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Abstract: This prospective cohort study of 16,943 consecutive patients compared phase angle (PhA,
foot-to-hand at 50 kHz) and subjective global assessment (SGA) to predict outcomes length of
hospital stay (LOS) and in-hospital mortality in patients at risk of malnutrition (NRS-2002 ≥ 3). In
1505 patients, the independent effects on LOS were determined by competing risk analysis and on
mortality by logistic regression. In model I, including influence factors age, sex, BMI, and diagnoses,
malnourished (SGA B and C) patients had a lower chance for a regular discharge (HR 0.74; 95%CI
0.69–0.79) and an increased risk of mortality (OR 2.87; 95%CI 1.38–5.94). The association of SGA and
outcomes regular discharge and mortality was completely abrogated when PhA was added (model
II). Low PhA reduced the chance of a regular discharge by 53% in patients with a PhA ≤ 3◦ (HR 0.47;
95%CI 0.39–0.56) as compared to PhA > 5◦. Mortality was reduced by 56% for each 1◦ of PhA (OR
0.44; 95%CI 0.32–0.61). Even when CRP was added in model III, PhA ≤ 3◦ was associated with a 41%
lower chance for a regular discharge (HR 0.59; 95%CI 0.48–0.72). In patients at risk of malnutrition,
the objective measure PhA was a stronger predictor of LOS and mortality than SGA.

Keywords: bioimpedance analysis; screening; nutritional status; inflammatory status; medical
patients; surgical patients

1. Introduction

Hospital malnutrition is a common problem worldwide and has been shown to be
associated with increased mortality and prolonged length of stay (LOS), requiring increased
resource allocation [1–7]. To diagnose malnutrition, a number of nutrition indicators have
been used for assessing the various dimensions of nutritional status: indicators of impaired
nutrient balance, such as reduced food intake and non-volitional weight loss [8]; anthro-
pometric measures, such as BMI, midarm circumference and triceps skinfolds, skeletal
muscle mass [9,10]; biochemical analysis, such as albumin and/or other serum proteins [11];
and functional measures such as handgrip strength and/or other tests of muscular func-
tion [12,13]. Moreover, in the acute care setting, nutritional status and disease-driven
effectors such as inflammatory status determine the metabolic challenge the sick patient
is facing. As a consequence, multi-component assessment tools have been devised with
the aim of predicting nutrition-related outcomes in hospitalized patients. SGA, a compos-
ite evaluation of nutritional status at the bedside, was shown to have better sensitivity
and specificity than individual nutrition indicators [14], has since been implemented by
researchers studying malnutrition [1,2,15,16], and is still regarded as a “gold standard”.
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Nevertheless, the SGA has been criticized repeatedly for its subjectiveness, and a number
of composite tools including objective measures have been proposed to better predict
outcome [17–21].

To avoid subjectiveness inherent in narrative criteria, objective, easy-to-perform, valid,
inexpensive, and robust diagnostic criteria are needed that can be implemented by physi-
cians and other medical staff without special training in clinical nutrition and without the
need for sophisticated interpretation. Since malnutrition is characterized by impaired body
composition and tissue function [22], it appears logical to base its diagnosis on a measure
of the prevailing impairment of body composition and tissue function, such as phase angle
(PhA). PhA is calculated from the arctangent of resistance and reactance of an alternative
current as it passes through the body in the process of bioelectrical impedance analysis
(BIA) [23,24]. Resistance provides an estimate of extracellular fluid, while reactance is
affected by type and mass of body cells and their membrane integrity [24]; therefore, PhA
can be viewed as an integral measure of body composition and tissue function [23–25].
Age, sex, and BMI are the main constitutional factors affecting PhA, which is also modified
by level of physical activity and inflammation [26–29]. Phase-sensitive monofrequency
bioimpedance analysis (BIA) measurements at 50 kHz provide resistance, reactance, and
PhA as crude readouts, obviating potential error due to regression equations for estimation
of body compartments [24,30]. Low PhA has been shown to be associated with sarcope-
nia [31], frailty [32], prolonged length of hospital stay [33–37], and mortality in various
conditions [25,38–40].

We therefore hypothesized that PhA as an integral measure of nutritional metabolic
status, with its components body cell mass and function and hydration status [23,24], could
serve as an objective assessment tool instead of composite and narrative assessment tools
in hospitalized patients found to be at malnutrition risk after prior screening (NRS-2002
score ≥ 3). The aim of the study was to test, in a prospective head-to-head comparison,
the performance of PhA and SGA in the prediction of outcomes such as time until regular
discharge and in-hospital mortality in patients at risk for malnutrition in medical and
surgical specialties of a tertiary care community hospital.

2. Patients and Methods
2.1. Patients

All adult patients admitted to Dessau Community Hospital as in-patients were
screened for malnutrition risk, and those with an NRS ≥3 were eligible to participate
in this prospective cohort study with the following exceptions: admission to intensive care
unit, obstetric ward, or ophthalmology ward. Only patients who gave written informed
consent on admission were enrolled in the study. Recruitment had to be stopped prema-
turely due to the COVID-19 pandemic, thus limiting the number of patients admitted to
16,943. For primary analysis, all admissions were included, and for sensitivity analysis,
any readmission was excluded. The study protocol was approved by the Ethics Com-
mittee of local authorities (Ärztekammer Sachsen-Anhalt), and the study was registered
(DRKS00025307).

2.2. Estimation of Sample Size

Malnutrition risk screening has been a mandatory procedure of the admission process
in all departments of Dessau Community Hospital since 2014 using NRS-2002 on admission
and every week thereafter as needed [41]. A pilot analysis of 8267 patients admitted to
15 out of 18 wards within a 6-month period showed a screening rate of 90% identifying 22%
of patients at risk for malnutrition on the basis of an NRS-2002 score ≥ 3. As staff of the
study team would be available on working days only, we calculated that there would be
no data in up to 10% of patients with a very short LOS either due to death very early after
admission or discharge too early for the study staff to capture all data. The latter would
apply to patients admitted between Friday afternoon and Monday morning or during Bank
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Holidays. Ultimately, we calculated that overall ~20,000 patients would be admitted to
18 wards within a 12-month period, yielding ~4000 patients at risk of malnutrition.

2.3. Data Collection

After in-depth training regarding all techniques used, members of the study nutrition
team were allocated to individual wards for tracking newly admitted patients, providing
study information to patients, performing interviews, obtaining all measurements including
BIA in a standardized procedure, and entering all data into the electronic patient chart
at bedside after written informed consent was obtained. The demographic profile of the
study sample included the following variables: age [years], height [cm], body weight
[kg], sex [M/F], ICD-10 code of main diagnosis at discharge as assigned by professional
coding staff according to current coding guidelines. Risk factors on a continuous scale
were categorized into 4 categories using quartiles that were adapted to common cut-offs as
specifically indicated for each variable. For weight loss, a fifth category “no weight loss”
was used when the variable weight loss in the database was zero.

For each patient, hospital LOS was extracted from the electronic patient chart defining
day of admission as day one and the day of discharge as the final day. When patients were
transferred between wards or departments during one treatment case, this was considered
as one case, and total LOS was extracted and entered into the study file. Outcome variables
LOS [days], regular discharge defined as discharge home by the caring physician, and
in-hospital mortality as well as readmission rate were extracted from the electronic patient
chart and entered into the study file, making data available in digital format for later
analysis. Follow-up was complete for all patients.

2.4. Malnutrition Risk Screening

Screening was done by nursing staff; all nursing staff had received appropriate train-
ing for implementing NRS-2002. Results were entered into the appropriate form of the
electronic patient record at bedside.

2.5. Subjective Global Assessment (SGA)

SGA [14] was performed by study nutrition team staff, and data were entered into the
appropriate form in the electronic patient record at bedside. Patients were categorized as
not malnourished (SGA A), moderately malnourished (SGA B), or severely malnourished
(SGA C). Patients of SGA categories B and C were considered malnourished [1,2,16], and
thus SGA B and C vs. A was used in multivariate analyses. SGA was always done before
obtaining BIA measurements in order to exclude potential bias.

2.6. Phase Angle (PhA)

BIA was performed by study nutrition team staff on the day of screening or the
next working day. All BIA measurements were obtained in a standardized fashion [30]
with patients in the supine position as foot-to-hand measurement in the morning. After
skin preparation, electrodes (BIANOSTIC AT-electrodes; Data Input GmbH, Darmstadt,
Germany) were placed on the dominant side. All measurements were performed with a
phase-sensitive monofrequency device (NutriBox, Data Input GmbH, Darmstadt, Germany)
applying a current of 0.8 mA at 50 kHz as used in the reference value material published by
Bosy-Westphal [26]. BIA raw data resistance (precision ± 1%), reactance (precision ± 2.5%),
and PhA were entered into the electronic patient chart on the day of the measurement.
On this occasion, PhA was classified as either below or ≥5th percentile [26], and this was
entered into the patient chart as well.

2.7. PANDORA-Score

All seven items (age, BMI, self-reported mobility, self-reported food consumption,
medical specialty, cancer, fluid status) of the PANDORA score [42] were obtained by study
nutrition team staff and entered into the appropriate form of the electronic patient chart at
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bedside. In multivariate modeling, PANDORA variables were used individually with the
same categories as in the score. On occasion of this interview, study nutrition team staff
also obtained data on the extent [kg] and extent over time [kg/month] of patient reported
weight loss, which was classified as follows: weight gain, no weight change, weight loss up
to 5%, weight loss 5–10%, and weight loss >10%.

2.8. Inflammatory Status

CRP was extracted from the electronic patient chart for assessing inflammatory sta-
tus [43] in 4 categories: < 10, 10–100, > 100 mg/L, and missing.

2.9. Statistical Analysis

Data are given as counts with percentage or median with interquartile range (IQR) as
appropriate or mean with standard deviation (SD). LOS for all outcomes was compared
with Wilcoxon U test between groups. Cumulative incidence curves were plotted for
regular discharge and death for SGA categories A/B/C and for PhA numerical categories
(PhA ≤ 3.0◦, >3.0–4.0◦, >4.0–5.0◦, >5.0◦) as well as PhA classified as either below the 5th
percentile or ≥ 5th percentile according to Bosy-Westphal [26]. Unless indicated otherwise,
the time until regular discharge is referred to as LOS hereafter.

For the outcome regular discharge, there was a sufficiently large number of events to
apply a multivariate Fine and Gray proportional hazard model for competing risks with
admitting wards as clusters. For the outcome in-hospital mortality, a corresponding logistic
regression model was applied with a reduced set of influence variables owing to the limited
number of events. In addition, a ROC-curve for the outcome in-hospital mortality versus
PhA was calculated. Three sensitivity analyses were performed: (i) The main analysis
was repeated with COX cause-specific proportional hazard modeling to check stability
of the results for different types of analysis. (ii) Fine and Gray analysis was applied to
first admissions only. (iii) Additional risk factors from the PANDORA score, a measure
of mortality risk, and weight loss were added to the model of the main analysis (online
supporting material). Goodness of fit was determined by using concordance. Computations
were done with R 4.1.1 with the survival, survminer, ggplot2, geepack and pROC packages.

3. Results

Between May 2019 and March 2020, 16,943 adults were admitted as in-patients, of
whom 14,150 (84%) were screened for malnutrition risk using NRS-2002. Recruitment
was interrupted during Christmas week due to scheduled lockdown of many wards.
Furthermore, recruitment had to be stopped 9 weeks short of schedule due to hospital
hygiene measures taken in order to contain COVID-19.

Screening identified 2695 (19%) patients at risk (NRS score ≥ 3). Of those, 1505 patients
were enrolled, while 1190 could not be enrolled for reasons such as severe physical and/or
cognitive impairment precluding informed consent (n = 284); discharge (n = 386), transfer
(n = 26), or death (n = 45) prior to contact with the study nutrition team (all three n = 457);
conditions precluding BIA measurements such as active electronic medical devices, limb
amputations, skin lesions, oedema, or inability to assume the standardized prone position
(n = 254); or other (n = 105). A total of 90 refused to consent (Figure 1).

A total of 61% of patients at risk for malnutrition were classified malnourished in
terms of SGA B and C (n = 914), and 39% were well nourished (SGA A, n = 584). Almost half
of the patients experienced weight loss ≥ 5% before admission (Table 1). Out of all patients,
52% had a phase angle below the 5th percentile (Table 2). Neoplasms (24%) constituted
the largest disease group, with digestive (19%) and cardiovascular (12%) disorders placing
second and third (Table 3). A total of 1346 (89.4%) patients achieved a regular discharge,
50 (3.3%) patients died in hospital, and 109 (7.3%) had other outcomes such as being
discharged to another institution or unscheduled discharge. Median hospital stay was
8 days (IQR 5–15) for all outcomes.
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Figure 1. Flow diagram of study population for cohort 0 (all patients screened) and study cohort (con-
senting patients screened NRS ≥ 3). The multivariate analysis was performed on the study cohort.

Table 1. Demographic data of study cohort. * n = 1498.

n 1.505

age [years; median (IQR)] 76 (66–81)
female [n (%)] 782 (52%)
male [n (%)] 723 (48%)

height [mean ± SD] 167.8 ± 9.4 *
weight [mean ± SD] 69.4 ± 17.1 *

BMI [mean ± SD] 24.6 ± 5.5 *
weight gain [n (%)] 208 (14%)

weight unchanged [n (%)] 259 (18%)
weight loss (0–5%] [n (%)] 312 (22%)
weight loss (5–10%] [n (%)] 309 (21%)
weight loss > 10% [n (%)] 352 (24%)

weight loss missing 65 (4%)
SGA A [n (%)] 584 (39%)
SGA B [n (%)] 783 (52%)
SGA C [n (%)] 131 (9%)
SGA missing 6 (4%)

* p < 0.01. IQR: interquartile range; SGA: subjective global assessment.

Table 2. Phase angle of study cohort.

n 1.505

phase angle percentile not defined due to BMI < 18.5 163 (11%)
phase angle [◦; median (IQR)] 4.0 (3.2–4.7)
phase angle ≥ 5th perc [n (%)] 565 (38%)
phase angle < 5th perc [n (%)] 777 (52%)
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Table 3. ICD-10 classes of the study cohort.

n 1.505

ICD-10 n (%)
A–B infections 78 (5%)

C–D50 neoplasms 356 (24%)
D50–D89 blood, blood-forming organs 72 (5%)

E endocrine 35 (2%)
F mental 5 (0%)
G nervous system 39 (3%)

H00–59 eye 3 (0%)
H60–95 ear 8 (1%)

I circulatory 176 (12%)
J respiratory 110 (7%)
K digestive 286 (19%)
L skin 15 (1%)
M musculoskeletal 60 (4%)
N genitourinary 62 (4%)
P pregnancy 2 (0%)
Q malformations 1 (0%)
R abnormal findings 65 (4%)

S-T injury, poison 103 (7%)
Z factors from health services 3 (0%)

missing 25 (2%)

To analyze the performance of SGA or PhA for the outcome regular discharge, we
performed multivariate analyses of competing risks using three proportional hazards
models (Table 4). In model I, we found the hazard for being discharged regularly (to a
good approximation, being the chance for a regular discharge during a time unit of one
day) to be reduced by 26% in SGA B and C patients when compared to SGA A (HR 0.74; CI
0.69–0.79; p < 0.0001). The association of SGA category and patient outcome in terms of
LOS or death is clearly visualized by cumulative incidence curves (Figure 2) and shows that
SGA B and SGA C have a similar association with time to discharge but a highly different
association with death. The same phenomenon can be observed for the association of the
four PhA numerical categories and the outcomes LOS or death (Figure 3).

The association of SGA and outcome regular discharge was abrogated when PhA was
added in model II (HR 0.94; CI 0.85–1.05, p = 0.27), whereas PhA decreased the chance for a
regular discharge for each 1◦ by 21%, 13%, and 19% between four stepwise-decreasing PhA
categories (Table 4). The chance of regular discharge was reduced by 53% for patients with
PhA ≤ 3◦ compared with PhA > 5◦ (HR 0.47; CI 0.39–0.56, p < 0.0001).

Furthermore, when CRP and PhA were included in model III, SGA B and C was no
longer associated with the outcome regular discharge (HR 0.98; CI 0.87–1.1, p = 0.7) (Table 4).
Low PhA, however, remained associated with a lower chance for a regular discharge by up
to 41% in patients with a PhA ≤ 3◦ (HR 0.59; CI 0.48–0.72, p < 0.0001). Inflammatory status
was associated with a progressive decrease in the chance for a regular discharge by 25%
for CRP 10–100 mg/L (HR 0.75 CI 0.63–0.88, p < 0.001) and 46% for CRP > 100 mg/L (HR
0.54, CI 0.44–0.65, p < 0.0001). It should be noted, however, that the subgroup of patients
(13%) without CRP measurement had a much higher chance for earlier discharge (HR 1.65,
CI 1.27–2.16, p < 0.001). CRP measurements could not be ordered by the study nutrition
team but only by the physician in charge as deemed indicated in the individual patient.
The concordance index as an indicator for the model fit was C = 0.60 for model I, C = 0.63
for model II, and C = 0.66 for model III, indicating that there are limitations when trying to
predict the chance of discharge from variables at hospital admission.

Characterizing disease burden by disease entity according to ICD-10 category, we
also found significant associations. Using digestive disorders as a reference, neoplastic,
circulatory, respiratory, and musculoskeletal diseases as well as injury or poisoning were
associated with a significantly lower chance for regular discharge regardless of the model
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used in the competing risk analysis (Table 4). In model II and III, age ≤65 was associated
with a lower chance for a regular discharge.

Table 4. Competing risk analysis using three proportional hazard models.

Model I Model II
(Including PhA)

Model III
(Including PhA and CRP)

Variable n (%) HR [95%CI] HR [95%CI] HR [95%CI]

SGA–A 584 (39%) 1.00 1.00 1.00
SGA–B/C 915 (61%) 0.74 [0.69,0.79] *** 0.94 [0.85,1.05] 0.98 [0.87,1.1]

Phase angle ≤ 3◦ 327 (22%) 0.47 [0.39,0.56] *** 0.59 [0.48,0.72] ***
Phase angle 3–4◦ 482 (32%) 0.66 [0.56,0.78] *** 0.8 [0.67,0.95] #
Phase angle 4–5◦ 424 (28%) 0.79 [0.69,0.9] ** 0.83 [0.72,0.95] *
Phase angle > 5◦ 272 (18%) 1.00 1.00

Age <65 375 (25%) 0.85 [0.7,1.04] 0.75 [0.63,0.89] * 0.75 [0.63,0.89] *
Age 65–75 361 (24%) 1.00 1.00 1.00
Age 75–80 337 (22%) 0.92 [0.78,1.09] 0.9 [0.76,1.06] 0.9 [0.78,1.04]
Age > 80 432 (29%) 0.95 [0.84,1.07] 1 [0.88,1.14] 0.95 [0.83,1.08]

BMI < 18.5 162 (11%) 0.99 [0.87,1.12] 1.02 [0.91,1.14] 0.97 [0.84,1.11]
BMI 18.5–25 715 (48%) 1.00 1.00 1.00
BMI 25–30 379 (25%) 1.01 [0.87,1.17] 1.02 [0.88,1.19] 1.07 [0.92,1.25]
BMI > 30 241 (16%) 0.83 [0.72,0.94] * 0.85 [0.73,0.99] 0.89 [0.79,1.01]

CRP ≤ 10 480 (32%) 1.00
CRP 10–100 673 (45%) 0.75 [0.63,0.88] **
CRP > 100 158 (10%) 0.54 [0.44,0.65] ***

CRP—no value 194 (13%) 1.65 [1.27,2.16] **

Sex—male 723 (48%) 1.00 1.00 1.00
Sex—female 782 (52%) 1.05 [0.98,1.13] 1.09 [1.02,1.17] 0.99 [0.91,1.09]

ICD A–B: infections 79 (5%) 0.82 [0.67,0.99] 0.85 [0.71,1.02] 0.86 [0.69,1.07]
ICD C–D50: neoplasms 356 (24%) 0.62 [0.48,0.81] ** 0.62 [0.47,0.82] ** 0.61 [0.47,0.79] **
ICD D50–89: blood and
blood-forming organs 72 (5%) 1.08 [0.75,1.56] 1.12 [0.77,1.62] 0.98 [0.66,1.45]

ICD E: endocrine 35 (2%) 1.38 [0.81,2.38] 1.31 [0.7,2.47] 1.2 [0.66,2.2]
ICD G: nervous system 39 (3%) 1.08 [0.77,1.51] 1.05 [0.75,1.47] 0.81 [0.54,1.21]

ICD I: circulatory 176 (12%) 0.58 [0.47,0.71] *** 0.57 [0.46,0.71] *** 0.52 [0.4,0.67] ***
ICD J: respiratory 110 (7%) 0.64 [0.49,0.83] ** 0.62 [0.48,0.81] ** 0.61 [0.49,0.77] ***
ICD 1 K: digestive 286 (19%) 1.00 1.00 1.00

ICD M:
musculoskeletal 60 (4%) 0.61 [0.44,0.86] * 0.61 [0.43,0.86] * 0.56 [0.4,0.8] *

ICD N: genitourinary 62 (4%) 0.92 [0.61,1.39] 0.96 [0.63,1.45] 1.02 [0.76,1.35]
ICD: other 37 (2%) 0.69 [0.43,1.11] 0.61 [0.37,1] 0.52 [0.3,0.9]

ICD R: abnormal
findings 65 (4%) 1.07 [0.65,1.78] 1.06 [0.63,1.81] 0.92 [0.54,1.57]

ICD S-T: injury, poison 103 (7%) 0.53 [0.43,0.64] *** 0.54 [0.45,0.64] *** 0.55 [0.47,0.64] ***

Model I: Age, sex, BMI, ICD-10 disease category, and SGA. Model II: PhA added to model I. Model III: CRP added
to model II). All data are hazard ratios (HR) and 95% confidence intervals [in parentheses]. # p < 0.05, * p < 0.01,
** p < 0.001, *** p < 0.0001.

In the three sensitivity analyses, we found that using COX modeling instead of Fine
and Gray confirmed the loss of association of SGA B and C (vs. A as reference) after
inclusion of PhA as well as PhA and CRP (Supplemental Table S1). Using only first
admissions and thus excluding all readmitted patients in the Fine and Gray model did not
indicate any major effects on estimates. Only some ICD-10 categories became additionally
significant (Supplemental Table S2). The third sensitivity analysis including items of the
PANDORA score showed that patients with severely impaired self-reported mobility (HR
0.68; 0.55–0.86; p < 0.001) or reduced food consumption (HR 0.83; 0.72–0.97; p < 0.05) had
a lower chance for a regular discharge (Supplemental Table S3); neither fluid status nor
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weight loss were associated with outcome. This sensitivity analysis again showed the
loss of association between SGA B and C (vs. A as reference) and regular discharge when
PhA was included in the model. Furthermore, the association between PhA and a regular
discharge was confirmed but at a weaker level. Patients with a PhA ≤ 3◦ had a 28% (HR
0.72, CI 0.57–0.91, p < 0.01 vs. PhA > 5◦) lower chance for a regular discharge when CRP, low
mobility, weight loss, and amount eaten were added to the model (Supplemental Table S3).
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For the outcome in-hospital mortality, we applied two simplified models of logistic
regression with a reduced set of regressor variables owing to the limited number of events.
Mortality was reduced by 56% for each 1◦ of PhA (OR 0.44; 95%CI 0.32–0.61). Again,
the superiority of PhA over SGA was confirmed (Table 5): SGA had no influence on in-
hospital mortality once PhA was included in the model. The predictive power of PhA is
underscored by the resulting ROC-curve for the outcome in-hospital mortality, with an
area under the curve of 0.7 (95%CI 0.633–0.767; Figure 4). The power of PhA in predicting
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in-hospital mortality is even more striking when patients were classified according to a
PhA either <5th percentile (n = 777) or ≥5th percentile (n = 565) showing large differences
between the cumulative incidence curves, with the disjoint pointwise 95%CIs indicating
clear statistical significance (Figure 5A). Likewise, patients with a PhA < 5th percentile
had a significantly lower chance for a regular discharge, as shown by the clearly separated
cumulative incidence curves (Figure 5B).
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Table 5. Logistic regression analysis for outcome in-hospital death using two models.

Model I
without PhA

Model II
with Numerical PhA

Variable OR [95%CI] OR [95%CI]

SGA A 1.00 1.00

B/C 2.87 [1.38,5.94] * 1.16 [0.49,2.75]

PhA [◦] numerical 0.44 [0.32,0.61] ***

Age [years] <65 2.12 [0.89,5.07] 3.68 [1.52,8.92] *
65–75 y 1.00 1.00
75–80 y 2.71 [1.08,6.8] # 2.79 [1.08,7.24] #
>80 y 2.82 [1.03,7.73] # 2.27 [0.82,6.3]

BMI [kg/m2] <18.5 0.84 [0.38,1.87] 0.64 [0.29,1.42]
18.5–25 1.00 1.00
25–30 0.92 [0.38,2.22] 0.8 [0.33,1.95]
>30 1.01 [0.42,2.47] 0.82 [0.34,1.96]

Sex M 1.00 1.00
W 0.3 [0.16,0.58] ** 0.26 [0.13,0.52] **

ICD-10 C-D50: neoplasms 2.28 [0.9,5.77] 2.49 [0.97,6.42]
I: circulatory 1.03 [0.32,3.35] 1.14 [0.35,3.74]
J: respiratory 1.41 [0.49,4.06] 1.64 [0.52,5.14]
K: digestive 1.00 1.00

other 0.37 [0.12,1.12] 0.37 [0.12,1.17]
S-T: injury, poison 0.67 [0.15,3.03] 0.7 [0.16,3.04]

Model I: Age, sex, BMI, ICD-10 disease category, and SGA. Model II: Phase angle (PhA) added to model I as
numerical value. All data are odds ratios (OR) and 95% confidence intervals [in parentheses]. # p < 0.05, * p < 0.01,
** p < 0.001, *** p < 0.0001.
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4. Discussion

This prospective cohort study analyzing PhA and SGA in a head-to-head comparison
shows that PhA is a stronger predictor than SGA of outcomes length of stay and mortality
in hospitalized patients at risk of malnutrition. Much of current knowledge on the epidemi-
ology and the unfavorable risk profile of hospital malnutrition is based on research using
SGA as the diagnostic “gold standard”. SGA is a composite encompassing symptoms of
body weight change, food intake, gastrointestinal nutrition impact symptoms, and general
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physical functioning as well as an assessment of disease-associated metabolic stress, fat
stores, muscle loss, and hydration status [14]. Multivariable analyses of our data confirm
the ability of SGA to predict hospital outcome, showing that malnutrition (SGA B and C)
was associated with a 26% lower chance for a regular discharge and a 2.7-fold increase
in mortality risk. The predictive power of SGA, however, was abrogated when PhA was
included in our multivariable analyses. Thus, our findings not only confirm previous ob-
servations showing an association of low PhA [33–37] or low BIA-derived FFMI [44] with
prolonged LOS and mortality [25,38–40] but suggest that, in a head-to-head comparison
with SGA, PhA is a superior tool for the assessment of patients’ metabolic resources, which
traditionally have been addressed as nutritional status.

Our findings raise a number of issues. The use of PhA as an indicator of nutritional
status has been criticized due to the fact that PhA, in addition to cell mass and cell integrity,
also reflects hydration status. Hydration status is one item of the PANDORA score and
was documented prospectively in all patients but showed no association with outcome
in a sensitivity analysis. Loss of intracellular water and expansion of extracellular water,
including the occurrence of edema and anasarca, are integral and long-known features
of malnutrition [45,46]. Successful nutrition therapy is accompanied by elimination of
fluid excess [47]. Moreover, the assessment of hydration status is an integral component of
SGA itself [14]. Therefore, it is questionable to consider fluid status a confounder rather
than recognize fluid status an integral component of metabolic nutritional status. Thus, by
providing an integral measure of body cell mass and integrity as well as hydration status,
PhA offers the opportunity to serve as an integral indicator of patients’ metabolic resources,
i.e., nutritional status.

The use of PhA as a crude BIA readout instead of FFMI or other BIA-derived markers
of nutritional status offers the advantage that derived variables may be flawed due to
numerous inherent assumptions which may be erroneous in severely ill patients unless
validated for this particular condition [23,24]. Moreover, total body water by definition is a
component of fat-free mass and thereby of FFMI as well. Furthermore, FFMI or other BIA
derived variables are not independent from the influence of hydration status inherent in
the BIA raw data. Finally, PhA as a crude BIA readout is available free and independent
from manufacturer-owned algorithms [48].

The majority of our patient cohort (Table 2) had a PhA < 5th percentile of a large
reference population [26]. This high proportion is not surprising, considering that this
was a cohort of patients at risk of malnutrition selected by systematic screening. In good
agreement with other reports [25,27,39,49], in our cohort a PhA < 5th percentile was
associated with a significantly lower chance for regular discharge as well as a higher
risk of in-hospital mortality. The strong impact of PhA on outcome is also exemplified
by our observation that in patients with a numerical PhA ≤ 3◦, the chance for a regular
discharge was reduced by 53%, as compared to 26% for malnourished patients (SGA B
and C). The association of low PhA and prolonged LOS has been observed previously,
but a direct comparison between PhA and SGA has not been reported [33–37]. Moreover,
such observations raise the question of which cut-off is appropriate to classify low PhA as
opposed to normal PhA [27]. Using 5.0◦ (M) and 4.6◦ (F) as cut-offs, Kyle et al. reported
low PhA of 8.3% and 29.8% in patient cohorts with a substantial prevalence of malnutrition
(SGA B and C 49.9% and 61.5%) [33,50]. Using different reference values, however, other
investigators found a low PhA in 56.5% or 57.5% of cohorts with a comparable proportion of
malnourished patients (54.5% and 57.5%) [51,52]. Obviously, there is only partial agreement
between PhA measured by different devices and SGA obtained in different modifications as
indicators of nutritional metabolic status [53]. Therefore, the use of an appropriate reference
pertinent to ethnicity and global region of the study sample [26,38,54] seems of utmost
importance. Therefore, in our study, PhA was classified as < 5th percentile or above using
age, BMI, and sex-specific reference values obtained from more than 200,000 individuals
in Germany [26]. Furthermore, since instrumental sensitivity may differ between BIA
devices, we chose a device which was used for the large German reference sample [26]
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and in studies showing PhA as an independent predictor of physical function and clinical
outcome [27,49].

As far as nutrition is concerned, hospital outcome is determined by disease-related
variables such as inflammation on the one hand [43] and the patients’ metabolic resources
on the other. Impaired resources as assessed by low handgrip strength have been shown
to predict not only mortality but also a favorable response to nutrition support [55]. Inter-
estingly, PhA can detect sarcopenia and low muscle quality with good accuracy [31,56],
and thus, PhA may be used as a proxy when measurement of hand grip strength is not
available. Frailty and sarcopenia have been shown to be associated with unfavorable
outcome in many conditions [13] and using low PhA as a proxy for complex assessment
of frailty has been suggested [32]. In our cohort, however, sensitivity analysis showed an
independent association of severely impaired self-reported mobility with a lower chance
for a regular discharge. In good agreement with the NutritionDay® findings [8], low food
consumption was associated with poor outcome in our cohort. Disease entity was a strong
predictor of outcome, showing a significant reduction by up to 48% of the chance for a
regular discharge in patients suffering from neoplastic, respiratory, or circulatory diseases.
Taking this disease spectrum into consideration, it is not surprising to find a lower chance
for a regular discharge in the age group ≤ 65 yr. The magnitude of inflammatory drive,
too, was associated with a reduction in the chance for a regular discharge (model III).
This finding adds to the powerful role of inflammatory status as a driver of metabolism
observed in the EFFORT trial, showing no response to nutritional intervention in patients
with a high inflammatory drive [43]. Recently, investigators proposed PhA as a proxy
for the assessment of meta-inflammation [29]. In our cohort, introducing inflammatory
status in model III did not invalidate PhA as a strong independent predictor of outcome.
This observation adds further evidence to understanding PhA as a powerful objective
measure of nutritional metabolic state as an indicator of the patients’ metabolic resources
for predicting clinical outcome.

Limitations and Strengths

There are limitations to our study recruiting patients from a single institution only, and
therefore, our findings and conclusions may not be generalizable to other patient cohorts.
Due to the limited number of events, the head-to-head comparison between PhA and SGA
for their association with mortality could only be performed in a simplified model. In our
cohort, we observed a lower prevalence of malnutrition risk (19%) than the 28% reported in
the pilot study of the EFFORT trial [57], which may be due to the high screening rate (84%)
in our study and the fact that our cohort comprised a large patient spectrum of medical
and surgical specialties, while in the Swiss cohort, only patients from medical wards were
included. Therefore, it is not surprising that in our cohort, neoplastic (24%), digestive
(19%), and cardiovascular disease (12%) were the three largest ICD-10 groups, while in the
Swiss studies, infectious (18% and 30%), cardiovascular (27% and 10%), and neoplastic
(13% and 19%) disease ranked at the top [43,57]. Our study may be criticized for focusing
on a patient cohort selected by prior nutrition risk screening. Such a sequential approach,
however, of assessing nutritional status as a second step after prior systematic screening
thoughtfully has been proposed by the Global Leadership Initiative on Malnutrition (GLIM)
and ESPEN [21,58].

Despite such limitations, we consider our findings valuable and relevant to clinical
nutrition practice. By design, our study provides real-world data from patients of a large
spectrum of medical and surgical specialties of an acute care tertiary institution practicing
systematic nutrition risk screening independent from the current study already for 4 years.
Moreover, the prospective design of the study and the systematic feeding of source data
into the electronic patient chart at bedside ensured high data quality and a low number of
missing values.

Malnutrition is a clinically relevant nutritional metabolic risk. Currently, its diagnosis
requires meeting one of several composite criteria attempting to provide a measure for the
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ultimately narrative concept of malnutrition [21,22,58]. Our findings, however, show that
in patients at risk of malnutrition, a PhA < 5th percentile provides a single objective and
robust non-invasive measure, obviating the need for composite tools for the assessment
of nutritional metabolic status. Understanding nutritional status as an indicator of the
nutritional component of the patients’ overall metabolic status and, as a consequence,
malnutrition as a condition with an increased nutritional metabolic risk, our data show
that PhA is a much stronger indicator of an increased nutritional metabolic risk than SGA.
Another strength is that the result of PhA outperforming the human-resource-intensive
SGA evaluation in the association with the outcome regular discharge could be confirmed
in the association with the outcome in-hospital death. The robustness of our results is
further supported by the similarity of results obtained with different statistical models in
the sensitivity analyses.

5. Conclusions

In a mixed cohort of patients from a large spectrum of medical and surgical specialties,
we found PhA to be a stronger predictor than SGA of clinical outcomes length of stay and
mortality, even when powerful confounders such as inflammatory drive were taken into
account. Malnutrition risk screening followed by the determination of PhA in those at risk
is a low-cost, non-invasive, and objective procedure providing a single numerical readout
without the need for sophisticated interpretation. We therefore propose to use PhA < 5th
percentile of appropriate reference values as an objective indicator of impaired nutritional
metabolic state, i.e., malnutrition. Future studies should address the potential of PhA to
identify those who will benefit from nutrition support.
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