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Abstract: Modifying lithium niobate cation composition improves not only the functional properties
of the acousto- and optoelectronic materials as well as ferroelectrics but elevates the protonic transfer
in LiNbO3-based electrolytes of the solid oxide electrochemical devices. Molten chlorides and other
thermally stable salts are not considered practically as the precursors to synthesize and modify oxide
compounds. This article presents and discusses the results of an experimental study of the full or
partial heterovalent substitution of lithium ion in nanosized LiNbO3 powders and in the surface
layer of LiNbO3 single crystal using molten salt mixtures containing calcium, lead, and rare-earth
metals (REM) chlorides as the precursors. The special features of heterovalent ion exchange in
chloride melts are revealed such as hetero-epitaxial cation exchange at the interface PbCl2-containing
melt/lithium niobate single crystal; the formation of Li(1−x) Ca(x/2)V

Li+
(x/2) NbO3 solid solutions with

cation vacancies as an intermediate product of the reaction of heterovalent substitution of lithium ion
by calcium in LiNbO3 powders; the formation of lanthanide orthoniobates with a tetragonal crystal
structure such as scheelite as the result of lithium niobate interaction with trichlorides of rare-earth
elements. It is shown that the fundamental properties of ion-modifiers (ion radius, nominal charge),
temperature, and duration of isothermal treatment determine the products’ chemical composition
and the rate of heterovalent substitution of Li+-ion in lithium niobate.

Keywords: lithium metaniobate; molten salt; ionic composition; modifying; structure; morphology;
XRD diffractometry; Raman; IR spectroscopy

1. Introduction

Niobates of alkali, alkaline-earth, rare-earth, and transition metals are practically
important acousto- and optoelectronic materials, ferroelectrics. Therefore, the development
of new methods to obtain them, especially in the form of nanoparticles or thin films, is of
interest to create materials with new functional possibilities for special devices with high
service properties. Due to the unique optical and dielectric properties, these compounds can
be used to create new optoelectronic devices and solid oxide electrochemical devices [1–11].
It is possible to use nanostructured LiNbO3 doped with rare earth ions as self-doubling laser
materials [12]. Ligating additives significantly affect the optical properties of the LiNbO3
crystal, for example, the change in its photorefractive and electrooptic properties [13–15].
Fe or Ce doping is followed by a photoconductivity increase and a consequent decrease
of photorefraction [16,17]. It is shown that the ion impurities of different metals (Mg, Sc,
Ce, Cu, Zn, In, Fe) in a LiNbO3 single crystal suppress the photorefractive properties and
elevate the electrooptic properties [18]. The possibility of fabrication of optical waveguides
from LiNbO3 doped with transition metals was noted in [19–21]. It is promising to use
the LiNbO3 and PbNb2O6 piezoelectric properties to create novel ultrasonic devices for
medical diagnostics [22–28].
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In recent years, more advanced molten salt methods for the synthesis of niobates of
alkali, alkaline earth, rare earth, and transition metals in the shape of nanopowders with
different particle morphology have been proposed and tested [29–32]. These methods
enable to decrease the process temperature by hundreds of degrees in contrast to solid-
phase synthesis, to ensure uniform distribution of the precursor particles in the reaction
medium, to increase the rate of the synthesis, to control the morphology and size of reaction
products, and to reduce their tendency to agglomeration. Practically in all studies at
different stages of the preparation of niobates, thermally unstable compounds are used as
precursors. In some cases, thermally stable molten alkali chlorides or their low-melting
mixtures are applied as the auxiliary substances to improve synthesis procedure [29].
Judging by the publications, these and other thermally stable salts were not considered as
the precursors to synthesize complex oxides. A number of our works [31,32] showed that
the use of halide melts as precursors create more suitable conditions for the synthesis of
nanosized particles. The logical development of these studies is the use of heat-resistant
chloride melts to change the chemical composition of complex oxide powders and obtain
thin films on single-crystal surface.

This article presents and discusses the results of an experimental study of the heterova-
lent substitution of lithium ion in nanosized LiNbO3 powders and in the surface layer of
LiNbO3 single crystal using molten salt mixture containing calcium, lead, and rare-earth
metal (REM) chlorides as the precursors.

2. Materials and Methods
2.1. Initial Materials and Molten Salt Reaction Media

Modifying of the ionic composition was performed for the single crystalline and nano-
sized powder samples of lithium niobate. The plates with dimensions of 60 × 18 × 2 mm
were cut from the LiNbO3 single crystal along the main optical axis in the YZ plane (LLC
“Quant”, St. Petersburg, Russia).

A new molten salt synthesis method was used for obtaining initial low-sized lithium
niobate powders [32]. It is based on the reaction between the lithium oxide and niobium
pentoxide formed as the result of the interactions of molten lithium chloride and niobium
pentachloride with air oxygen:

2LiCl(l) + 2NbCl5(l) + 3O2(g) = 2LiNbO3(s) + 6Cl2(g), (∆G = −525.1 kJ/mol at 700 ◦C). (1)

A simplified version of this method with the low-sized Nb2O5 (JSC “Vekton”, Russia,
St. Petersburg) as precursor was also used:

2LiBr(l) + Nb2O5(l) + 0.5O2(g) = 2LiNbO3(s) + Br2(g) (∆G = −130.3 kJ/mol at 700 ◦C). (2)

In either case the one-phase lithium niobate (Figure 1) was obtained with mean
powder particle size equal to about 250 nm (Figure 2). The heterovalent substitution of
lithium ions in LiNbO3 was performed in molten salt reaction media which were the binary
mixtures of precursors: calcium dichloride, lead dichloride, and lanthanide trichlorides
with the alkali metal salts (LiCl, NaCl, KCl, and KNO3) to provide a substantial decrease of
operating temperature.

Anhydrous CaCl2 and PbCl2, pure for analysis, were used to prepare reaction melts.
Anhydrous lanthanide trichlorides (CeCl3, GdCl3, YbCl3) were synthesized ordinarily
through the chlorination of high purity CeO2, Gd2O3, Yb2O3 powders with CCl4 [33]. A
small amount of each of these salts free from foreign impurities (moisture and hydrocarbons)
was melted together with dehydrated lithium chloride for subsequent use as a reaction
medium. The composition (in mole fractions) of working reaction salt mixtures prepared
in this way and their liquidus temperature (Tm) are as follows: 0.025PbCl2–0.975KNO3
(~325 ◦C); 0.35CaCl2–0.65LiCl (470 ◦C); 0.4CaCl2–0.6KCl (717 ◦C), 0.02LnCl3–0.98LiCl
(~590 ◦C).
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Figure 1. X-ray diffractogram of powder lithium niobate synthesized in molten lithium chloride at 
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Figure 2. Particle size distribution of synthesized LiNbO3 powder.

2.2. Technique of Ionic Modifying Lithium Niobate

A simple method of the exposition of the initial LiNbO3 samples (single-crystalline
plate and low-sized powders) in the above-mentioned reaction melts at the constant tem-
perature was used for the modifying cationic composition of the lithium niobate. The
experiments were carried out in the reactors shown schematically in Figure 3. The b reactor
version allowed the runs under different gas atmospheres (air and argon) at the same
conditions to study the possible effect of the air oxygen-containing components on the
chemical composition of the reaction products.

The holding temperature depended on the reaction medium melting point. The
LiNbO3 single-crystalline plate was treated in PbCl2–KNO3 melt at 360 ◦C to eliminate
potassium nitrate thermal decomposition. Lithium niobate powders were processed in chlo-
ride melts containing CaCl2, CeCl3, GdCl3, and YbCl3 at 700 ◦C or 750 ◦C. The isothermal
holding time had been no less than 5 h.

All preliminary operations and experiments with melts containing cerium, gadolinium,
and ytterbium trichloride were performed only in an inert gas atmosphere. The preparation
of the reaction mixtures and their loading into the reactor were carried out in a dry glove
box in an atmosphere of pure nitrogen. After prolonged vacuum treatment of salt mixtures
to a temperature of 500 ◦C, the reactor was filled with high-purity gaseous argon. It allows
us to prevent possible undesirable side reactions of rare-earth trichlorides with atmospheric
oxygen and moisture, which lead to the formation of oxychlorides that do not participate
in heterovalent substitution reactions of lithium in its niobate due to the firm Ln-O bond in
these compounds.
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(4) salt melt, (5) single crystalline plate, (5*) LiNbO3 powder, (6) tube for gas supply, (7) stopper.

After experiments, the LiNbO3 single-crystalline plates and oxide-salt mixtures were
cooled to room temperature and thoroughly washed with distilled water. The film formed
on the single crystal surface and the powdery reaction products filtered were dried and,
subsequently, examined in detail.

2.3. Examination Methods of the Reaction Products

Various methods were used to determine composition and study the structural, mor-
phological, granulometric, and optical properties of the initial single crystalline and pow-
dery lithium niobate and reaction products. X-ray diffraction analysis was conducted with
a D/MAX-2200VL/PC automated X-ray diffractometer (Rigaku Corp., Tokyo, Japan) with
the CuKα1 radiation source and a graphite monochromator. The diffractograms were
identified using the PDF-2 database. The elemental compositions of the reaction media
were researched with an Optima 4300 DS (Perkin Elmer Inc., Wellesley, MA, USA) emission
spectrometer. The microscopic structure of the films and powders was studied by the
Raman light scattering method using an Ava-Raman fiber-optic spectrometer (Avantes,
Eerbeek, The Nederlands) (light source with 532 nm wavelength) as well as by studying the
IR spectra using the TENSOR 27 spectrometer (Bruker Optik GmbH, Ettlingen, Germany).
The powders’ granulometric composition was determined using a Malvern Instruments
Mastersizer 2000 laser diffraction analyser (Malvern Instruments Ltd., Malvern, UK). The
semi-quantitative chemical analysis of the reaction products was carried out with a JSM-
5900LV scanning electron microscope (Jeol Ltd., Tokyo, Japan) combined with an X-act
ADD energy dispersive X-ray detector (Oxford Instruments, Abingdon, UK).

3. Results and Discussion
3.1. Formation of the Lead Metaniobate Film on the Y-Z Face of LiNbO3 Single Crystal

Lead metaniobate should be easily incorporated into the surface of a lithium niobate
single crystal with the formation of thin films due to the identity of their rhombohedral
structure at temperatures below the Curie point of PbNb2O6 [34]. After holding LiNbO3
single-crystalline plate in PbCl2–KNO3 melt at 360 ◦C for 6 h, cooling, washing in distilled
water and drying, it was studied in detail with the methods mentioned in Section 2.3.
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A slight improvement in the measurement XRD technique was made to obtain a
clearer diffraction pattern of changes in the surface layer of the single crystal treated with
the salt melt. For this, we used the X-ray grazing incidence diffraction (GID) technique [35].
The diffraction was recorded from a single-crystal surface turned to the radiation source
by 1.5◦ angle. The view of the X-ray diffraction pattern obtained (Figure 4) is similar
to the diffractograms observed for ultrathin films formed on the surface of oxide single
crystals [36]. The most intensive reflex of the rhombohedral lead metaniobate at 29◦ ascribed
to the crystallographic plane 300 [35,37–40] is clearly seen in the film X-ray diffractogram.
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This was also evidenced by the results of Raman spectroscopy (Figure 5, Table 1),
elemental analysis of the reaction medium and the crystal surface after the experiment
(Tables 2 and 3).
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Table 1. Parameters of vibrational bands in the Raman spectra of the initial and modified LiNbO3

single crystal samples.

FWHM (Full Width at Half Maximum)/cm−1 Normalized Intensity (I/I874) Peak Maximum Position/cm−1

Initial Sample Modified Sample Initial Sample Modified Sample Initial Sample Modified Sample

24 24 0.37 0.59 237 237
32 34 0.41 0.60 269 268
34 36 0.40 0.50 327 325
33 33 0.19 0.24 370 370
33 34 0.53 0.56 430 431
24 26 0.05 0.08 477 479
35 36 0.60 0.78 583 583
29 37 0.12 0.37 620 621
112 92 0.06 0.09 649 659
40 40 1 1 874 874

Table 2. Elemental composition of the reaction salt medium (molten KNO3-PbCl2 mixture) after
the experiment.

[K]/mg·dm−3 [Li]/mg·dm−3 [Nb]/mg·dm−3 [Pb]/mg·dm−3

7522 0.035 <0.001 1169

Table 3. Elemental composition modified surface layer of the LiNbO3 single crystal from the results
of the energy-dispersive X-ray spectroscopy (EDS).

[O]/at. % [Nb]/at. % [Pb]/at. %

72.0 27.0 1.0

The Raman spectrum of LiNbO3 crystals is sensitive to changes in the crystal com-
position upon the introduction of ligating additives [41,42]. It can be used to prove the
inclusion of Pb in the crystal lattice.

In the Raman spectrum of single-crystal LiNbO3, which has the space symmetry
group R3c (Z = 2) [38], vibrational frequencies should be observed, characterizing the
longitudinal (LO) and transverse (TO) displacements of ions relative to the main optical
axis of the crystal [41]. In the recorded spectrum of the initial LiNbO3 single crystal in
the backscattering geometry z |xx| z (Figure 5a, curve 1), the observed set of frequencies
is in good agreement with [43]. With this orientation of the crystal, both LO and TO
vibrations, and it is convenient to compare the changes in the spectral parameters of the
original and modified samples (Figure 5a). For a detailed analysis of the spectra, we used
their decomposition into Gaussian components (Figure 5b). The decomposition results are
shown in Table 1. An intense band at 874 cm−1, which does not overlap with other bands,
was used as a reference for calculating the normalized intensities in the obtained spectra.

Some increase in the normalized intensity of the bands is marked in the spectrum of
the modified sample. The most significant increase in the intensity of the spectral lines is
observed at 237, 269, and 620 cm–1. It is interesting to note that these bands are the most
intensive in the Raman spectrum of LiNbO3 powder [32,44].

In addition, in the region of oscillations of oxygen octahedra [NbO6], a high-frequency
shift of the band is noted from 649 cm−1 in the initial sample up to 659 cm−1 in the modified
one, which indicates an increase in the force constant Nb-O bonds when replacing lithium
ions by lead ones with a larger ionic radius.

It would be interesting to compare the Raman spectrum of modified niobate lithium
with the spectra of crystalline lead niobate. Unfortunately, we did not find in the literature
of systematic studies of the Raman spectra of single crystals or polycrystals of lead niobates.
There are isolated data on the Raman frequencies of the PbnNb2O5+n composition [45], for
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which, with n close to unity, in the Raman spectrum, wide bands are recorded in regions
240–280 and 550–700 cm−1. In paper [46], the Raman spectrum of the PbNb2O6 powder
of the orthorhombic modification is given. Wide bands were recorded in the regions of
250–350 and 470–680 cm−1. In the IR spectrum of the orthorhombic PbNb2O6 the bands at
692, 651, 549 cm−1 were marked [37], while for the rhombohedral modification of the lead
niobate-655, 556 cm−1. Note that the IR spectrum was studied in the spectral range higher
than 450 cm−1. The low-frequency range was not investigated.

In general, the change in the normalized intensities and the high-frequency shift of
the vibrational bands in the modified sample as compared to the initial one indicates a
deviation of the chemical composition of the surface layers of the LiNbO3 sample from
stoichiometry due to a change in the [Li]/[Nb] ratio, disordering and deformation of the
oxygen octahedra [NbO6] and the formation of impurity substitutional defects upon the
introduction of lead cations into the crystal lattice of a lithium niobate single crystal.

Elemental compositions of the molten salt reaction medium (Table 2) and the single
crystal surface (Table 3) after the experiment have become the additional direct data
demonstrating the formation of the PbNb2O6 film on the LiNbO3 single crystal surface.

The results of the X-ray diffraction study, Raman spectroscopy, and elemental analysis
of the reaction medium and the crystal surface after the experiment made it possible to
conclude that the exchange reaction:

2LiNbO3(s) + Pb2+(m)→ PbNb2O6 (s) + 2Li+(m) (3)

proceeds in the surface layer of a LiNbO3 single crystal. In general terms, this reac-
tion can be considered as the hetero-epitaxial cation exchange at the molten salt/solid
interfacial [47,48].

3.2. Modifying Composition of the LiNbO3 Fine Powders in Calcium-Containing Chloride Melts

The possibility of the isomorphic heterovalent substitution of lithium by calcium was
confirmed by calculation of the reaction Gibbs energy (∆G):

2LiNbO3(s) + CaCl2(l) = CaNb2O6(s) + 2LiCl(l) (4)

with the database of the Outokumpu HSC Chemistry 7.1–Software. The ∆G values equal to
−9.65 and –14.56 kJ/mol at 700 and 750 ◦C, respectively, show the reaction (4) must occur.
We did not find the thermodynamic data for calcium pyroniobate (Ca2Nb2O7) that did not
allow us to evaluate the probability of its formation by the similar reaction.

The modification of the cationic composition of the fine lithium niobate powders in
calcium-containing chloride melts was performed in the reactor shown in Figure 3b. Molten
mixtures 0.35CaCl2–0.65LiCl and 0.40CaCl2–0.60KCl with approximately the same molar
content of calcium chloride were chosen as modifying reaction mixtures.

The special experiments on the holding LiNbO3 powders in a molten LiCl–KCl eutectic
at 700 ◦C during 5 h showed that lithium metaniobate does not react with the melt. No other
substances other than the original lithium metaniobate were detected after its isothermal
holding in this salt melt. The X-ray diffraction pattern was identical to that shown in
Figure 1.

Initially, experiments with 0.35CaCl2–0.65LiCl and 0.40CaCl2–0.60KCl melts were
carried out at 700 ◦C and 750 ◦C, respectively, in both argon and air atmospheres. It
was found that the nature of the gaseous atmosphere above the reaction mixture did not
affect the chemical composition of the reaction products of heterovalent substitution of
lithium with calcium. Subsequently, the experiments with LiNbO3 modifying in chloride
melts were performed under an air atmosphere. It was expected that the contact of the
LiNbO3 microcrystal powders with these melts would result in the isomorphic heterovalent
substitution of lithium ions by calcium ions with the calcium metaniobate (CaNb2O6)
formation since the oxygen affinity of calcium is higher than that of lithium.
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The typical X-ray diffraction pattern of the reaction products is shown in Figure 6
where data are presented on the lithium niobate powder held in the 0.35CaCl2–0.65LiCl
melt for 5 h. It is seen that the reaction of isomorphic heterovalent substitution results in
the formation of the bipyramidal CaNb2O6 with an orthorhombic fersmite-type structure
crystallizing in the space group Pbcn (the lattice parameters are: a = 14.926± 0.004 Å
b = 5.752 ± 0.004 Å; and c = 5.204 ± 0.004 Å) [49,50].
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Figure 6. X-ray diffractogram of the heterovalent ionic exchange reaction products after holding
lithium niobate in a molten mixture of lithium and calcium chlorides at 700 ◦C for 5 h.

A comparative analysis of the peaks of initial lithium niobate observed in this diffrac-
togram and ones of the XRD pattern of pure LiNbO3 (Figure 1) showed the crystal lat-
tice parameters and unit cell volume increase of the modified powder (a = 5.19630 Å,
c = 13.95273 Å, V = 326.27 Å3) compared to the initial niobate (a = 5.15252 Å, c = 13.87072 Å,
V = 318.91 Å3). This indicates the formation of a solid substitution solution with cationic
vacancies Li(1−x) Ca(x/2)V

Li+
(x/2)NbO3 as an intermediate in the reaction (4).

The typical example considered above, illustrating a simple method for modifying
the chemical composition of submicron lithium niobate powders, describes the results of
partial replacement of lithium ions in LiNbO3 crystal lattice in a relatively short time of
powder contact with the salt melt-modifier (4–5 h) without forced mixing heterogeneous
oxide-salt mixture. When increased in the duration of the lithium niobate isothermal
holding in these melts, the time-controlled reaction could be realized up to the complete
substitution of Li+-ions by Ca2+-ions. As illustrations, Figures 7 and 8 show X-ray diffrac-
tion patterns and Raman spectra of the products of interaction of lithium niobate with melts
(0.35CaCl2–0.65LiCl) and (0.40CaCl2–0.60KCl) for 7 h. It can be seen that lithium is fully
substituted by calcium in the LiNbO3 powder. The only reaction product is stoichiometric
calcium metaniobate [50–52].
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The modification of the chemical composition of nanocrystalline lithium niobate
powders in the melts, based on the reaction of isomorphic heterovalent substitution, showed
that its products are calcium metaniobate (CaNb2O6), regardless of the composition of
the modifier melt used in the work and the gaseous medium over the oxide-chloride
reaction medium. The results obtained demonstrate the efficiency of the proposed method
for complete or partial replacement of lithium ions with calcium ones in the LiNbO3
crystal lattice.
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3.3. Modifying Composition of the LiNbO3 Fine Powders in Chloride Melts Containing
Rare-Earth Ions

More complex processes occur when lithium metaniobate interacts with rare-earth
trichlorides. The composition and structure of the products of the reaction of heterovalent
replacement of lithium ions with Ln3+ ions were determined by the XRD as well as IR and
Raman spectroscopy.

According to XRD data, the products of the interaction of lithium niobate with molten
mixtures of LiCl-LnCl3 (Ln = Ce, Gd, Yb) mainly consisted of REM orthoniobates (LnNbO4),
LiNb3O8, niobium oxide Nb2O5, and residues of the starting material. Typical examples of
X-ray diffraction patterns are shown in Figure 9. In the Raman spectra shown in Figure 10,
Ag peaks were observed near 180, 330, and 810 cm−1, corresponding to symmetric vibra-
tions of the Nb-O bonds in rare-earth metal orthoniobates with a monoclinic fergusonite
structure belonging to the space group I2/a. As can be seen from Figure 11, deep minima
are observed in the infrared spectra about 470, 670, and 810 cm−1, which are characteristic
of rare-earth metal orthoniobates. Features of vibrational spectra of products of heterophase
substitution of lithium-ion in metaniobate by ions of rare earth metals are consistent with
recent literature data [44,53,54].

Based on the results obtained, the following equations of the ongoing chemical pro-
cesses are proposed:

4LiNbO3 + LnCl3 → LnNbO4 + LiNb3O8 + 3LiCl; (5)

3LiNbO3 + LnCl3 → LnNbO4 + Nb2O5 + 3LiCl. (6)

It is obvious that these processes are interconnected due to the possibility of a reversible
solid-phase reaction occurring in the salt melt at a sufficiently low temperature (700 ◦C):

LiNbO3 + Nb2O5 ↔ LiNb3O8. (7)

It is important to note that, despite the low concentration of rare earth elements in
the melt, the latter in all experiments were in excess relative to the stoichiometric ratio of
the components in Equations (5) and (6). Taking this into account, it can be concluded
that phases with a higher content of rare earth elements cannot be formed under these
conditions. The synthesized orthoniobates of rare earth metals (LnNbO4) have a fergusonite
structure similar to the scheelite structure, which is characterized by a tetrahedral oxygen
environment of the Nb atom, in contrast to the starting materials LiNbO3 with an octahedral
environment. Such essential change in the structure indirectly indicates that a significant
contribution to the reaction mechanism, in this case, will be made by the processes of
dissolution-precipitation and diffusion in the liquid-salt reaction medium.

A noticeable decrease in the amount of the LnNbO4 formed during the reaction was ob-
served ongoing from the Ce-containing reaction mixture to the Yb-containing one, although
all experiments were carried out under the same conditions and time. This indicates a
decrease in the rate of the heterovalent substitution reaction due to the strengthening of the
Ln-Cl bond in REM trichlorides as the radius of Ln3+ ions in the Ce-Gd-Yb series decreases.
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Figure 11. Infra-red spectra of the heterovalent ionic substitution reaction products formed by the
interaction of the LiNbO3 powders with molten LiCl-LnCl3 (Ln = Ce, Gd, Yb) mixtures at 700 ◦C.

4. Conclusions

This comprehensive targeted research was carried out to search and develop a new
unconventional method for functional materials synthesis.

A new methodological approach has been developed to modify the ion composition
of lithium metaniobate single crystal and powders in thermally stable salt melts containing
lead, calcium, and rare-earth chlorides as the precursors at temperatures not exceeding
800 ◦C without additional heat treatment (annealing) of the reaction products.

It is shown that the products’ chemical composition and the rate of heterophase
reactions depend on the fundamental properties of ion-modifiers (ion radius, nominal
charge), temperature, and the duration isothermal treatment of LiNbO3 nanocrystalline
powders in salt melts.
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New information has been obtained on the features of heterovalent ion exchange
between LiNbO3 and chloride precursors. The following results deserve special attention:

• hetero-epitaxial cation exchange at the interface PbCl2-containing melt/single crystal
of lithium niobate;

• the formation of Li(1−x) Ca(x/2)V
Li+
(x/2)NbO3 solid solution with cation vacancies as an

intermediate product of the reaction of heterovalent substitution of lithium ion by
calcium one in nanocrystalline LiNbO3 powders;

• the formation of tetragonal cerium, gadolinium, and ytterbium orthoniobates with
crystal structures like scheelite one as the result of the interaction of the lithium
metaniobate with the rare-earth trichlorides.
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