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Ovarian carcinomas represent a major form of gynaecological malignancies, whose treatment consists mainly of surgery and
chemotherapy. Besides the difficulty of prognosis, therapy of ovarian carcinomas has reached scarce improvement, as a
consequence of lack of efficacy and development of drug-resistance. The need of different biochemical and functional
parameters has grown, in order to obtain a larger view on processes of biological and clinical significance. In this paper we
report novel metabolic features detected in a series of different human ovary carcinoma lines, by 1H NMR spectroscopy of
intact cells and their extracts. Most importantly, a new ovarian adenocarcinoma line CABA I, showed strong signals in the
spectral region between 3.5 and 4.0 p.p.m., assigned for the first time to the polyol sorbitol (39+11 nmol/106 cells). 13C
NMR analyses of these cells incubated with [1-13C]-D-glucose demonstrated labelled-sorbitol formation. The other ovarian
carcinoma cell lines (OVCAR-3, IGROV 1, SK-OV-3 and OVCA432), showed, in the same spectral region, intense resonances
from other metabolites: glutathione (up to 30 nmol/106 cells) and myo-inositol (up to 50 nmol/106 cells). Biochemical and
biological functions are suggested for these compounds in human ovarian carcinoma cells, especially in relation to their
possible role in cell detoxification mechanisms during tumour progression.
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Human epithelial ovarian tumours represent a major type of
gynaecologic malignancy. The vast majority of ovarian carcinomas
arise as a result of malignant transformation of the ovarian surface
epithelium. Because of the invasive nature of these tumours and
the current inability to detect the disease at early stages (Stage I
or II), a significant number of women are initially diagnosed only
after the neoplasia has already spread throughout the peritoneal
cavity (Stage III or IV). The triggering event(s) in the generation
and development of ovarian cancer are not yet well understood.
Propagation of epithelial ovarian cancer occurs essentially as a
direct infiltration into the peritoneal cavity, upon exfoliation of
cells from the primary tumour and dissemination by the peritoneal
fluid, with subsequent implantation, invasion and growth
(Williams, 2000). To enable the development of appropriate
screening strategies for ovarian cancer, the processes of carcinogen-
esis and tumour progression need to be understood. Since little is
as yet known about the morphological and molecular steps
involved in the initiation and progression of epithelial ovarian
cancer, new biochemical and physiological information, as well as
measurement of functional parameters, are of extreme importance
in order to obtain a more detailed clinical picture of these
tumours.

By allowing non-invasive monitoring of biochemical pathways in
intact cells and tissues and their modulations under particular
pathological conditions, NMR spectroscopy offers novel
approaches to detect metabolic alterations associated with malig-

nant phenotypes of ovarian cancer cells in vitro, as a basis for a
possible in vivo monitoring of clinical lesions. In particular,
NMR spectra of intact cells and tissues allow detection and quan-
tification of a number of intracellular metabolites (present at
intracellular concentrations 4about 0.5 mM) and their fluxes in
either ubiquitous or tissue-specific biochemical pathways. Among
these, particular attention has been devoted to metabolites involved
in phospholipid biosynthesis and catabolism (reviewed in Podo,
1999), in oxidative and non-oxidative glucose consumption and
in cell bioenergetics (Gadian, 1995; Magistretti et al, 1999), as well
as to the production of neurotransmitters, neuroaminoacids and
myo-inositol in brain (Danielsen and Ross, 1999; Ross, 2000) and
accumulation of citrate in prostate (Kurhanewicz et al, 1996).

The detection by NMR of substrates and derivatives of these
pathways and the measurement of their changes in concentration
in tumour with respect to non-tumour cells, not only may allow
relevant information on activation/inhibition of metabolic
processes as they occur in cells, animal models and clinical lesions,
but may also provide new biochemical markers of in vivo tumour
progression and response to therapy. Examples of major 1H NMR
spectral variations reported in tumours, with respect to normal
cells and tissues, are a generally elevated intensity of choline-
containing metabolites (‘Cho-peak’, 3.2 p.p.m.), mainly due to
increased levels of phosphocholine (PCho) in brain, breast, prostate
and other tumours (Negendank et al, 1996; Podo, 1999; Aboagye
and Bhujwalla, 1999); loss of N-acetylaspartate, a putative neuroa-
minoacid, in gliomas (Ross, 2000); increase of myo-inositol in
some brain tumours (Barba et al, 2001); and decrease of citrate
in prostate carcinoma (Kurhanewicz et al, 1995). Furthermore,
several tumour cells and tissue specimens exhibit 1H NMR signals
attributed to either membrane or intracellular mobile lipid
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domains (ML), whose fatty chains are endowed with a high degree
of mobility, not compatible with the anisotropic packing in the
lamellar phase (Mountford et al, 1993; Callies et al, 1993). The
relative intensity of these signals was found to discriminate pre-
malignant from invasive cancer in tissue specimens dissected from
human uterine cervix and thyroid follicular adenomas from carci-
nomas (Mountford et al, 1996). However, elevated ML levels are
not exclusively associated with the malignant phenotype, since they
were also induced by cell activation in lymphocytes and lympho-
blasts (Veale et al, 1997) and were detected in some embryo-
derived cells (May et al, 1986; Ferretti et al, 1999), as well as in
different types of cells undergoing apoptosis (Blankenberg et al,
1997; Di Vito et al, 2001). Finally, a rather intense resonance
profile may be observed in the so-called ‘CH’ or ‘sugar’ spectral
region (3.5 – 4.0 p.p.m.) of some tumours (e.g. cervical intraepithe-
lial neoplasias), whose individual contributions, however, have not
yet been clearly identified (Mountford et al, 1993; Callies et al,
1993).

So far, only a few NMR studies have been reported on human
ovarian pathologies, essentially confined to the analysis of fluids
from ovarian cysts. By these analyses, significant differences in a
variety of soluble metabolite concentrations (some still unassigned)
were found between benign and malignant ovarian cysts (Massuger
et al, 1998; Boss et al, 2000). No direct investigations were
conducted on human ovarian adenocarcinomas.

This paper reports the results of a 1H NMR study on five human
ovarian carcinoma cell lines of different origin. This is to our
knowledge the first reported evidence on the presence of a polyol
in an ovarian cancer cell line (CABA I). High levels of inositol
and glutathione were instead detected in the other cell lines exam-
ined in this study. The results suggest the interest of further
investigating the biochemical pathways responsible for alternative
production and accumulation of these soluble metabolites and
their implications in self-detoxification processes in human ovarian
cancer cell lines.

MATERIALS AND METHODS

Cell lines

The characteristics and origin of all cell lines used in this study are
summarised in Table 1 (where they are listed in order of decreasing
in vivo tumorigenicity in animal models). The CABA I cell line was
established from the ascitic fluid of a patient with ovarian carcino-
ma prior to any drug treatment. The cell line exhibits complex
cytogenetic and mutation patterns, with the possible deletion of
the entire exon 5 of the p53 gene (Dolo et al, 1997). SK-OV-3,
OVCA432, IGROV 1 and OVCAR-3 cell lines were kindly provided
by Dr S Canevari (Istituto Nazionale Tumori, Milano, Italy). Cells
were grown as monolayers in RPMI 1640 (Euroclone, Devon, UK)
with 10% foetal calf serum (FCS, Euroclone). For each experiment,
monolayer cells were harvested in 0.05% Trypsin and 0.02% EDTA
(Euroclone), resuspended in RPMI/FCS (complete medium) and
then washed three times in PBS. The cells were counted and their

viability (80 – 90%) and membrane integrity assessed by Trypan
blue (Euroclone) dye exclusion, both before and after NMR
measurements, (during which there was no significant drop in cell
viability). All cell lines were periodically tested for mycoplasma
contamination.

NMR spectroscopy

Intact cells were resuspended in 600 ml of PBS in 70% (v/v) D2O
(pH=7.3) and transferred into 5 mm NMR tubes. The 1H NMR
experiments on intact cells were generally carried out on a
Bruker Avance 400 MHz WB (9.4 T) spectrometer, at 258C.
Some spectral quantification was also performed on measure-
ments recorded at 200 MHz, using an analytical Varian
Gemini 200 NMR spectrometer. One-dimensional (1D) analyses
were carried out using a single-pulse (608) sequence, preceded
by 1.0 s presaturation for water signal suppression (spectral
width 10.013 p.p.m.), the total measurement time being 17 min
for 320 scans. Two-dimensional (2D) 1H-NMR homonuclear
shift correlation (COSY) experiments were performed using
gradient pulses for selection; the COSY spectra were acquired
with eight transients, 256 time domain points in t1, acquisition
time 0.27 s, spectral width of 4006.41 Hz in both dimensions, repe-
tition time of 1 s.

Experiments on ethanolic extracts of cells were carried out
applying the same pulse sequence as before, at the equilibrium of
magnetisation (908 pulses and 30.0 s interpulse delay time).
13C NMR analyses were performed on intact cells incubated with
[1-13C]-D-glucose (Merck Sharp and Dohme, Canada, 99.1% isoto-
pic substitution) as well as on their extracts, utilising a sequence
with power-gated decoupling pulses. The ethanolic extracts were
also analysed by 2D 1H/13C correlation spectroscopy via hetero-
nuclear zero and double quantum coherence, using the
HETCOR-inv4tp sequence (Bax et al, 1983) or the modified inv4gp
version, that utilises gradient pulses for selection; the samples were
recorded in the proton-detected mode.

All types of 1D and 2D NMR analyses were repeated on stan-
dard compounds (sorbitol, glutathione, myo-inositol; Sigma-
Aldrich, Milano, Italy) for both verification of signal assignments
and peak area quantification.

Quantitative data analysis of spectra of intact cells and their
extracts was performed in the frequency domain using the Bruker
Win-NMR software package. Free induction decays were zero-filled
to 32 k data points and Fourier-transformed, after which base line
correction was performed, applying a cubic splines model function
through appropriate data points. Quantitation was then obtained
either through integration (cell extracts) or deconvolution (intact
cells) of resonance peaks.

The concentration values of water-soluble metabolites were
calculated by peak integration in the spectra of ethanolic cell
extracts. In particular, for the quantification of sorbitol all signals
were utilised, with reference to a standard solution of this
compound (5 mM); the ‘doublet of doublets’ centred at about
3.0 p.p.m., due to the CH2 group of cysteine was used for quanti-
fying glutathione, while the signals around 3.5 p.p.m. (H1 and H3)
were used for myo-inositol.

Ethanolic cell extracts

At the end of NMR experiments, cells were extracted by adding five
volumes of ethanolic solution (EtOH:H2O, 70:30 v/v). The samples
were sonicated at 20 kHz by a MSE ultrasonic disintegrator Mk2
(exponential probe, 8 mm peak to peak) and centrifuged at
14 0006g for 30 min. The supernatants were lyophilised two times
in a RVT 4104 Savant lyophiliser, and the residue resuspended in
700 ml D2O (Sigma-Aldrich, Milano, Italy) containing 3-trimethyl-
silylpropionate-2,2,3,3-D4 0.1 mM as internal standard (Merck &
Co., Montreal, Canada).
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Table 1 Phenotype and origin of human ovarian cancer cell lines

Cell Source

line Histology ‘in vivo’ Tumorigenicity Ref.

OVCAR-3 Pap. Adenoca Ascites ++(ip) Hamilton et al, 1983
IGROV 1 Adenoca Primary ++(ip) +/7(sc) Benard et al, 1985
SK-OV-3 Adenoca Ascites +(sc) Fogh et al, 1977
OVCA432 Adenoca Ascites ND Bast et al, 1981
CABA I Adenoca Ascites – Dolo et al, 1997

Adenoca=adenocarcinoma; Pap=papillary; sc=subcutaneously; ip=intraperitoneally;
ND=not determined; 7=non-tumorigenic in animal models.
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RESULTS

Soluble metabolites
1H NMR spectra of intact CABA I cancer cells are shown in Figures
1A and 2. The strong resonances dominating the so-called ‘CH-
region’ between 3.5 and 4.0 p.p.m. (Figure 1A) were attributed
to sorbitol. The assignment was based upon analytical comparison
of the 1D spectrum of the ethanolic cell extract (Figure 1B) with
that of a standard solution of D-sorbitol (Figure 1C) and confirmed
by 2D-COSY experiments (Figure 2).

It is reasonable to propose that accumulation of sorbitol in these
cells is mainly dependent upon the activity of aldose reductase, an
enzyme utilising glucose as substrate, with the simultaneous oxida-
tion of NADPH (Scheme 1). In order to verify this hypothesis,
CABA I cells, harvested and collected at 72 h of culture, were incu-
bated in the presence of 20 mM [1-13C]-D-glucose in a 5 mm NMR
tube at 258C, and NMR analyses performed on intact and viable
cells at various time intervals, up to 10 h (data not shown). The
formation of [1-13C]-sorbitol, concomitant with the decrease of
the anomeric glucose carbons (both the a and b isoforms, respec-

tively, at 93.2 and 96.9 p.p.m.) and increase in lactate
(3-13C, 21.0 p.p.m.), was confirmed by analysing cell extracts by
both 1D 13C NMR (signal at 63.4 p.p.m., Figure 3A) and 2D
13C/1H HETCOR spectra (cross-peaks at 3.84/74.2 p.p.m.,
3.67/72.3 p.p.m., 3.84/70.8 p.p.m., 3.86/63.8 p.p.m. and
3.80/63.4 p.p.m., Figure 3B). At the end of incubation, when
94% of glucose had been converted into other metabolites, sorbitol
reached a concentration of 0.7 mM, indicating that, under these
conditions, at least 3.7% of the substrate had been utilised to
produce the polyol.

On the other hand, no appreciable levels of sorbitol were
detected in the spectral patterns of the other four ovary carcinoma
cell lines under investigation (Figure 4). The spectra of these cells
were characterised, in the 3.5 – 4.0 p.p.m. region, by intense signals
due to other metabolites, present at variable concentration levels.

Analysis of aqueous cell extracts (Figure 5) demonstrated that
the most relevant peak, observed at 3.79 p.p.m., was due to the
glycine residue of glutathione, whose other signals were detected
at 2.2, 2.5, 3.0 and 4.5 p.p.m. In particular, the presence of reduced
glutathione was indicated by the cross-peak at 3.0/4.5 p.p.m. in the
2D-COSY spectra, as can be seen for example in Figure 5 for SK-
OV-3 intact cells. Myo-inositol was detected in the spectra of all
these cells, as demonstrated by its characteristic signals centred at
3.52 p.p.m. (due to H1 and H3) and the typical cross-peaks at
3.5 p.p.m./4.00 p.p.m. in the 1D and 2D-COSY experiments of
intact cells, respectively (Figures 4 and 6). Likewise, all multiplets
of myo-inositol, respectively due to H5 (3.26 p.p.m.), H4
(3.61 p.p.m.) and H2 (4.00 p.p.m.) were clearly resolved in the
spectra of cell extracts (Figure 5).

The doublet at 1.33 p.p.m. due to H3 from lactate (Figure 4)
showed a large variability between experiments of intact cells with
no significant differences between the cell lines (the peak area ratio
of the lactate doublet to the lysine signal at 1.7 p.p.m. (H3 and
H5) was of 0.31+0.12 in CABA I (five experiments) and
0.89+0.75 in the other four ovarian cell lines (in total nine experi-
ments).

Table 2 reports the concentrations of the most relevant water-
soluble metabolites measured by 1H NMR in the analysed ovarian
cancer cells. The values were determined by peak integration in the
spectra of ethanolic cell extracts. These analyses confirmed high
levels of sorbitol only in CABA I cells, while glutathione and
myo-inositol (but not sorbitol) were present in the other cell lines.
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Figure 1 (A) 1H NMR spectrum (400.1 MHz) of intact human ovarian
carcinoma cells CABA I, with assignment of signals due to N+(CH3)3 from
choline-containing compounds (‘Cho’-peak) and sorbitol; (B) expanded
spectral ‘CH-region’ in CABA I cell extract; (C) sorbitol standard solution.

CABA I
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Figure 2 2D 1H COSY experiment on intact CABA I cells. Some rele-
vant cross-peak assignments are indicated. For further details see text.
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The concentration value of 17.3+4.7 nmol/106 cells, corresponding
to 75.2+20.0 nmol/mg protein, measured for glutathione in SK-
OV-3, was in good agreement with that previously reported by
Hosking et al, 1990, for the same cell line (80.7+18.0 nmol/mg
protein).

1H NMR analyses of cell extracts also allowed quantification of
the molecular components contributing to the so-called ‘Cho-peak’
(3.2 p.p.m. in the spectra of intact cells), mainly PCho
(3.22 p.p.m.) and, to much lower extents, glycerophosphorylcho-
line (GPC, 3.23 p.p.m.) and free choline (Cho, 3.20 p.p.m.). The
concentration of PCho reached a mean value of 24 nmol/106 cells
in the most tumorigenic cell line (OVCAR-3) and about 15 nmol/
106 cells in CABA I (Table 2).

Mobile lipids

The proton spectra of some intact ovarian cancer cells showed the
typical signals arising from ‘mobile lipids’, i.e. lipids comprised in
structures endowed of sufficiently high isotropic mobility to be
detected by high resolution NMR spectroscopy. In particular, the
presence of ML was recognised by the peak at 1.27 p.p.m., due
to (CH2)n segments of fatty acyl chains, next to the peak of lactate
at 1.33 p.p.m., and by the large composite resonance centred at
0.89 p.p.m., typically comprising contributions from the chains’
terminal CH3, superimposed on those of cholesterol methyl groups
(at position 18, 19, 21, 26, 27) and of amino acids’ methyl groups
(Figure 4). The ratio (R) between the 1.27 p.p.m. and the
0.89 p.p.m. peak areas, usually adopted as empirical parameter
for relative ML quantification, was 1.5+0.4 in SK-OV-3 cells, in
which the presence of ML was confirmed by the typical cross peak

at 0.9 p.p.m./1.3 p.p.m. (Figure 6). The other ovarian cancer cell
lines exhibited much lower R values (Table 2), while CABA I cells
were practically deprived of mobile (CH2)n segments, as also
shown by 2D COSY spectra (Figure 2).

DISCUSSION

This study provides evidence on the presence, in five human ovar-
ian carcinoma cell lines, of 1H NMR-detectable amounts of
metabolites such as sorbitol, reduced glutathione and myo-inositol.
These compounds are typically implicated in cellular detoxification
pathways, although they may act as osmolites. Sorbitol may
furthermore compete for intracellular stores of myo-inositol, indu-
cing depletion of this metabolite (Kuruvilla and Eichberg, 1998).
As a consequence, different levels of myo-inositol may also influ-
ence the biosynthesis and turnover of phospholipids.

CABA I cells were characterised by high levels of sorbitol
(39+11 nmol/106 cells). Accumulation of this compound has been
reported to occur in some non-tumour tissues, such as the crystal-
line lens and nerves of patients affected by diabetes (Kuruvilla and
Eichberg, 1998), as a complication of this pathology (Kinoshita,
1990). A high level of sorbitol may even induce fracture of the lens.
Regarding tumour cells, an elevated concentration of sorbitol has
been found to induce resistance to cis-platinum in human non-
small-cell lung cancer cell lines, by modulating the activity of
Na+, K+ ATPase (Bando et al, 1997).

Sorbitol is mainly produced in the cells from glucose by the
aldose reductase pathway (Scheme 1). The general role of such
enzyme, expressed in some tissues and organs, is not yet well clar-
ified. Regarding tumours, an aldose reductase activity has been
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Aldose reductase Sorbitol dehydrogenase

SorbitolGlucose Fructose

NADPH

NADP+
NAD+

NADH

Glucose-6-phosphate Fructose-6-phosphate

NADP+

NADPH

NADPH

NADP+

Glucose-6-phosphate isomerase

Glycolysis

Pentose phosphate pathway

Glucose-6-phosphate dehydrogenase

Gluconate-6-phosphate

Ribulose-5-phosphate

Ribose-5-phosphate

Fructose-6-phosphate + erythrose-4-phosphate

Scheme 1 Biochemical reactions of glucose metabolising pathways
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identified in rat hepatoma, in which it was suggested to play an
important role in cell detoxification from harmful metabolites,
such as aldehydes, generated by intracellular metabolism. More-
over, this enzyme has been reported to display a high sequence
homology with a novel human aldose reductase, overexpressed in
human liver cancer (Cao et al, 1998).

Recent studies also reported that aldose reductase can convert
daunorubicin into its reduced form, daunorubicinol, thus decreas-
ing the pharmacological activity of this anti-tumour drug (Ax et al,
2000).

This body of evidence suggests that accumulation of sorbitol in
CABA I cells might be an index of increased metabolic flux through
the aldose reductase pathway, by which these fast growing cancer cells
would likely enhance their capability of self-detoxification, through
reduction of aldehydes or other similar (either endogenous or
exogenous) compounds, including anti-cancer drugs.

Additionally, an indirect detoxification process could be trig-
gered in these cells, by activation of the pentose phosphate
shunt, in which NADP produced from NADPH in the aldose
reductase pathway is effectively utilised. Besides, the pentose phos-

phate shunt is directly involved in nucleic acid ribose synthesis and
in proliferation of pancreatic and lung epithelial carcinoma cells;
the control of this shunt may be critical in cancer treatment, as
recently reported by Boros et al, 2000. Furthermore, sorbitol could
as well be synthesised from fructose via the activated pentose phos-
phate pathway from glucose and ribose and sorbitol dehydrogenase
(Jans et al, 1989).

Under our experimental conditions, we could directly demon-
strate the formation of 13C-labelled sorbitol from [1-13C]glucose
in CABA I cells, thus confirming that this polyol can effectively
be synthetised from this common substrate, through the described
fluxes.

Quantification of the individual contributions provided by these
detoxification pathways to the elevated concentration of sorbitol,
and their alterations under different conditions of cell exposure
to either cytotoxic drugs and/or to supplementation with specific
substrates (such as folate, reported to interfere with the activity
of sorbitol dehydrogenase (Vandenberghe et al, 1995)) would
enhance our understanding of the significance of sorbitol accumu-
lation in relation to the responsiveness of CABA I cells to
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Figure 3 (A) 13C NMR spectrum (100.6 MHz) of ethanolic extract of
CABA I cells, following incubation with [1-13C]-D-glucose; (B) 2D
1H/13C HETCOR analysis of the same sample (expanded regions); the
arrows indicate 1H/13C cross-peaks from sorbitol.
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Figure 4 Representative 1H NMR spectra (400.1 MHz) of different in-
tact human ovarian cancer cell lines with some peak assignments.
N+(CH3)3 from choline-containing compounds (‘Cho’-peak); (CH2)n and
CH3 from mobile lipids.
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combined anticancer therapies. This perspective appears particu-
larly interesting in view of the recent demonstration that CABA I
cells possess mutated a-folate receptors, associated with molecules
regulating cell proliferation, but with impaired affinity for folates
(Mangiarotti et al, 2001).

The other four carcinoma cell lines exhibited, instead of sorbitol,
high levels of glutathione and myo-inositol, metabolites likewise
known for being involved in detoxification processes of the cells.
In particular, the role of the glutathione system in the development
and maintenance of multi-drug resistance has been demonstrated
in some tumour cells (Hosking et al, 1990; Ferretti et al, 1993).
Regarding myo-inositol, although the complexity of the pathways
responsible for the synthesis and turnover of this metabolite so
far prevented a clear elucidation of the role of this compound in
cerebral tumours and in some cognitive diseases, the view is grow-
ing that myo-inositol does not act as a simple osmolyte (Ross,
2000).

The detection in the present work of high levels of myo-inositol
and glutathione in ovarian cancer cells (in particular in the most
tumorigenic line investigated, i.e. OVCAR-3) stimulates the interest
of further investigating their role as cell detoxification agents and
as possible indicators of tumour progression of ovarian cancer in
vivo.

Besides identifying compounds, which mainly affect the CH
region, 1H NMR allowed likewise the detection in intact ovarian
cancer cells of a strong ‘Cho’ – peak, mostly due to PCho. This
metabolite reached substantial levels in some of the investigated
cells, similar to and even higher than those detected in some cell
lines derived from other human epithelial tumours, such as breast
(Aboagye and Bhujwalla, 1999) or prostate (Ackerstaff et al, 2001)
carcinomas.

Regarding mobile lipid domains, there was quite a large variabil-
ity in the detection of their typical signals in 1H NMR spectra of
the different intact carcinoma cell lines analysed in this study, with
no association with their respective origin and/or in vivo tumori-
genicity. Very similar R values were found in three cell lines
IGROV 1, OVCAR-3 and OVCA432 (R*0.5) which, differently
from SK-OV-3 (R*1.5) are characterised by high levels of a-folate
receptors and by low or absent levels of caveolin-1 expression
(Bagnoli et al, 2000). The existence of a possible relationship
between the detection of NMR-visible ML domains and caveolin-
1 expression deserves further investigation.

In conclusion, in this study we report the possibility to detect
and quantify by 1H NMR previously unidentified components of
intact ovarian carcinoma cell lines. This evidence may open novel
ways to the analysis and interpretation of 1H NMR spectra of ovar-
ian tumour tissues in vivo and ex vivo.
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Figure 5 1H NMR spectra of ethanolic extracts of ovarian cancer cell
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Figure 6 2D 1H COSY experiments on intact SK-OV-3 cells. Some
relevant cross-peak assignments are indicated. For further details see text.
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