroborating the current results, 
elevated plasma levels of IL-6 were reported in R6/2 and 
other HD mouse models, even at early to mid-symptomatic 
stages, and two other preclinical HD studies showed that 
potential therapies could normalize these levels highlighting 
the potential of plasma IL-6 as a translatable pharmacody-
namic biomarker [81, 84, 85, 102, 128].

This study is the first to examine levels of p75NTR-ecd 
as a potential HD biomarker and showed large increases in 
urinary p75NTR-ecd in R6/2 mice. These increases negatively 
correlated with MRI-detected atrophy in the R6/2 striatum, 
among other brain regions, and therefore may be indicative 
of underlying neurodegeneration. Notably, elevated urinary 
p75NTR-ecd in R6/2 mice was alleviated by LM11A-31 sug-
gesting that this measure may be effective as a marker of 
both disease state and treatment response in HD. In the brain, 
p75NTR is up-regulated in the striatum of HD patients and 
mouse models and is its levels are normalized in preclinical 

studies with some putative HD therapeutics, including 
LM11A-31 [7–9, 13, 129]. LM11A-31 also increased other 
cleavage products of p75NTR in R6/2 striatum, which is 
consistent with target engagement, and normalized signal-
ing associated with the receptor in two HD mouse models 
[8]. Previous studies have shown that p75NTR-ecd levels are 
elevated in the urine of ALS patients and mouse models 
and altered in the blood (increased) and CSF (decreased) of 
Alzheimer’s disease patients and are thus being considered 
as prognostic and/or staging biomarkers in these diseases 
[21, 22, 87, 130]. This measure may be particularly useful 
for LM11A-31, which binds to p75NTR, as it could provide 
information on target engagement, or for other therapeutics 
that affect brain levels of p75NTR. The method of detecting 
p75NTR-ecd in mouse urine, which was developed in-house, 
is amenable to human studies, and to address translation 
feasibility, evaluation of urinary p75NTR-ecd levels in HD 
patients is underway in our laboratory.

The present study suggests that a multi-modality imag-
ing approach combined with biofluid indices may be the 
most sensitive way to detect treatment response in HD pre-
clinical and clinical studies as limitations exist for some 
of these biomarkers when used in isolation. Biomarkers 
that offer complementary advantages would be the most 
powerful option. For example, the use of volumetric MRI 
to assess striatal atrophy is one of the most sensitive imag-
ing biomarkers in HD and, while detected in premanifest 
HDGCs, may rely on neuronal loss, which therapeutic 
intervention would precede ideally. DTI, functional MRI, 
and magnetic resonance spectroscopy may detect pathol-
ogy at earlier stages than volumetric MRI, and NODDI 
affords sensitivity and better definition of the underly-
ing neurobiological basis of pathology [19, 39, 92, 93, 
131–135]. Thus, using these MRI metrics together could 
provide interrelated information and may reduce noise 
inherent to each measure. The biofluid biomarkers inves-
tigated here and in other studies (e.g., CSF and plasma 
neurofilament light protein [95, 124]) also offer technical 
advantages including quantification in high throughput 
assays, which confers reliability, and their ease of acqui-
sition, particularly of plasma and urine, which makes 
their use feasible at all disease stages. Thus, each of these 
markers is potentially efficacious in detecting treatment 
response at multiple disease stages and using them con-
temporaneously, in addition to more established clinical 
outcomes for use at later disease stages (e.g., UHDRS), 
may be especially useful in clinical therapeutic interven-
tion studies [136]. In support of this approach, machine 
learning techniques have shown that multiple types of MRI 
data can distinguish premanifest HDGCs from healthy 
controls [20, 88]. Machine learning methods were applied 
to the present dataset and identified several features with 
salient information for discriminating between genotypes 
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and treatment response. Some of the identified features 
also had large effect sizes and included striatal and corti-
cal volume, striatal FA, and urinary p75NTR-ecd concen-
tration. Although these findings require validation with 
larger datasets, the classification models had good predic-
tive accuracy and provide proof-of-concept that applying 
machine learning to multidimensional preclinical data may 
offer initial indications of biomarker combinations which 
could aid in clinical translation.

Biomarker validation studies would be most effective if 
conducted longitudinally starting before or at early symptom 
onset. It would also be advantageous for disease progression 
and treatment response biomarkers to detect neuropatho-
logical changes and neuroprotective effects at pre- or early 
symptomatic stages, as treatment may need to start at this 
time to achieve maximum benefits. A limitation of this study 
is that it employed a cross-sectional design and examined 
R6/2 mice at a late-disease stage. The R6/2 mouse model 
is useful as a time efficient first screen of a putative thera-
peutic’s neuroprotective effects in symptomatic preclinical 
trials as it has a rapid and reproducible phenotype [23–25]. 
However, the rapidity of disease progression and short lifes-
pan renders early interrogation of treatment effects difficult. 
Ongoing and future studies in our laboratory aim to corrobo-
rate the present findings and address longitudinal changes in 
neuroimaging and biofluid markers using the Q175 knock-in 
mouse model, which express full-length mutant huntingtin 
and have a slower disease progression [93, 137].

In conclusion, we have provided preclinical evidence for 
the potential of several non-invasive biomarkers to detect 
pharmacological response and/or target engagement, the 
latter regarding LM11A-31 specifically as a p75NTR ligand. 
These biomarkers closely relate to underlying HD pathol-
ogy, a desired attribute of a biomarker, and many of them 
have been validated in large-scale longitudinal studies such 
as TRACK-HD and PREDICT-HD. Moreover, this study is 
the first to suggest levels of urinary p75NTR-ecd as a surro-
gate marker of disease state and therapeutic efficacy in HD. 
Thus, using volumetric MRI, DTI, and biofluid markers in 
tandem could be a feasible and powerful option to use as 
pharmacodynamic biomarkers for HD clinical trials. Given 
that LM11A-31 reduced HD phenotypes in multiple mouse 
models and is in a Phase 2a clinical trial for Alzheimer’s 
disease, the identification of these potentially translatable 
biomarkers able to detect its therapeutic effects meets a 
much-needed requirement for its advancement to HD clini-
cal testing.
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