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Abstract

Background: The epithelial-mesenchymal transition (EMT) plays a pivotal role in various physiological processes,
such as embryonic development, tissue morphogenesis, and wound healing. EMT also plays an important role in
cancer invasion, metastasis, and chemoresistance. Additionally, EMT is partially responsible for chemoresistance in
colorectal cancer (CRC). The aim of this research is to develop an EMT-based prognostic signature in CRC.

Methods: RNA-seq and microarray data, together with clinical information, were downloaded from The Cancer
Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. A total of 244 differentially expressed
EMT-related genes (ERGs) were obtained by comparing the expression between normal and tumor tissues. An
EMT-related signature of 11 genes was identified as crucially related to the overall survival (OS) of patients through
univariate Cox proportional hazard analysis, least absolute shrinkage and selection operator (LASSO), and Cox
regression analysis. Finally, we established a clinical nomogram to predict the survival possibility of CRC patients by
integrating clinical characteristics and the EMT-related gene signature.

Results: Two hundred and forty-four differentially expressed ERGs and their enriched pathways were confirmed.
Significant enrichment analysis revealed that EMT-related signaling pathway genes were highly related to CRC.
Kaplan-Meier analysis revealed that the 11-EMT signature could significantly distinguish high- and low-risk patients
in both TCGA and GEO CRC cohorts. In addition, the calibration curves verified fine concordance between the
nomogram prediction model and actual observation.

Conclusion: We developed a novel EMT-related gene signature for the prognosis prediction of CRC patients, which
could improve the individualized outcome prediction in CRC.
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Background
Colorectal cancer (CRC) remains the third leading cause
of cancer-related deaths worldwide [1]. Nearly 1.8 million
CRC patients are initially diagnosed and 1 million CRC
patients die every year [2, 3]. Despite continuous efforts in
prevention, screening, and management, the incidence of
CRC was still increased by 38% from 2007 to 2017 [2]. In
addition, patients with the same clinical and pathologic
conditions show contrasting clinical outcomes, even when
treated similarly [4]. The diverse prognosis of CRC pa-
tients might be due to the inherent genetic heterogeneity.
There is still no definite conclusion about the patho-

genesis of CRC. However, a growing number of studies
have shown that the epithelial-mesenchymal transition
(EMT) plays an important role in invasion, metastasis,
and chemoresistance [5–9]. Even though the mechanisms
of EMT have been extensively studied in CRC, the prog-
nostic value of ERGs remains limited and inconclusive.
Considering the strong relationship between EMT and

tumor pathogenesis, the aim of this study is to identify
ERGs for cancer diagnosis, management, and prognosis.
We initially screened differentially expressed ERGs be-
tween tumorous and nontumorous tissues, and then used
Cox proportional hazard regression analysis to screen
prognosis-related genes from 244 EMT-associated genes in
a CRC cohort of The Cancer Genome Atlas (TCGA). The
resulting genes were applied to the least absolute shrinkage
and selection operator (LASSO) to establish an optimal
risk model, followed by validation in an independent Gene
Expression Omnibus (GEO) CRC population. The results
showed that CRC patients with high EMT risk scores were
obviously associated with shorter overall survival (OS) than
that of patients with low risk scores. The difference in the
key signaling pathways between high and low risk groups
were explored using gene set enrichment analysis (GSEA).
Taken together, our research constructs a nomogram to
predict individuals’ survival probability by integrating clin-
ical characteristics and the prognostic gene signature.

Methods
Data processing
ERGs were downloaded from the Epithelial-Mesenchymal
Transition Gene Database (http://dbemt.bioinfo-minzhao.
org/download.cgi) and the Molecular Signatures Database
v7.1 (http://www.broadinstitute.org/gsea/msigdb/index.jsp).
We listed the all EMT-related genes in Table S1. We down-
loaded the RNA-seq data and clinical information for CRC
from the TCGA database (https://portal.gdc.cancer.gov/).
The GSE17536 dataset was obtained from the GEO (https://
www.ncbi.nlm.nih.gov/geo/) for the validation studies.

Differentially expressed ERGs and enrichment analysis
The differentially expressed ERGs in the mRNA expression
data of the CRC cohort were identified by the limma

package in R software (version 3.6.1) (adjusted P < 0.05,
|logFC| > 1) [10]. Volcano plots and heat maps were visual-
ized with the ggrepel, ggplot, and pheatmap packages in R
software. Entrez gene annotations were referred to as “org.
Hs.eg.db”. The functional annotation of Gene Ontology
(GO), including biological process (BP), cellular compo-
nent (CC), and molecular function (MF), was performed in
the R “clusterProfiler” [11]. The GO cluster was plotted
with the R “GOplot” package [12]. Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analysis
was performed using the open access WebGestalt tool
(http://www.webgestalt.org) [13, 14]. The results with a
false discovery rate (FDR) ≤ 0.05 were included. The
enriched pathways and processes were visualized in the
volcano plot, where the x- and y-axis showed the enrich-
ment ratio and the log of the FDR for all categories in the
database [13, 14]. In addition, we used GSEA to uncover
the different signaling pathways between high- and low-
risk subgroups (http://software.broadinstitute.org/gsea/).
The number of random sample permutations was set at
1000, and the significance threshold was set at p < 0.05.

Functional enrichment of protein-protein interaction
network of ERGs
The STRING database was applied to construct poten-
tial protein-protein interactions (PPI) among the ERGs
[15]. PPI pairs with a combined score > 0.4 were ex-
tracted. The connectivity degree of each node in the
network was calculated. Then, the PPI network was
constructed based on these protein pairs using Cytos-
cape software [16]. Moreover, the genes of the prognos-
tic model were used to identify interactions between
proteins through GeneMANIA [17, 18].

Construction and validation of EMT-related gene signature
Univariate Cox regression analysis was used to identify
genes clearly related to OS with p-values < 0.01. Then,
the significant prognostic genes were filtered in LASSO-
penalized Cox regression analysis. A λ value of 0.023
with log (λ) = − 3.78 was selected by 10-fold cross-
validation via minimum criteria. Only genes with non-
zero coefficients in the LASSO regression model were
chosen to further calculate the risk score [19]. The
formula used to calculate the degree of crystallization is
presented in Eq. (1). In Eq. (1), n denotes the number of
prognostic genes, Gi represents the expression value of
the ith genes, and weight i represents the coefficient of
each gene. The same formula was used to calculate
risk scores in GEO datasets, as in the TCGA datasets.
We used Kaplan–Meier survival curves and the log-
rank method to estimate the prognostic significance.
A p-value < 0.05 was considered statistically signifi-
cant. Receiver operating characteristic (ROC) analyses
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were performed in R “survival ROC” to validate gene
signatures in TCGA and GSE17536 datasets.

Risk score ¼
Xn

i¼1
Gi�weighti ð1Þ

Development of nomogram
Age, gender, stage, and risk score were used to construct
a nomogram, using the survival and rms package for R.
Moreover, calibration curves were plotted to assess the
concordance between actual and predicted survival. Fur-
thermore, decision curve analysis (DCA) was used to
measure whether our established nomogram was suitable
for clinical utility. The x-axis represents the percentage of
threshold probability, and the y-axis represents the net
benefit.

Statistical analysis
All statistical analyses were carried out with R (version
3.6.0). Kaplan-Meier survival analysis was used to estimate
the survival differences between the high- and low-risk
groups in the datasets. Univariate and multivariate Cox
proportional hazard regression analyses were performed
to determine prognostic values for risk scores, as well as
various clinical features.
To validate the effect of the risk assessment model, we

used the ROC curve for verification. The calibration
curves and DCA were applied to determine the predict-
ive accuracy of the prognostic models.

Results
Identification of ERGs in CRC
The flowchart of this study is shown in Fig. S1. All the
mRNA expression profiles and clinical follow-up data of
568 cancer samples and 44 normal samples from TCGA
dataset were downloaded, containing 1269 ERGs. Among
these, 1121 genes of intersect expression in TCGA dataset
and GSE17536 were selected, and then normal samples
and CRC samples were compared through the limma
package in R software (adjusted P < 0.05, |log2-fold
change| > 1). There were 159 genes significantly upregu-
lated and 85 genes significantly downregulated in CRC.
Figure 1a revealed a heatmap of differentially expressed
mRNAs between groups. The volcano map was shown in
Fig. 1b.

Biological functions and significant pathway analysis
The functions and significant pathways of these 244
differentially expressed ERGs were identified by GO en-
richment and KEGG pathway analyses. GO enrichment
terms are shown in Fig. 2a and b. The analysis showed a
significant enrichment of processes related to the growth
of CRC and the EMT process. KEGG pathway en-
richment of these genes was mainly associated with

focal adhesion, the Hippo signaling pathway, and IL-
17 signaling pathways (Fig. 2c). These genes were
linked and formed a tight PPI network, as indicated
in Fig. 2d.

Identification of survival-related differentially expressed ERGs
The correlations between the differentially expressed
ERGs and clinical data were analyzed using univariate
Cox regression (p < 0.01 is considered significant). Six-
teen genes were screened with prognostic value in CRC.

Establishment and validation of the prognostic model
The 16 EMT-related genes were filtered into LASSO-
penalized Cox regression analysis (Fig. 3a and b). After
1000 resamples, an 11-gene prognostic model, including
follistatin-like 3 (FSTL3), TNF receptor-associated pro-
tein 1 (TRAP1), procollagen C-endopeptidase enhancer
2 (PCOLCE2), secretogranin II (SCG2), clusterin (CLU),
C-C motif chemokine ligand 19 (CCL19), heart and
neural crest derivatives expressed 1 (HAND1), FOS-like
1 (FOSL1), AP-1 transcription factor subunit (FOSL1),
plastin 3 (PLS3), insulin-like growth factor binding
protein 3 (IGFBP3), and snail family transcriptional
repressor 1 (SNAI1)—was constructed. We used Gene-
MANIA to analyze the relationships between the 11
genes (Fig. 3c). A strong correlation was noticed in the
genetic interaction between CCL19 and SCG2, as well as
between CCL19 and PCOLCE2. Furthermore, a majority
of the 11 genes were correlated with each other (Fig. 3d).
The risk score = (0.011 × FSTL3) + (− 0.02 × TRAP1) +
(0.124 × PCOLCE2) + (0.0057 × SCG2) + (0.00212 × CLU)
+ (0.00257 × CCL19) + (0.054 × HAND1) + (0.00874 ×
FOSL1) + (0.0189 × PLS3) + (0.0000763 × IGFBP3) + (0.0366
× SNAI1). The samples were classified into high-risk and
low-risk groups according to the median risk score.
Univariate Cox analysis and multiple Cox regression

analysis verified whether the model could be independ-
ent progress factors (Fig. 4). The results demonstrated
that the lower survival outcome of CRC patients was
related to higher risk score (Fig. 5a and b). The Kaplan–
Meier analysis displayed a significant difference in the
outcome of the patients between the high-risk group
and the low-risk group (log-rank test p < 0.001; Fig. 5c
and d). The area under the ROC curve (AUC) for the
model was 0.727 and 0.65 in TCGA and GEO datasets,
respectively (Fig. 5e and f). Meanwhile, we also evaluated
angiogenesis related genes and metabolism-related genes
as genetic indicators for survival prediction. The corre-
sponding AUC values were 0.538 and 0.584 respectively,
which are not yet ideal (Fig. S2). In addition, we used
GSEA to uncover the different signaling pathways be-
tween high- and low-risk subgroups. The representative
pathways were showed in Fig. 6.
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Construction of a nomogram
According to the Cox regression combined with the
significant clinical parameters, the nomogram contains
three prognostic parameters: age, stage, and risk score
(Fig. 7a). Every patient receives one point for each
prognostic parameter, and higher total points indi-
cates a worse outcome. Moreover, the ROC curves of
3- and 5-year OS shows that our model has a good
predictive ability (Fig. 7b). The calibration plots indi-
cated that in comparison with an ideal model, the
nomogram had a similar performance (Fig. 7c). The
results of DCA also demonstrated that our nomogram
has high potential for clinical utility (Fig. 7d).

Discussion
Nowadays, CRC remains a major threat to human health,
but the mechanisms underlying its pathogenesis are still
unclear. However, it is significant for researchers to explore
new diagnostic and therapeutic strategies. On the other
hand, an increasing number of studies have widely proved
that EMT plays an important role in the development and
progression of CRC [20]. Recently, mRNA gene signatures
based on certain characteristics, such as metabolism [21]
and cell cycle [22], have become research hotspots.
In this study, we collected the transcriptome data

along with their corresponding clinical information from
TCGA and GEO databases. Among these, we obtained

Fig. 1 Differentially expressed ERGs between colorectal cancer (CRC) and normal colorectal tissues. a Heatmap for differentially expressed ERGs. b
Volcano plot of differentially expressed mRNAs between CRC and normal tissues. The heatmap was generated using version 3.6.1 of R software
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the differentially expressed ERGs between CRC samples
and nontumorous samples. Further analysis was per-
formed to identify the oncogenes. Finally, a prognostic
model for CRC patients was constructed. Interestingly,
major differentially expressed ERGs were enriched in
several cancer-related pathways-the Hippo signaling
pathway, ERK1 and ERK2 cascade, negative regulation of
response to DNA damage stimulus, and so on. Notably,
it has been reported that the IL-17 pathway participated
in autoimmune pathology or hypersensitivity, host
defense, and tissue repair [23]. Consistent with previous
findings [24, 25], we predicted that the IL-17 pathway
might be involved in the EMT process through KEGG
enrichment. Interestingly, IL-17 upregulated PD-L1
protein expression in HCT116 and LNCaP cells, as re-
ported in previous literature [26]. Therefore, targeting

this pathway could not only inhibit the tumor metasta-
sis, but also enhance the killing effect of immune cells
on tumors.
Eleven genes were used to establish the model equa-

tions for risk assessment. Among them, three candidate
genes (FOSL1, PLS3, SNAI1) were reported to promote
CRC cell migration and invasion. FOSL1 plays a central
role in EMT and is highly expressed in solid cancers,
especially in metastatic CRC. In vitro studies showed
that blocking the expression of FOSL1 could diminish
the migration of tumor cells [27]. Mimori et al. con-
firmed that PLS3 induced EMT via transforming growth
factor (TGF)- β signaling, followed by the acquisition of
invasive ability in CRC cells. Furthermore, overexpres-
sion of PLS3 in CRC cells significantly increased the
expression levels of EMT-related transcription factors

Fig. 2 GO, KEGG analysis, and protein-protein interaction (PPI) network of ERGs. a GO cluster. The inner dendrogram indicates the hierarchical
clustering of the gene expression profiles; the outer circle represents the log2FC of each ERG, with the color corresponding to the gene level;
and the outermost circle represents the GO BP terms assigned to the gene. b The 10 most significantly enriched CC and MF terms. c Volcano
plot of EMT gene-associated pathways. d PPI network of all differentially expressed ERGs
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Fig. 3 Establishment of prognostic gene signature by LASSO regression analysis. a Solid vertical lines represent partial likelihood deviance ± standard
error (SE). The dotted vertical lines are drawn at the optimal values by minimum criteria and 1-SE criteria. Herein, a value λ = 0.023 with log (λ) = − 3.78
was chosen by 10-fold cross-validation via minimum criteria. b Selection of the optimal parameter (lambda) in the LASSO model for training cohort. c
Gene-gene interaction network among selected genes by LASSO regression analysis in the GeneMANIA dataset. d Spearman’s correlation analysis of
the selected genes by LASSO regression analysis
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(TWIST, SNAI1, SLUG, SMAD4, and ZEB1), EMT
markers (vimentin, FN1, and N-cadherin), and TGF-β,
enhancing the invasiveness of CRC cells [28]. In
addition, previous studies have demonstrated that
high expression of PLS3 in peripheral blood was inde-
pendently associated with poor prognosis and recur-
rence [29]. Wang et al. identified that SNAI1 was not
detected in normal colorectal epithelia, whereas
SNAI1 was upregulated in tumor tissues from lymph
node (LN) + patients [30]. Similar studies have found
that SNAI1 was upregulated in CRC, which might
have potential in the control of metastasis and pos-
sibly serve as a target for chemopreventive agents
[31]. Data from Gene Expression Profiling Interactive
Analysis (GEPIA) revealed that a high expression of

TRAP1 was correlated with a good prognosis in CRC.
However, researchers have already observed that
TRAP1 was significantly upregulated in CRC patients
with lymph node metastasis compared to those with-
out LM metastasis [32]. Using RT-qPCR detection of
CRC in different tumor stages, Scorilas et al. found
that the CLU mRNA expression levels were signifi-
cantly enhanced as CRC tumors progressed from
tumor node metastasis (TNM) stage I to IV [33]. Fur-
ther in vivo and in vitro experiments focusing on
TRAP1 and CLU are still needed to explore their
roles in CRC.
Of note, contrary to our research, Zhou et al. con-

firmed that decreased expression of IGFBP3 promoted
tumor metastasis in CRC [34]. Another study indicated

Fig. 4 Forrest plot of the univariate and multivariate Cox regression analysis. a, c Univariate Cox proportion hazard regression for OS of CRC in
training and validation cohorts. b, d Multivariable Cox proportion hazard regression for OS of CRC in training and validation cohorts
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Fig. 5 Development of risk score based on the 11-EMT-related gene signature of patients with CRC in TCGA and GEO. a, b The hierarchical
clustering analysis of eleven genes with the increase of the risk score. c, d Kaplan–Meier analysis of the prognostic model in TCGA or GEO
datasets. e, f Time-dependent ROC analysis showing the optimal AUC of the gene signature in the two cohorts
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that silencing IGFBP3 in two human CRC cell lines,
SW480 and Caco2, could reduce the proliferation,
colony formation, and migration. They found that the
expression levels of IGFBP3 simultaneously increased
with the growth and advanced stage of CRC [35].
Our studies, however, showed that increased IGFBP3
expression was associated with a poor prognosis in
CRC patients. Considering the inconsistent results,
further experiments are still required. As a potential
immune stimulator, CCL19 has been observed to be
increased in lung cancer, and an association between
CCL19 expression and high TNM staging and vascu-
lar invasion was identified [36]. CCL19 enhances par-
enchymal central nervous system (CNS) retention of
lymphoma cells (LCs), thereby promoting central ner-
vous system lymphoma (CNSL) formation [37]. Xu
et al. identified that CCL19 suppressed angiogenesis
in CRC via promoting miR-206 [38]. However, further
study will be required to uncover and understand its
mechanisms in the metastasis of CRC.
FSTL3 was upregulated by the lncRNA DSCAM-

AS1/miR-122-5p axis and could promote proliferation
and migration of non-small cell lung cancer cells
[39]. Moreover, FSTL3 served as a surrogate marker
in breast cancer and was the only variable that could
distinguish a benign breast mass from a malignant

one [40]. One report indicated that astrocytic HAND1
was found to be unique in metastatic gastrointestinal
stromal tumor (GIST) and might work as a transcrip-
tional amplifier of the oncogenic GIST program [41].
There are few studies on these two genes in CRC.
Further research on these genes is required. It should
be noted that SCG2 and PCOLCE2 have been pre-
dicted to be associated with the prognosis of CRC,
but in-depth investigation on these two genes in CRC
is rarely reported [42, 43]. It is necessary to explore
their roles in tumors, especially in CRC.
So far, most of the cancer-related genes identified

through bioinformatics methods were analyzed individu-
ally, which could not reflect the carcinogenesis process
comprehensively. However, we generated a multigene sig-
nature predicting the prognosis of individual CRC pa-
tients, focusing on the ERG sets. Nevertheless, this
research also has some imperfections. First, we examined
data from public databases, so the quality could hardly be
guaranteed. Second, the study could be more valuable if
further experiments in CRC cells and animal models are
performed on these genes. Finally, most of the data we
studied were obtained from the United States or Europe.
Due to the limited origin of the data, they might not
be able to reflect all persons worldwide. Therefore, fu-
ture research is needed to validate our findings.

Fig. 6 Ten representative enriched KEGG pathways by GESA. Each group contains five KEGG pathways. GESA, gene set enrichment analysis; KEGG,
Kyoto Encyclopedia of Genes and Genomes
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Conclusions
In summary, by using 2 datasets, our research estab-
lished and validated a novel EMT-related gene signature
for the prognosis prediction of CRC patients, where

higher risk scores indicate poorer prognosis. Further
elucidating the underlying mechanisms of these genes
will provide theoretical guidance for basic research and
better evidence for future clinical decision-making.

Fig. 7 Construction of a nomogram based on the 11-EMT-related gene signature. a A nomogram based on the signature and clinical
information. b Time-dependent receiver operating characteristic (ROC) curve for predicting overall survival (OS) of the nomogram. c, d Calibration
plot evaluating the predictive accuracy of the nomogram [at 3-year survival (c) at 5-year survival (d)]. (e, f) Decision curve analysis evaluating the
clinical utility of the nomogram [at 3-year survival (e) at 5-year survival (f)]
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