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1  | INTRODUC TION

Through natural selection, species may become adapted to their en‐
vironments. Environments include interactions with other organisms, 
both within and between species. When there is evolutionary con‐
flict, that is when each party can increase its fitness at the expense 
of the other party, this process of adaptation can drive antagonistic 

co‐evolution and arms races, leading to maladaptation of one or both 
parties (Brockhurst et al., 2014; Dawkins & Krebs, 1979; Queller & 
Strassmann, 2018; Van Valen, 1973). These interactions may be im‐
portant drivers of evolution in nature (Queller & Strassmann, 2018; 
Thompson, 2013). Evidence that this is so includes rapid adaptation 
in response to new biotic foes (Reznick & Ghalambor, 2001), mo‐
lecular evolution in response to pathogens (Enard, Cai, Gwennap, & 

 

Received: 19 July 2019  |  Revised: 6 August 2019  |  Accepted: 12 August 2019
DOI: 10.1002/ece3.5625  

O R I G I N A L  R E S E A R C H

Long‐term evolutionary conflict, Sisyphean arms races, and 
power in Fisher's geometric model

Trey J. Scott  |   David C. Queller

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Department of Biology, Washington 
University in St. Louis, St. Louis, MO, USA

Correspondence
Trey J. Scott, Washington University in St. 
Louis, 1 Brookings Drive, Campus Box 1137, 
St. Louis, MO 63130‐4899, USA.
Email: tjscott@wustl.edu

Funding information
National Science Foundation, Grant/Award 
Number: IOS‐1656756

Abstract
Evolutionary conflict and arms races are important drivers of evolution in nature. 
During arms races, new abilities in one party select for counterabilities in the second 
party. This process can repeat and lead to successive fixations of novel mutations, 
without a long‐term increase in fitness. Models of co‐evolution rarely address suc‐
cessive fixations, and one of the main models that use successive fixations—Fisher's 
geometric model—does not address co‐evolution. We address this gap by expand‐
ing Fisher's geometric model to the evolution of joint phenotypes that are affected 
by two parties, such as probability of infection of a host by a pathogen. The model 
confirms important intuitions and offers some new insights. Conflict can lead to 
long‐term Sisyphean arms races, where parties continue to climb toward their fit‐
ness peaks, but are dragged back down by their opponents. This results in far more 
adaptive evolution compared to the standard geometric model. It also results in fixa‐
tion of mutations of larger effect, with the important implication that the common 
modeling assumption of small mutations will apply less often under conflict. Even 
in comparison with random abiotic change of the same magnitude, evolution under 
conflict results in greater distances from the optimum, lower fitness, and more fixa‐
tions, but surprisingly, not larger fixed mutations. We also show how asymmetries 
in selection strength, mutation size, and mutation input allow one party to win over 
another. However, winning abilities come with diminishing returns, helping to keep 
weaker parties in the game.
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Petrov, 2016; Endo, Ikeo, & Gojobori, 1996; Tiffin, 2004), and the 
many examples of arms races found in nature (Benkman, Parchman, 
Favis, & Siepielski, 2003; Berenbaum & Zangerl, 1998; Decaestecker 
et al., 2007; Edger et al., 2015; Hanifin, Brodie, & Brodie, 2008; Toju, 
2008) and evolved in the laboratory (Pal, Maciá, Oliver, Schachar, & 
Buckling, 2007; Paterson et al., 2010). This evidence supports the 
idea (Dawkins & Krebs, 1979; Van Valen, 1973) that conflicts may 
drive a great deal of adaptive evolution, though without necessarily 
leading to higher fitness.

Conflict has been analyzed in various models of co‐evolution 
(Kokko, Jennions, & Brooks, 2006; Nuismer, 2017). However, Fisher's 
(1930) geometric model is conspicuously absent from studies of co‐
evolution. This is surprising because of the geometric model's suc‐
cess as a general model of adaptation and because of its focus on 
successive fixations (Tenaillon, 2014), an essential element of many 
arms races (Daugherty & Malik, 2012; Edger et al., 2015; Marston 
et al., 2012; Woolhouse, Webster, Domingo, Charlesworth, & Levin, 
2002) that is usually left out of co‐evolutionary models (unless 
changes are assumed to be very small; e.g., Dieckmann & Law, 1996; 

Nuismer, 2017). The ability to model successive fixations should 
make the geometric model a potentially powerful tool to investigate 
how conflict can lead to arms races.

Fisher's geometric model treats an adapting population as an 
n‐dimensional vector of trait values. Somewhere in n‐dimensional 
space is an optimum where the population is most fit for all n traits. 
In an initially monomorphic population, a random mutation is intro‐
duced, typically from a Gaussian distribution, causing an additive 
shift in the trait space. This mutation can either fix or be lost, mak‐
ing the population monomorphic again. Selection favors mutations 
that move the population closer to the optimum (Figure 1a shows a 
single‐trait version of this process). By this process of successively 
fixing mutations, a population goes on an “adaptive walk,” usually 
from lower fitness to higher fitness closer to the optimum (Tenaillon, 
2014). Large populations in Fisher's geometric model move relatively 
rapidly to the optimum and stay there. With small population sizes, 
fixations of small deleterious mutations due to drift keep a popula‐
tion at a variable, but usually small, distance from the optimum (Poon 
& Otto, 2000). An important result from studies of these adaptive 

F I G U R E  1   Schematic diagrams of the three versions of Fisher's geometric model studied: standard adaptation, conflict, and a moving 
optimum. Each panel shows one or more fitness curves as a function of a trait value z and some fixations (arrows). (a) In a standard geometric 
model, parties adapt a trait z to a single stable optimum by fixing beneficial mutations. (b) In models with conflict, z represents values of 
a joint phenotype, and there are two fitness functions, corresponding to party 1 and party 2 (we arbitrarily assign party 1 the positive 
optimum value). Conflict is measured by the lag load, 1−w0, at the point of intersection for both fitness functions. Parties can fix beneficial 
mutations back and forth (arrows), with party 1 fixing 2, 4, and 5 and party 2 fixing 1 and 3 in this example. (c) Abiotic environmental change 
is modeled by shifting a single party's optimum in a random direction. In order to compare changes of equal size to the biotic conflict 
scenario, in each iteration we shift the optimal value of trait z, in a random direction, by the same amount that party 1 experiences biotic 
environmental change in the conflict simulation—that is, by the amount that antagonistic party 2 changes z (fixations 1 and 3)
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walks is that mutations are less likely to fix when a population is 
well adapted, and this is especially true for mutations of large effect 
(we will call these large mutations) because they can overshoot the 
optimum (Fisher, 1930; Orr, 1998, 2005).

To capture evolution under biotic conflict with Fisher's geomet‐
ric model, we need to consider two evolving parties instead of one. 
In order to link them, we use the concept of a joint phenotype, a trait 
that is the shared outcome of the actions of two different parties 
(Queller, 2014; Queller & Strassmann, 2018). For example, we could 
think of the probability of infection as a joint phenotype; various 
traits of the pathogen and host may interact to make the joint phe‐
notype, and evolution in either party can change the value of this 
phenotype. Other examples of joint phenotypes are the probability 
that a predator catches a prey in a given encounter and the amount 
of food a cuckoo chick gets from its host. More formally, joint phe‐
notypes are a general way to model interactions between different 
parties, where the interaction between two traits x and y is reduced 
to a single measure z = f(x, y). Thus, joint phenotypes include more 
commonly used interaction models, such as those that are deter‐
mined by the difference between traits z = x − y (Nuismer, 2017).

Joint phenotypes are often high‐level phenotypes in the sense 
that they can be affected by many lower‐level private phenotypes 
or traits, that is, traits that belong to one of the two parties. The 
joint phenotype emerges from the net effect of interactions be‐
tween lower‐level private traits. For the predator and prey, these 
private traits might include speed, agility, stealth, sensory capabili‐
ties, weapons, and defenses (with still lower‐level phenotypes con‐
tributing to each of those). The joint phenotype is the net effect—the 
probability a prey is caught by a predator. This kind of multidimen‐
sionality must be important in many arms races but is only beginning 
to be studied (Débarre, Nuismer, & Doebeli, 2014; Gilman, Nuismer, 
& Jhwueng, 2012).

Two parties experience potential conflict (Ratnieks & Reeve, 
1992) when selection is expected to pull the joint phenotype in 
opposite directions, that is, whenever the trait value lies between 
the optimal trait values for the two parties (Queller, 2014; Queller 
& Strassmann, 2018). In this region, a change in the trait in one di‐
rection usually benefits one party but harms the other. The evolu‐
tion of joint phenotypes has been explored in a quantitative genetic 
context, including derivation of a conflict version of Fisher's funda‐
mental theorem of natural selection (Queller, 2014). Adding joint 
phenotypes into Fisher's geometric model offers a straightforward 
way to model conflict evolution via fixation of successive novel mu‐
tations. Here, we examine the simplest case, a one‐dimensional (sin‐
gle trait) model of conflict in which the two parties have different 
optima. This case corresponds to the evolution of a joint trait that is 
uncorrelated with other traits.

Based on what is known about adaptive walks in the standard 
geometric model, we can make some predictions about how the 
model might behave with conflict over a joint phenotype (Queller 
& Strassmann, 2018). Both parties should fix mutations that move 
them closer to their respective optima. However, a novel feature 
is that when one party fixes a mutation, it should usually pull the 

second party away from its optimum. Returning to the example 
of host–pathogen conflict, a pathogen may evolve a new receptor 
that increases its ability to infect the host. The joint phenotype—
probability of infection—is now closer to the pathogen's optimum 
and farther from the host's. There should now be strong selection 
for the host to evolve a counter for the new receptor and move the 
probability of infection closer to its optimum. This adaptive process 
can repeat as long as there are new mutations and neither party has 
gone extinct or ceased to interact in a way that can be modeled as a 
joint phenotype.

On average, the joint phenotype should therefore lie somewhere 
between the optimal values of the two parties. In agreement with 
the Red Queen hypothesis (Van Valen, 1973), each party should 
run more or less in place just to maintain its fitness. However, they 
should not stay exactly in place; each party in an arms race should 
push the trait in a direction that increases its own fitness, but always 
be dragged back down by the other party. We call these Sisyphean 
dynamics, after Sisyphus who, in Greek mythology, was condemned 
to forever push a boulder up a hill, only to have Zeus roll it back 
down.

Because parties with conflict should be farther from their optima, 
we expect two standard outcomes of Fisher's original model under 
that condition: higher fixation probability and larger fixed mutations. 
More mutations should fix because being far from the optimum en‐
larges the space of beneficial mutations. When the population is 
close to the optimum, some large mutations in the right direction 
should be disfavored because they overshoot the optimum, but this 
should happen less when the population is far from the optimum.

We also expect that conflict may be more pernicious than a 
changing abiotic environment (Connallon & Clark, 2015; Kopp & 
Hermisson, 2009a, 2009b). Both kinds of changes can cause a mis‐
match between trait value and optimum value, but once sufficiently 
far away from the optimum, the two kinds of changes may have dif‐
ferent effects. A random abiotic change may often alter the optimum 
in a beneficial direction, up to about half the time when the change 
is small, but a change due to a conflicting party should usually be 
nonrandom in the direction away from the optimum.

Extending previous modeling (Gandon & Michalakis, 2002), we 
also explore how parties can gain an advantage during co‐evolution 
because of various asymmetries, such as population size, relative 
input and effect size of mutations, and the strength of selection (the 
dinner–life principle (Dawkins & Krebs, 1979)).

2  | METHODS

In order to illustrate the most fundamental properties of the geo‐
metric model with conflict, we study the simplest possible version of 
the model, with a single trait and with two haploid parties that differ 
in their optima for that trait. We begin with a single axis correspond‐
ing to a phenotypic trait, shared or influenced by two parties, whose 
value is represented as z. The two parties could be either different 
species or different roles within species, such as males and females.
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Fitness is assumed to be a Gaussian function of a party's distance 
from its optimum, oi, where i indexes parties to the conflict and takes 
the values 1 or 2 for a two‐party conflict:

At oi, fitness is equal to 1 for party i, but falls off in both directions. 
The shape parameter ωi determines how quickly fitness falls off 
for each party. This can be viewed as a phenomenological function 
that will not necessarily exactly match the ecologies of particular 
interacting species. But it serves to broadly represent the general 
idea of fitness optima, and it is necessary to provide compara‐
ble results that can be compared with the standard nonconflict 
Fisherian model.

Figure 1b shows fitness functions for two parties, in this case 
having the same ω. The point of intersection is interesting because 
it is the value of z at which the two parties have equal fitness, w0, 
and therefore equal reductions in fitness or lag loads, defined as 
1  − w0 (Maynard Smith, 1976). We will use this shared value of 
lag load as a convenient summary measure of degree of conflict 
(though other measures of conflict are possible). It describes how 
much each party stands to gain by moving from this point to its 
optimum (Figure 1b). By varying the lag load in the model, we ad‐
just the intensity of conflict and the distance between the optima. 
For convenience, we define the point where the fitness functions 
intersect as the origin. Solving the fitness function for z = 0 gives 
two optima, oi=±

√

− ln
(

w0

)

∕�i  showing that, for a given shape 
parameter value, increasing the shared lag load 1−w0 increases the 
distance between the optima.

We assume selection is strong relative to mutation, such that 
selection acts on a single mutation at a time. The model consists 
of steps that consist of drawing a mutation in one party and then 
determining whether the mutation will be fixed by selection. If so, 
it becomes a fixation and changes the value of the trait, affecting 
the fitness of both parties. The process is then repeated (in our ini‐
tial models by alternating mutations between parties). The model 
thus assumes a separation of timescales of mutations and selective 
sweeps between parties; only one fixation occurs at a time.

The effects of mutations in the phenotypic space are assumed 
to be unbiased and normally distributed, mi∼

(

0, �i
)

, where σi is 
the standard deviation (but see Figure 4c and Supplement for other 
distributions). Since mutation sizes are always positive, σi determines 
the average size of mutations m̄i=𝜎i

√

2∕
√

𝜋. We will vary this pa‐
rameter to compare scenarios where mutations are very small rela‐
tive to the distance to the optimum with cases where a party could 
reach its optimum with a single fixation.

In order to focus on the most basic features of conflict, we first 
examine the simplest possible case where the two partners are iden‐
tical in every respect except their fitness optima o1 and o2 before 
moving on to models with asymmetries. Thus, we initially let the 
shapes of their fitness curves be the same (ω1 = ω2 = 1/2) and also let 
the mutation distributions be the same (σ1 = σ2). We drop subscripts 
for σ and ω when both parties have the same values. The number 

of new mutations will also initially be assumed to be the same for 
each party; in that, each iteration of a simulation consists of a round 
of mutation and possible fixation (adaptation) for each party. A ran‐
domly chosen party mutates first each iteration, followed by the 
second party.

We later relax these assumptions to test whether asymmetries 
in evolutionary potential, for example in selection strength or mu‐
tational input, allow one party to win over the other. To change 
the strength of selection, we define a relative selection strength 
parameter f that increases selection on party 1 relative to party 2 
(ω1 = fω2). We manipulate the relative mutation sizes by giving party 
1 κ‐fold larger average mutation sizes than party 2 (m1 = κm2). Lastly, 
we define a relative mutational input parameter r, where party 1 will 
generate (and potentially fix) r mutations for every 1 mutation of 
party 2 (µ1  =  rµ2). This mutational input parameter would include 
effects of population size, mutation rate per generation, and number 
of generations.

To measure “winning” during conflict, we use the idea of fitness 
power (Queller & Strassmann, 2018). Fitness power for party 1 is 
defined as Pw1 = 1 − L1/(L1 + L2), where Li is the lag load (1 − w0) for 
party i. This power value ranges from 0 to 1, where values closer to 
1 mean that party 1 is winning the conflict in terms of being closer 
to its fitness maximum, a value of 0.5 means that both parties have 
equal lag loads, and power <0.5 means that party 2 is winning.

Unless stated otherwise, we assume that both parties are in very 
large populations where the effect of drift is tiny, so the probability 
of fixation is Πi=1−e−2si for positive values of si (Πi=0 for si < 0), 
where si is the selection coefficient for a new mutation (Kimura, 
1983). For smaller population sizes, Ni, the probability of fixation is 
Πi=

(

1−e−2si
)

∕
(

1−e−4Nisi
)

 for both positive and negative values of 
si (Kimura, 1983). The selection coefficient is si=wm∕wi−1, where 
wm is the fitness of a new mutation and wi is the population's current 
fitness.

For comparison, we examine a single population with one trait 
adapting to its optimum without conflict—the standard geometric 
model (Figure 1a). Our nonconflict control populations are always 
assigned the same parameter values as party 1 in the corresponding 
conflict scenario.

Each simulation consists of many iterations of the mutation and 
selection process to model an adaptive walk. When our interest is 
in equilibrium conditions, we first eliminate data from 250/ω iter‐
ations, in which simulations showed to contain the initial period of 
rapid adaptation for the standard model. After this initial adaptation 
period, we calculate average results over the next 5,000 iterations 
for 1,000 replicate simulations (for a total of 5,000,000 iterations 
for each condition simulated). We expect that conflict will result in 
populations that are often away from their optima, resulting in more 
fixations of larger phenotypic effect (which we will simply call larger 
fixations).

We also expect conflict to be more detrimental to fitness than 
simulations involving a randomly changing abiotic environment, pri‐
marily because more changes due to a conflicting party should be 
away from the optimum. To test this, we need a nonconflict control 

wi=e−�i(oi−z)
2

.
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simulation with nondirectional changes of the same magnitude as 
changes in the conflict simulation. This is complicated by the fact 
that the changes are of different types in the two scenarios. In our 
conflict model, what changes is the joint phenotype, while the op‐
timum remains the same (the pathogen's joint phenotype changes 
when hosts evolve more resistance, but its optimum is still to have a 
high probability of infection). In models of abiotic change (Connallon 
& Clark, 2015; Gordo & Campos, 2012; Matuszewski, Hermisson, 
& Kopp, 2014), the reverse is typically assumed; the environmental 
change does not alter the phenotype but does alter the optimum. 
But common currency can be found because both shift the dis‐
tance between trait and optimum along the z‐axis. Therefore, for 
each conflict simulation, we simulated a parallel single‐population 
moving‐optimum model, where the environment changes the opti‐
mum in every iteration by exactly the same amount (including no 
change) that party 1's opponent changes the joint phenotype in that 
same iteration of the conflict simulation, but in a random direction 
(Figure 1c). Thus, both conflict and abiotic change simulations in‐
volve the same magnitude of change, but we expect that the effect 
on the joint phenotype may usually be deleterious for party 1 while 
the effect on the abiotic optimum may be deleterious or beneficial.

3  | RESULTS

A sample simulation shows, in accord with prior results (Tenaillon, 
2014), that in the standard geometric model, a single party fixed many 

mutations initially and then stabilized near the optimum (Figure 2a). But 
with conflict, regardless of whether the simulation started at the ori‐
gin or elsewhere, there was no straightforward walk to a stable point. 
Instead, populations contested the value of the joint phenotype, re‐
sulting in back‐and‐forth Sisyphean movement of the joint phenotypic 
value (Figure 2a). Conflict parties constantly fixed adaptive mutations 
but the improvement was canceled out by changes due to the other 
party, as proposed by the Red Queen hypothesis (Van Valen, 1973).

We investigated how these dynamics affected fitness when av‐
eraged over 1,000 adaptive walks (Figure 2b). In the standard model, 
parties increased fitness over time and then stayed near the maxi‐
mum fitness of 1 (in finite populations, chance fixation of deleteri‐
ous mutations could allow small movements away from the optimum 
(Poon & Otto, 2000)). In contrast, parties with conflict were far from 
the maximum fitness. We also show the fitness trajectory for a party 
adapting to random abiotic change that is equal to the magnitude of 
change due to fixations from an antagonistic partner. This example 
showed more rapid adaptation and maintenance of higher fitness 
under abiotic change than under conflict.

To better understand how conflict affects long‐term evolution, 
we compared the equilibrium properties, after the initial period of 
rapid adaptation, of replicate conflict and nonconflict simulations for 
different combinations of parameters.

In contrast to parties under the standard model, which es‐
sentially went to their optimum values (Figure 3a, yellow), parties 
with conflict (blue) and abiotic change (pink) were generally away 
from their optima though, as predicted, parties adapting to abiotic 

F I G U R E  2   The effect of conflict on 
adaptive walks and fitness trajectories. 
(a) Three adaptive walks of mutations 
fixed with and without conflict. We 
include a standard model that adapts 
to a single optimum and models with 
conflict that begin at either the origin or 
at party 1's optimum. Horizontal dashed 
lines indicate the optimal phenotypes of 
the two parties. (b) Fitness trajectories 
based on averaged fitness from 1,000 
simulated adaptive walks of each type. For 
all simulations, both parties had conflict 
intensity values of 0.2, average mutation 
sizes of 0.1, a fitness function shape 
parameter of 1/2, and infinite populations
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change approached their optima more than conflicting parties. 
Fitness is essentially maximized for standard adaptation parties 
without conflict after the period of rapid adaptation, but, as ex‐
pected, parties with conflict have decreased fitness relative to 
standard adaptation (Figure 3b). Parties with conflict were largely 
stuck near their intersection fitness values defined by the lag load. 
Abiotic change also resulted in reduced average fitness but, as we 
predicted, to a lesser intensity than conflict. This difference was 
greatest when movement away from the optimum is strongest 
(high conflict) and movement toward it is weakest (low mutation 
size).

In standard adaptation simulations, few mutations were fixed 
(after the period of initial adaptation) because the party was close 
to, or at, the optimum value. Conflicting parties fixed more muta‐
tions, especially with larger mutation sizes (Figure 3c). Similarly, 
increased conflict resulted in more fixations. Abiotic change simula‐
tions showed a similar pattern to conflict simulations, but with fewer 
overall fixations.

The average phenotypic effect of fixation (fixation size for short) 
was larger under conflict and abiotic change compared to fixations 
from standard adaptation (Figure 3d), an effect previously shown for 
abiotic change (Kopp & Hermisson, 2009a, 2009b). This is expected 
because being away from the optimum decreases the likelihood that 
large mutations will overshoot the optimum. However, under this 
logic one would expect that the conflict case would fix larger mu‐
tations than the abiotic one and, interestingly, this is not the case 
(Figure 3d).

Up to this point, we have assumed that mutations are normally 
distributed and that the shape parameter, ω, is 1/2. We investigated 
whether our results were robust to changes in these assumptions 
(see online supplement; Figures S1–S4). Setting the mutation distri‐
bution to be either uniform or exponential did not notably impact 
our results (Figures S1 and S2). Similarly, normal fitness functions 
that are fourfold narrower (ω = 2) or wider (ω = 1/8), respectively, 
gave qualitatively similar results to those when ω is 1/2 (Figures S3 
and S4). This is unsurprising since changing the strength of selection 
is equivalent to changing the sizes of mutations.

We also investigated whether asymmetries in factors affect‐
ing adaptive potential allow one party to win the conflict using the 
measure of fitness power defined earlier (see Methods). One fac‐
tor that considerably affected power was the relative selection 
strength, f. When party 1 is under stronger selection (f > 1), it also 
had greater power though with diminishing returns for larger values 
of f (Figure 4a). There was an interaction with mutation size, where 
power tended to decrease with larger average mutation size, espe‐
cially when selection strength (ω) was high (Figure 4a). Large mu‐
tations in the party close to its optimum often overshoot, whereas 
for the losing party they offer a chance to get close to its optimum 
quickly.

Power was greater when a party had a higher mutational input, 
which can be due to this greater population size, mutation rate per 
generation, or number of generations. When party 1 generated 
more mutations for every mutation of party 2, the fitness power for 
party 1 was higher (Figure 4b). This effect leveled off with increasing 

F I G U R E  3   Equilibrium properties 
of the geometric model under varying 
average mutation sizes (normally 
distributed) and conflict intensities 
(measured as lag load at the origin where 
the fitness functions intersect (1−w0) from 
fitness functions with a shape parameter 
of 1/2). Colors indicate the version of the 
geometric model: standard adaptation 
(yellow), conflict (blue), and abiotic change 
(pink). (a) Mean distance to the optimum. 
(b) Mean fitness during equilibrium. 
(c) Percent of mutations that are fixed 
during equilibrium. (d) Effect size of fixed 
mutations. Means of the independent 
variables are calculated based on data 
collected from iteration 500–5,500 from 
1,000 replicate simulations with infinite 
populations. Vertices show actual mean 
values from simulations
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mutation rate and was largely independent of mutation size and ω. In 
our model, the mutational input was controlled by a single parame‐
ter, but in real populations, it could differ through a difference either 
in mutation rates or in population sizes so our result indicates that 
either of these can increase power.

A distinct effect of population size, the effect of drift on fixation, 
was tested separately in our model. Given the same total mutational 
input, larger populations should fix more beneficial mutations and 
fewer deleterious ones. However, this resulted in only a slight increase 
in power even when one population is very small (N = 10; Figure S5).

Higher relative selection strength and higher relative mutational 
input always gave party 1 higher power (>0.5) under the parameter 
values we explored, and so did higher relative mutation size in most, 
but not all, parameter combinations. Increasing the relative mutation 
size for party 1 when party 2 generated small mutations resulted 
in higher power for party 1 (Figure 4c). However, increasing party 
1's relative mutation size when party 2 generated large mutations 
resulted in lower power because of the increased tendency to over‐
shoot the optimum. At the most extreme values, this reduction in 
power actually results in party 2 winning the conflict as shown by 
power values below 0.5.

Winning and losing parties tended to fix different amounts and 
sizes of mutations as a result of being closer or farther from the op‐
timum (Figure 4d). Winning parties tend to fix fewer and smaller mu‐
tations, moving close to the nonconflict case (Figures S6–S8), while 
losing parties tend to fix more and larger mutations (Figures S9–S11).

Finally, we note that asymmetries did not alter our qualitative con‐
clusions (Figure 3) about differences from abiotic change or the stan‐
dard model. When party 1 is given higher or lower selection strength 
(Figures S6 and S9), mutation size (Figures S7 and S10), or mutational 
input (Figures S8 and S10), it still has larger distances to the optimum, 
lower fitness, more fixations, and larger fixations than parties with 
the same parameters under abiotic change and standard adaptation.

4  | DISCUSSION

One cannot fully understand adaptation without also understanding 
maladaptation. Previous modifications of the geometric model al‐
lowed it to model maladaptation due to factors such as genetic drift 
and environmental changes to optima (Kopp & Hermisson, 2009a; 
Poon & Otto, 2000). But it remained largely silent about what may 
be the major source of maladaptation, evolutionary conflict between 
organisms (Queller & Strassmann, 2018). By introducing joint pheno‐
types into Fisher's geometric model, we have expanded a powerful 
model of long‐term adaptation by successive fixations to the study 
of conflict and arms races, where such successive fixations are likely 
to be especially important. This approach erases a major shortcom‐
ing of the geometric model and brings the power of the geometric 
model to bear on co‐evolution.

Our results confirm the longstanding view that conflict and 
a succession of de novo mutations can engender long‐term arms 
races (Dawkins & Krebs, 1979). Whereas the standard model rapidly 

approaches its optimum and largely stops evolving, both parties 
under conflict are held off their optima (Figure 3a), suffer decreased 
fitness (Figure 3b), and consequently continue to fix numerous mu‐
tations (Figure 3c). This running rapidly to stay in the same place is 
what is expected under the Red Queen hypothesis (Van Valen, 1973) 
with the qualification that the “same place” is a long‐term average of 
Sisyphean advances and rollbacks.

Another interesting result from this work is that conflict has more 
severe effects on average fitness than does a randomly changing 
abiotic environment, when the changes are forced to be of the same 
magnitude (Figure 3b). This is largely because abiotic changes are 
modeled as changing the optimum in a random direction, whereas 
environmental change in the form of evolution of an opposing party 
naturally tends to change the joint trait in a malevolent direction. 
Our model allows abiotic change to extend indefinitely. However, in 
nature, abiotic changes may often vary around, and tend to return 
to, some central value. This would tend to reduce abiotic maladap‐
tation, making the difference from biotic factors even starker than 
in our simulations. This supports the intuitive idea that conflict is a 
distinctly detrimental type of interaction that plays a powerful se‐
lective role, although the model cannot address whether abiotic or 
biotic changes in nature are larger in magnitude.

Some of these results are intuitive extensions of the standard 
model with the modification that the population is kept off its op‐
timum (Queller & Strassmann, 2018). However, most of the results 
also show less‐than‐obvious nonlinear interactions among the vari‐
ables. The most surprising concerns the size of fixations (Figure 3d). 
Being farther from the optimum should allow fixation of larger mu‐
tations to be fixed, and we see that is true for both the conflict and 
abiotic models relative to the standard model. But parties in conflict 
and parties adapting to abiotic change fix roughly the same sizes of 
mutations, despite parties with conflict being farther from the opti‐
mum. The reason appears to lie in the relationship between mutation 
size, conflict, and distance to the optimum (Figure 3a). When con‐
flict is low, distance to the optimum is always low in both biotic and 
abiotic simulations, so there is no major difference in fixation size. 
If conflict is high (back right face of Figure 3a), distances to the opti‐
mum are larger, but in an interesting way. When mutation sizes are 
small, then a conflict party stays at substantially greater distances 
from the optimum than a party adapting to abiotic change. That 
would appear to open the door for larger fixations for the conflict 
case, but it does not because mutation sizes are too small—there are 
very few mutations large enough to fix in the conflict case but not 
in the abiotic. On the other hand, if mutation sizes are large relative 
to conflict, then the distances from the optimum are not so different 
for the conflict and abiotic cases and so fixation sizes are also not 
too different.

We also found both familiar and novel results when investigating 
how asymmetries during conflict can allow one party to win. First, 
by varying the fitness functions between parties, we were able to 
investigate whether stronger selection can favor one party over 
another. This could include the life–dinner principle, in which one 
party pays more dearly for losing (Dawkins & Krebs, 1979), and the 
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rare‐enemy effect, in which individuals of one party experience the 
other less often (Dawkins, 1982). We find that a party with stronger 
selection does have higher fitness power, but that this effect is di‐
minished with larger mutation sizes (Figure 4a). Stronger selection 
means a more narrow fitness function, which increases the proba‐
bility that large mutations will overshoot. Thus, when mutations are 
large, stronger selection can be a disadvantage. However, our model 
does not include the possibility that strong selection could drive a 
population extinct.

Differences in mutational input—which could arise through dif‐
ferences in mutation rate, population size, or generation times—
are an important parameter for winning an arms race (Figure 4b). 
Mutation rates have been shown to be important for winning in 
matching allele models (Gandon & Michalakis, 2002) and in experi‐
ments with bacteria (Pal et al., 2007). Our results broaden that con‐
clusion to the case where all evolutionary change is due to de novo 
mutations, which is more likely in bacteria.

Larger populations have also been shown to be advantageous 
(Gandon & Michalakis, 2002). Our results show that this is true to 

the extent they increase mutational input, but the other potential 
advantage—of weaker drift—is generally very small (Figure S5).

Mutations play another role in determining the winner of an 
arms race through the sizes of mutations available to a party. We 
found that larger relative mutations increase power as long as muta‐
tions are not so large that they consistently overshoot the optimum 
(Figure 4c). This result suggests that larger mutational neighbor‐
hoods and increased “evolvability” may be advantageous during 
conflict, provided they do not increase the chances of overshooting 
the optimum.

Interestingly, none of our results show one party winning abso‐
lutely. Instead, increases in power tend to saturate with increases 
in selection, mutational input, drift, and mutation size (Figure 4a–c). 
This appears to be a result of the adaptive process described by the 
geometric model. The more power a party has, the more it will ap‐
proach its optimum and decrease its pool of beneficial mutations. 
Because the second party is farther from its optimum, its pool of 
mutations will increase, leading to larger and more frequent fixations 

F I G U R E  4   Fitness power is usually greater for the party with higher selection strength, mutational input, or mutation size. Fitness power 
was calculated according to Pw1 = 1 − L1/(L1 + L2), where Li is the average lag load for party i. Intensity of conflict was 0.2, and population 
sizes were infinite for all simulations. (a) Fitness power for party 1 when ω1 = 2 (black), 1/2 (gray), or 1/8 (light gray) and ω2 = ω1/f, where f 
is the relative selection strength. Each party has one mutation per iteration. (b) Fitness power for party 1, where party 1 generates r times 
more mutations than party 2. Colors correspond to the same ω1 values as shown in A, but ω is the same for both populations. (c) Fitness 
power for party 1 when m1 = κm2, where κ is the relative mutation size. Each party has one mutation per iteration. Results are shown for 
different values of ω. The average mutation axis shows the average mutation size for party 2 (m2). (d) Percent of mutations that are fixed for 
party 1 (blue) and party 2 (green) with varying relative mutation inputs and mutation sizes. Average power is calculated from 5,000 iterations 
as outlined in the text. Vertices show actual mean values from simulations
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(Figure 4d, Figures S6–S11). This means that adaptation saturates for 
the winning party.

A similar dynamic works when two factors increase power; 
if party 1 has a greater evolutionary potential from one factor, it 
usually gets less added benefit from another factor. For example, 
when party 1 has greater potential in terms of selection strength 
(Figure 4a, right axis) and then mutation size is increased equally for 
both parties (Figure 4a, left axis), party 1's advantage is diminished 
(it still wins, but not by as much). Because party 1 is closer to its 
optimum owing to greater selection strength, it has less room to im‐
prove and is less able than its partner to take advantage of the equal 
increase in mutation sizes.

This saturation of power for the stronger party reflects a force 
that tends to keep weaker parties in the game. But this is not abso‐
lute. Fisher's model does not include population dynamics and the 
possibility that a strong partner will drive its antagonist to extinc‐
tion. More explicit eco‐evolutionary models would be needed to ad‐
dress this question.

Arms races and Red Queen evolution have been classified into 
three types: fluctuating, escalatory, and chase (Brockhurst et al., 
2014). The first three columns of Table 1 list some of their character‐
istics, modified from Brockhurst et al. (2014), and the fourth column 
lists the characteristics of the kind of arms race we have modeled. 
We call the new arms race Sisyphean, to emphasize the constant 
pushing of the trait uphill only to have it roll back.

The key differences in Sisyphean arms races are in the kind of 
trait evolving and in the timescale on which evolution is followed. 
Sisyphean arms races are best understood through joint phenotypes 
where two parties have different optimal values, as opposed to the 
separate private traits each with a single optimum in more tradi‐
tional co‐evolutionary models. This joint phenotype is a general way 
to conceptualize conflict that does not require specification of the 

private traits (Queller & Strassmann, 2018). The trait interaction is 
based on a tug‐of‐war over the joint phenotype. The tug‐of‐war met‐
aphor has often been used for more specific cases, for example, over 
the joint phenotype of offspring provisioning (Haig, 1993; Moore 
& Haig, 1991) or use of group resources for reproduction (Reeve, 
Emlen, & Keller, 1998; Shen & Kern Reeve, 2010). The joint pheno‐
type is the object of the tug‐of‐war, and in Sisyphean arms races, 
the tug‐of‐war occurs over long timescales via successive fixations. 
We can thus differentiate arms races on the short end of the contin‐
uum, like fluctuating arms races with recurring changes in frequen‐
cies of the same set of genes, from Sisyphean arms races, where 
change happens on longer timescales and is mediated by successive 
fixations of different genes resulting in fluctuating joint phenotype 
values.

The boundaries among the types of arms race in Table 1 are not 
always clear‐cut. In fact, sometimes other arms races, which con‐
sider only private traits, could rescale into Sisyphean arms races 
when we consider the joint phenotype over long periods of time. 
For example, an escalatory arms race between seed hardness and 
beak strength of a bird is also a Sisyphean arms race over the prob‐
ability that the seed gets eaten. Likewise, the individual color and 
pattern traits of a butterfly mimic may evolutionarily chase those 
of its model, but this is also a Sisyphean arms race over the ab‐
stract joint trait of degree of similarity, with the mimic having an 
optimum at high similarity and the model having an optimum at 
very low similarity (although our particular model may need to be 
adjusted because it assumes fitness falloffs on both sides of the 
optimum).

Biologically, complex Sisyphean arms races are more likely to 
entail long‐term persistent antagonistic evolution. Strong selec‐
tion on a single trait, like cheetah speed, might ultimately deplete 
it of possible beneficial mutations, but this is less likely for a joint 

TA B L E  1   Types of arms races

Trait dynamics Fluctuating Escalatory Chase Sisyphean

Possible example Daphnia and their pathogensa Garter snakes and toxic 
newtsb

Crossbills and lodgepole 
pinec

Cuckoos and their 
hostsd

Genetic architecture of 
traits

Few major loci Polygenic or quantitative 
trait

Polygenic or quantitative 
trait

Successive single‐
gene fixations

Basis of trait interaction Matching to partner's trait Excess over partner's trait Matching to partner's trait Tug‐of‐war over joint 
trait*

Selection mode Fluctuating Directional 
(unidimensional)

Directional 
(multidimensional)

Directional 
(multidimensional)

Allele frequency 
dynamics

Oscillations Selective sweeps Selective sweeps Selective sweeps

Adaptive landscape Multiple fitness optima Fixed fitness optimum Shifting fitness optimum One fixed fitness 
optimum for each 
party

Note: Adapted and expanded from Brockhurst et al., 2014.
aDecaestecker et al. (2007). 
bHanifin et al. (2008). 
cBenkman et al. (2003). 
dFor more examples, see Queller and Strassmann (2018). 
*Same as joint phenotype in this paper; “trait” is used here for consistency with other entries. 
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trait with many subtraits. Moreover, the interactions of these sub‐
traits might lead to reversals in individual traits. If gazelles evolve 
greater agility, cheetahs might have to respond with more agility 
at the expense of speed, enriching the potential for more speed 
evolution in the future. Such trait interactions may lead to com‐
plex paths through phenotype space as in evolutionary chase arms 
races (Brockhurst et al., 2014). Our geometric model does not cur‐
rently capture all of these processes and other kinds of models 
might be required to address them explicitly, but it does at least 
point to their importance. Mathematically joining or reconciling 
joint‐phenotype and separate‐phenotype models is an interesting 
topic for the future.

There are also other questions that could be explored by combin‐
ing Fisher's geometric model with the joint phenotype concept. An 
obvious extension is to include correlated nonconflict traits to un‐
derstand how conflict influences pleiotropic effects on other traits 
and the cost of complexity (Orr, 2000). We might expect evolution 
due to conflict to keep nonconflict traits from their optima because 
of pleiotropy, and as a result increase the rate of evolution of non‐
conflict traits.

The results here are therefore just a first step toward using 
the geometric model to understand conflict and arms races. But 
they show that Fisher's geometric model is capable of incorpo‐
rating conflict and describing some of the major features long 
thought to be important in arms races and also generating more 
novel insights.
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