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Abstract

Background: It is unclear whether the loss of physiological complexity during the aging process is due to genetic variations.
The APOE gene has been studied extensively in regard to its relationship with aging-associated medical illness. We
hypothesize that diminished physiological complexity, as measured by heart rate variability, is influenced by polymorphisms
in the APOE allele among elderly individuals.

Methodology/Principal Findings: A total of 102 robust, non-demented, elderly subjects with normal functions of daily
activities participated in this study (97 males and 5 females, aged 79.264.4 years, range 72–92 years). Among these
individuals, the following two APOE genotypes were represented: e4 non-carriers (n = 87, 85.3%) and e4 carriers (n = 15,
14.7%). Multi-scale entropy (MSE), an analysis used in quantifying complexity for nonlinear time series, was employed to
analyze heart-rate dynamics. Reduced physiological complexity, as measured by MSE, was significantly associated with the
presence of the APOE e4 allele in healthy elderly subjects, as compared to APOE e4 allele non-carriers (24.665.5 versus
28.965.2, F = 9.429, p = 0.003, respectively).

Conclusions/Significance: This finding suggests a role for the APOE gene in the diminished physiological complexity seen
in elderly populations.
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Introduction

Biologically, the physiological output of the human body

emerges from interactions among a variety of factors, ranging

from genes to organs to the environment [1]. These interactions,

under healthy conditions, are essential for responses to environ-

mental stress and are evident in both behavioral and physiological

complexity, such as daily activities, heart rate, blood pressure, and

brain electrical activities. In contrast, aging and illness are

associated with degraded and/or decoupled regulatory networks

and often result in the generation of less complex outputs [2,3].

The loss of complexity is therefore, to a large extent, the hallmark

of illness and the aging process [3,4]. This reduced complexity can

be quantified both behaviorally [4] and physiologically, such as

through analysis of heart rate variability (HRV) [3]. However,

despite a growing body of clinical and basic science research of

applying complexity theory in aging and illness [2,3,4,5], the

relationship between the loss of such complexity and a genetic

predisposition is still unclear.

The apolipoprotein-E (APOE) gene has been studied extensively

in regard to its relationship to aging-associated medical illness,

including cardiovascular disease [6,7,8,9], geriatric cognitive

decline [10,11], and late-onset Alzheimer’s disease [12]. The

impact of the APOE polymorphism on the increased risk of a

variety of medical illnesses might lead to a reduced life span and

decreased adaptability of affected individuals to stress. These

separate lines of evidence lead to our hypothesis that variants of

the APOE gene (e.g., the e4 allele) may potentially reduce

physiological complexity in an affected individual, even before the

onset of certain medical illness related to APOE variants.

Therefore, in the present study, we applied a multiscale entropy

(MSE) analysis to examine effects of the APOE genotypes on heart

rate dynamics in a cohort of robust elderly adults.

Results

Descriptive statistics are summarized in Table 1. Clinical

characteristics were not different between the APOE e4-negative

and e4-positive groups, except that the gender distribution was

unbalanced between two groups (male, %: 97.7 vs. 80.0, p = 0.02,

respectively). A comparison of representative interbeat interval time

series and MSE analysis between an APOE e4-negative and an

APOE e4-positive subject is shown in Figure 1. There were no

significant differences in conventional HRV measures between two
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Figure 1. A comparison of a representative interbeat interval time series and analysis of multiscale entropy (MSE) between an
APOE e4-negative subject (top panels) and an APOE e4-positive subject (bottom panels). Time series length is 30 minutes. The APOE e4-
negative subject showed multiscale organizations in fluctuations of interbeat intervals, whereas a relatively monotonic oscillation was seen in the
interbeat interval time series obtained from an APOE e4-positive subject. By considering the impact of scale on entropy calculations, the sample
entropy values for the APOE e4-negative subject is higher than that for the APOE e4-positive subject for scales larger than two. Of note, the sum of
MSE from scale factor 1 to 20 was 28.3 for the APOE e4-negative subject and 17.3 for the APOE e4-positive subject.
doi:10.1371/journal.pone.0007733.g001

Table 1. Demographics and clinical characteristics.

Characteristics APOE e4-negative N = 87 APOE e4-positive N = 15 t or x2 p

Age, year 79.164.4 79.464.2 20.222 0.825

Male gender, n (%) 85 (97.7) 12 (80.0) 5.22 0.022

Education, year 7.264.3 7.165.5 0.106 0.916

Body mass index, kg/m2 23.863.1 24.863.0 21.068 0.289

Hypertension, n (%) 44 (50.6) 9 (60.0) 0.16 0.689

Diabetes, n (%) 10 (11.5) 1 (6.7) 0.01 0.920

Stroke, n (%) 6 (6.9) 1 (6.7) 0.27 0.603

Current smoker, n (%) 22 (25.3) 2 (13.3) 0.46 0.498

Systolic blood pressure, mmHg 145621 141612 0.633 0.528

Diastolic blood pressure, mmHg 78611 71611 1.738 0.086

White blood cell count, 103/mm3 7.362.9 7.562.3 20.151 0.881

Hemoglobin, mg/dL 14.461.8 14.761.5 20.591 0.556

Fasting glucose, mg/dL 89.7615.8 89.0613.1 0.136 0.892

Total cholesterol, mg/dL 194.7648.6 182.2619.3 0.839 0.404

Triglycerides, mg/dL 120.5664.9 112.2656.8 0.4031 0.688

Mini-mental state examination, score (0–30) 27.962.1 27.362.0 0.974 0.332

Values are mean 6 standard deviation unless otherwise noted.
Categorical data are compared by chi-square tests, two tailed; all other p values are by Student’s t test, two tailed.
doi:10.1371/journal.pone.0007733.t001
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groups (Table 2). We also found no significant correlations between

the MSE and conventional HRV indices. Significantly lower values

of MSE were found in the e4-positive group compared to e4-negative

group (24.665.5 vs. 28.965.2, F = 9.429, p = 0.003, respectively). No

significant MSE by ANCOVA covarying for age or clinical

parameters interaction effect was found. Figure 2 shows the

comparison of the MSE analysis for the entire study cohort by the

APOE e4 genotype at different time scales. For scales ranging from 3

to 13 (equal to interbeat interval time series of 10 to 40 heartbeats),

the sample entropy values were significantly lower (t-test, p,0.01) for

the group of APOE e4-positive, as compared to the group without the

APOE e4 allele.

Discussion

Consistent with our hypothesis, the key finding of this study is

that reduced physiological complexity, as measured by multi-scale

entropy analysis, is associated with the APOE e4 allele in this

robust, aged population. The concept of loss of physiological

complexity in illness and during the aging process has been

hypothesized by several literature sources [3,4,13]. Degeneration

of the control mechanisms by illness and aging may lead to a

breakdown of coupling between physiological components and

thus result in the loss of complexity in heart rate dynamics [3].

Moreover, the lack of associations between MSE and other time-

frequency HRV measures indicates that MSE contains new

information (complexity) which was not quantified by convention-

al HRV indices. The findings of a relationship between the APOE

e4 allele and reduced physiological complexity at different time

scales suggest that variants of the APOE gene may affect the

integrity of the physiological system during the aging process.

While the exact mechanism of how the APOE e4 allele affects

physiological functions is unclear, degeneration of overall brain

functions associated with the APOE e4 allele [14,15,16,17], which

further results in decoupling between physiological control

systems, is a possible mechanism underlying the association

between APOE e4 allele and reduced physiological complexity.

The present study employed a nonlinear method adapted from

complexity theory, multi-scale entropy, to detect changes in

physiological complexity in an aged population. Cardiovascular

signals are largely analyzed using traditional time and frequency

domain measures. However, such measures fail to account for

important properties related to multi-scale organization and

nonequilibrium dynamics [3]. The complementary role of

complexity analysis is, therefore, an important tool to quantify

the nonlinear properties of physiological signals. Of note, reduced

complexity (e.g., fractal properties) have been implicated in the

risk of fatal cardiac arrhythmia, increased mortality, or poor

prognosis in cardiovascular diseases [18,19,20,21,22]. Our find-

ings of a relationship between reduced physiological complexity

and the APOE e4 allele is in line with the observation that APOE

e4 increases the risk of cardiovascular events in the long run [7,8].

Limited studies have shown procedures/exercise (e.g., meditation

or Tai-Chi exercise) that are able to increase vagal tone could have

protective effect on heart functions [23,24]. However, it’s not clear

whether these preventive means also alter the physiological

complexity. Therefore, further research is warranted to examine

if an appropriate treatment/prevention could compensate the

adverse impact of APOE e4 allele on physiologic functions.

There are limitations to this study. First, an evaluation of

cardiovascular function was not done and, thus, we cannot exclude

the possibility that subjects with this genetic finding also had occult

cardiovascular disease. Second, the possibility of selection bias

cannot be excluded due to the relatively small sample of subjects

and biased gender distribution towards the male gender (majority

of study subjects were veterans). Prior reports have shown that

gender may modulate the association between APOE gene and

related neuropathology [9,25,26], and therefore may potentially

affect the result of HRV analysis. Gender effect should be factored

in the future study. Third, as the study design was cross-sectional,

we cannot directly evaluate the long-term impact of the APOE

polymorphism on the physiological complexity and incidence of

cardiovascular diseases. A prospective study with a larger

population should be done to address this issue. Finally, interbeat

interval time series obtained from this aged population also posed

a challenge to HRV analysis as ectopic heartbeats or cardiac

arrhythmia (e.g., atrial fibrillation) are more common in elderly

populations. However, the subjects in the present study were

Table 2. Heart-rate variability characteristics.

Variable APOE e4-negative N = 87 APOE e4-positive N = 15 F p

Time Domain Measure

Mean heart rate, beat/min 77.9616.0 80.9616.6 0.454 0.502

Standard deviation of normal interbeat intervals, ms 70.3632.4 72.1627.8 0.027 0.871

Root mean square successive difference between adjacent
normal interbeat intervals, ms

35.0625.1 31.6617.5 0.284 0.595

Percentage of adjacent normal interbeat intervals that varied by
greater than 50 ms, %

12.7618.0 8.068.8 0.991 0.322

Frequency Domain Measure

Very-low-frequency power, ln(ms2/Hz) 7.9460.88 7.8860.93 0.079 0.779

Low-frequency power, ln(ms2/Hz) 6.4161.07 6.2160.94 0.491 0.485

High-frequency power, ln(ms2/Hz) 6.1361.40 6.0261.14 0.102 0.750

Low-frequency/high-frequency power, ln(ms2/Hz) 2.0561.35 1.8761.25 0.206 0.651

Complexity Measure

Multiscale entropy, sum of sample entropy from scale factor 1 to 20 28.965.2 24.665.5 9.429 0.003

Values are mean 6 standard deviation unless otherwise noted.
Power spectral estimates were log transformed due to skewed distributions. F ratios from analyses of covariance, controlling for age and clinical parameters.
doi:10.1371/journal.pone.0007733.t002
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generally healthy and had no severe cardiac arrhythmia, thus

permitting the feasibility of applying HRV analysis to these aged

individuals.

In conclusion, reduced physiological complexity, as measured

by complexity analysis, was significantly associated with the

presence of the APOE e4 allele in healthy elderly subjects. This

observation may provide implications for understanding the role of

genetic predisposition in physiological aging. Further large-scale

research is warranted to investigate the interactions between

genes, physiological functioning, and the environment in the

elderly.

Materials and Methods

Ethics Statement
All subjects gave written informed consent before commence-

ment of the study. The protocol was approved by the Institutional

Review Board of the Taipei Veterans General Hospital.

Study Sample
A total of 184 elderly Chinese-Han elderly volunteers were

screened from a public veterans housing (N = 161) and a local

elderly housing (N = 22) in the community. Of these subjects, 113

were successfully contacted for ambulatory electrocardiogram

(ECG) monitoring. Each subject’s history of medical disease,

psychiatric illness, and medication use was evaluated carefully.

Evaluation of the psychiatric history and of cognitive functioning

was conducted by a psychiatrist. In addition, each subject

underwent a basic physical examination and laboratory testing

in order to gather data on clinical parameters. Subjects were

screened and excluded if they had acute or major medical diseases

(e.g., malignancy, heart failure, or infection), severe cardiac

arrhythmia or frequent ectopic heartbeats, dementia (defined by

clinical dementia rating scale .0.5), or a history of mental illness.

Subjects were also excluded if they took medication with

documented effects on the autonomic nervous system (e.g., beta-

blockers). Of these 113 subjects, eleven were further excluded

based on the above criteria. The final study sample consisted of

102 robust, non-demented elderly subjects with normal functions

of daily activities (97 males and 5 females, aged 79.264.4 years,

range 72–92 years).

Laboratory Methods and ECG Monitoring
APOE genotyping was determined using PCR-RFLP, accord-

ing to the procedure reported previously [27]. The studies of

APOE and cognitive functions as well as heart rate variability and

cognitive functions has been reported elsewhere [28,29]. Of the

102 subjects, there were four genotypes: e2/e2 (n = 1, 1.0%), e2/

e3 (n = 14, 13.7%), e3/e3 (n = 72, 70.6%), and e3/e4 (n = 15,

14.7%). When the sample was stratified according to the presence

of the e4 allele, 15 (14.7%) were e4 carriers compared with 87

(85.3%) non-e4 carriers. The frequency of e4 allele was

comparable with prior studies worldwide based on the community

sample (7.9%–16.5%) [30,31,32,33,34,35]. These subjects then

underwent two-hour electrocardiogram (ECG) monitoring using a

Holter monitor (MyECG E3-80 Portable Recorder, Microstar

Inc., Taipei, Taiwan). All ECG monitoring took place in the

daytime and participants were asked to stay in the resting state and

to avoid smoking and drinking alcoholic beverages before the

experimental procedures.

The Holter device continuously recorded three channels of

ECG signals at a sampling rate of 250 Hz. The ECG signals were

then processed and analyzed by an open source of HRV

algorithms [36]. Briefly, after detecting the QRS complex on

ECG by locating the R apex, the interbeat interval data was

automatically calculated as the time interval between two

consecutive R peaks (R-R interval). All beat annotations were

carefully checked to avoid erroneous detections or missed beats.

Analysis of Conventional Heart-Rate Variability
Conventional time and frequency domain HRV measures are

employed. Time domain measures of HRV include the mean

heart rate and standard deviation of the normal interbeat intervals

(SDNN), the root mean square successive difference between

adjacent normal interbeat intervals (RMSSD), and the percentage

of adjacent intervals that varied by greater than 50 ms (pNN50)

[37]. Spectral HRV measures [38] include high-frequency power

(0.15–0.40 Hz), low-frequency power (0.04–0.15 Hz), and very-

low-frequency power (0.003–0.04 Hz). Briefly, the RMSSD and

pNN50 measure the short-term variation of interbeat intervals,

which is mainly modulated by parasympathetic innervation [39].

Low-frequency power is suggested to be modulated by both

sympathetic and parasympathetic activities, whereas high-frequen-

cy power is mainly modulated by parasympathetic activity [40,41].

The low-frequency/high-frequency ratio was computed as a

measure of the sympathovagal balance toward sympathetic activity

[38,42].

Analysis of Physiological Complexity
Physiological signals under healthy conditions typically exhibit

multi-scale variability, long-range correlations, and non-linearity

[43]. Traditional complexity measurements are based on the

concept of entropy which quantifes the regularity (orderliness) of a

time series. Entropy increases with the degree of disorder and is

Figure 2. Multiscale entropy analysis by APOE e4 genotype.
Multiscale entropy was derived from two-hours of interbeat interval
time series. Symbols represent mean values of entropy for each group
and the bars represent the standard error. Parameters of sample
entropy calculation are m = 2 and r = 0.15. The sample entropy values
for subjects with APOE e4 allele are significantly lower (p,0.01) on
scales between 3 and 13, which are equal to oscillations at period
around 10 to 40 heartbeats. p values were computed using Student’s t-
test at each scale factor.
doi:10.1371/journal.pone.0007733.g002
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maximum for completely random systems. However, an increase

in entropy may not always be associated with an increase in

dynamical complexity. For instance, a randomized surrogate time

series has higher entropy than the original time series, despite the

process of generating the surrogate data destroys correlations and

degrades the information content of the original signal. A

biologically meaningful complexity measure has been proposed

by measuring the entropy over multiple time scales inherent in

physiologic signals, termed multiscale entropy (MSE) [44]. MSE

was computed over the interbeat interval data using publicly

available algorithms from the PhysioNet [36,44]. The algorithm of

MSE is as follows: Given a one-dimensional discrete time series,

{x1,…, xi;…,xN}, we construct consecutive coarse-grained time

series, {y(t)}, determined by the scale factor, t, according to the

equation: y
tð Þ

j ~1=t
Pjt

i~ j{1ð Þtz1Xi
, 1!j!N/t. The length of

each coarse-grained time series is equal to the length of the

original time series divided by the scale factor, t. For scale one, the

time series is simply the original time series. We then calculate an

entropy measure (sample entropy) for each coarse-grained time

series and plot it as a function of the scale factortt. The procedure

and calculation of the MSE is summerized as following three steps:

1) construction of coarse-grained time series, 2) quantification of

the sample entropy of each coarse-grained time series, and 3)

summation of the sample entropy values over a range of scales. In

the present study, sample entropy was calculated using a pattern

length (m) of 2 and a similarity factor (r) of 0.15. The sum of

sample entropy over all scale factors from 1 to 20 was computed

for each subject and used to represent MSE in subsequent

analyses. Of note, to reduce the non-stationarity beyond the

maximum time scale detected by the MSE method (i.e., at scale

20, MSE can detect oscillation at the maximum of time period

covering 61 heartbeats), interbeat interval time series was pre-

detrended using the empirical mode decomposition method

[45,46].

Statistical Analysis
We performed allele and genotype frequency and Hardy-

Weinberg equilibrium tests for each APOE genotype. Chi-square

tests were used to compare categorical variables. Student’s t-test

was used to test for differences in demographic and clinical

measures between APOE e4 carriers and non-carriers. Analysis of

covariance (ANCOVA) was employed to determine group

differences for the HRV variables, controlling for age and clinical

parameters effects in this study sample. Partial correlation analysis

was applied, controlling for age and clinical measures, to

determine the associations between conventional HRV indices

and the MSE measure. A more rigorous p-value of less than 0.01

(two-tailed) for the nature of association study was required for

statistical significance. Based on prior literatures of applying MSE

in healthy elderly subjects [44,47], we estimated the total sample

size to be at least 94 by assuming power of 80%, 1% significance

level, minimum expected difference of 5 and estimated standard

deviation of 5.
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