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The human intestine contains a complex network of innate and adaptive immune cells that
provide protective immunity. The dysfunction of this network may cause various chronic
diseases. A large number of T cells in the human intestine have been identified as tissue-
resident memory T cells (TRM). TRM are present in the peripheral tissues, and they do not
recirculate through the blood. It is known that TRM provide rapid immune responses at the
frontline of pathogen invasion. Recent evidence also suggests that these cells play a role in
tumor surveillance and the pathogenesis of autoimmune diseases. In this review, we
discuss the general features of intestinal TRM together with their role in intestinal infection,
colorectal cancer (CRC), and inflammatory bowel disease (IBD).

Keywords: autoimmune disease, colorectal carcinoma, human intestine, inflammatory bowel disease, memory
T cells
INTRODUCTION

The intestinal mucosa is predominantly exposed to environmental antigens, such as food,
innocuous microbes, and enteric pathogens. A complex network of innate and adaptive immune
cells in the intestine mediates the protective immune responses against harmful pathogens and
immune unresponsiveness to benign antigens. Among these immune cells, memory T cells provide
effective and efficient immune responses to antigens previously encountered (1).

Memory T cells were primarily divided into two subsets: central memory T cells (TCM) and
effector memory T cells (TEM) (2). TCM express high levels of secondary lymphoid organ homing
receptors CCR7 and CD62L and recirculate between the blood and secondary lymphoid organs (3).
On the other hand, TEM express integrins and chemokine receptors and circulate through the non-
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lymphoid tissues (4). With advances in technology, another
lineage of memory T cells called tissue resident-memory T
cells (TRM) (5) has been identified. Unlike TCM and TEM, TRM

are permanently retained in the peripheral tissues and do not
recirculate via the bloodstream. Apart from the location and
migration patterns, they mediate local immune response to
reencountered pathogens (5). In fact, most memory T cells in
the intestinal mucosa possess a resident nature with distinct
phenotypes and transcriptional profiles (6–8), implicating the
significance of TRM in intestinal immunity.

Several studies focused on the intestinal immune system have
explored the potential roles of TRM in pathogen defense (9),
cancer immunosurveillance (10), and immunopathies (11).
Understanding how TRM function in intestinal immunity is
vital for developing novel therapies and vaccines targeting
TRM. Thus, this review aims to summarize the features of
intestinal TRM and their role in intestinal health and disease.
TRM IN THE INTESTINE

Intestinal TRM are phenotypically different from TEM. CD69 and
CD103 are the two key cell surface markers identified for TRM (12,
13). Lectin CD69, a marker for early T cell activation, is
reexpressed in the intestinal TRM, and it can be used to
distinguish TRM from their circulating counterparts (7). CD69
can promote T cell retention by downregulating the expression of
the sphingosine-1-phosphate receptor 1 (S1PR1) protein and
interacting with the transmembrane domains of the S1PR1 to
suppress its function, subsequently preventing the T cells from
sensing the sphingosine-1-phosphate (S1P) gradient and exiting
from the gut (14–17). However, according to a recent report, the
elevated CD69 expression may only serve as a passive marker
rather than an essential functional regulator in driving TRM cell
formation in the gut (18). Another marker for TRM, CD103 (aE
integrin), is expressed by most CD8+ cells and few CD4+ cells in
the intestine (7, 12, 13, 19, 20). The aEb7 integrin binds to E-
cadherin expressed on the intestinal epithelial cells, promoting
TRM retention in the epithelium (21–23). However, the absence of
CD103 does not rule out long-term maintenance of T cells in the
intestine. Evidence showed that a small population of
CD8+CD69+CD103- T cells displayed persistence in the human
intestine transplantation model for more than one year (12, 24).
The immune repertoire of CD8+CD69+CD103- T cells showed low
clonal overlap with the CD8+CD103+ subset and was rather
similar to T cells from peripheral blood in terms of phenotype
and function (12, 24). Therefore, it can be speculated that the
CD8+CD103- TRM subset represents an intermediate state between
recently recruited T cells and CD8+CD103+ TRM. Interestingly,
CD8+CD103- TRM express high levels of b2-integrin, but whether
it plays a role in CD8+CD103- TRM differentiation remains unclear
(24). Furthermore, a fraction of CD8+CD103- TRM express
KLRG1, another ligation of E-cadherin (12, 24, 25). The
comparison of CD103+ TRM and CD103- TRM is summarized in
Table 1. For CD4+ TRM and CD8+ TRM, the phenotypical and
functional differences between their CD103+ and CD103- subsets
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are similar (24). In addition to CD69 and CD103, other molecules
have been described as potential phenotypical markers of
intestinal TRM, including CD49a (integrin a1 chain) (8, 12, 13),
CD101 (8) and CD161 (13, 24, 28).

TRM have a distinct pattern of transcription factor expression
that coordinates TRM development and survival. Hobit and
Blimp-1 have been identified as two key transcription factors
expressed in mice TRM (29). Hobit and Blimp-1 work in synergy
to repress genes required for tissue egress by binding to the
S1pr1, Tcf7, and Ccr7 loci (29). Additionally, Blimp-1 alone
downregulates the expression of KLF2 and subsequently S1PR1
(29). Runx3 plays a primary role in CD8+ TRM differentiation by
enhancing the expression of core residency signature and
repressing the expression of signature genes of TCM (30, 31).
Downregulation of T-box transcription factor Eomes and T-bet
is also necessary for early-stage TRM differentiation (32, 33).
Recent studies have found that effector-like and memory-like
CD8+ TRM subsets can be distinguished by differential expression
of two transcriptional factors Blimp-1 and Id3. It was shown that
Blimp-1hiId3loCD8+ TRM displayed an effector gene signature
and dominated the early phase of infections, whereas Blimp-
1loId3hiCD8+ TRM exhibited enhanced memory potential and
accumulated at the late stage of infections (34).

The differentiation and maintenance of intestinal TRM are
highly regulated by the local microenvironment of the gut (26,
35). Upon antigen encounter, naïve CD8 T cells become
activated and differentiate into short-lived effector cells (SLEC)
and memory precursor cells (MPEC) (36). Early adoptive
transfer experiments in mice identified the MPEC with low
KLRG1 expression as the precursors of TRM (21). However, a
fate-mapping study on KLRG1 reporter mice revealed that more
than half of the TRM population in the small intestine of mice
originate from the effector T cell population previously
expressing KLRG1 (37). In addition, CD103- TRM within the
intraepithelial (IE) preferentially developed from T cells that
transiently expressed KLRG1 rather than those that never
express KLRG1 (37). The expression of KLRG1 may be
downregulated by the cytokine transforming growth factor b
(TGF-b) and T cell receptor (TCR) triggering in the intestine
(38). TGF-b plays a vital role in the development of the intestinal
TRM (39). TGF-b selectively accelerates the apoptosis of SLEC in
the intestine, thus contributing to the rapid MPEC phenotype
formation (26). TGF-b also downregulates KLF2 expression and
subsequently downregulates the expression of S1PR1 expression
(40). Additionally, TGF-b upregulates the expression of CD103
directly through Smad3 and indirectly through counteracting
suppression of CD103 expression mediated by Eomes, T-bet, and
TCF1 (26, 32, 41). IL-12 and TNF-b produced by inflammatory
monocytes can suppress the TGF-b-induced CD103 expression,
leading to the formation of CD103- TRM cells in the lamina
propria (LP) with different transcriptional profiles (27). When
exposed to extracellular ATP, the purinergic receptor P2RX7 can
promote TGF-b receptor expression in CD8+ TRM precursor,
suggesting the importance of P2RX7 in TRM generation (42).
Recently, Peng et al. found that local ICOS signaling also
promotes the generation of intestinal TRM by activating the
May 2022 | Volume 13 | Article 912393
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PI3K pathway and downregulating KLF2 expression (43). While
the maintenance of TCM and TEM depends on the presence of
IL-15, IL-15 is not necessary for TRM retention (44).
TRM AND PROTECTION
AGAINST PATHOGEN

Numerous studies have revealed that the intestinal CD4+ and
CD8+ TRM can be generated by intravenous or oral infections
and provide enhanced regional immunity (19, 20, 26). In mice,
CD4+ and CD8+ TRM have been shown to provide strong
Frontiers in Immunology | www.frontiersin.org 3
protection against oral infection with Listeria monocytogenes
(19, 26). In humans, attenuated oral typhoid vaccine can elicit
activated CD4+ and CD8+ TRM response (45, 46). Here, we
review the two possible mechanisms by which the intestinal TRM

protect against pathogens rapidly and efficiently upon
reinfection (Figure 1).

First, TRM upregulate the production of proinflammatory
cytokines, serving as an alarm for both innate and adaptive
immune responses. Previous experiments have demonstrated the
robust cytokine polyfunctionality of certain pathogen-specific CD4+

and CD8+ TRM that produce high levels of interferon-g (IFN-g),
IL-2, and tumor necrosis factor-a (TNF-a) (20, 47). The functions
FIGURE 1 | The expansion of the TRM population and their protective function during infection. Effector T cells expressing KLRG or not are recruited into intestinal
mucosa and differentiate into TRM. The differentiation of TRM depends on the microenvironment of the intestine, especially TGF-b. Upon reinfection, pre-existing TRM
undergo local proliferation and dominate efficient recall responses. A fraction of TRM may rejoin the circulation with the preference of migrating back and the potential
of re-differentiating into TRM. TRM release proinflammatory cytokines such as IFN-g, IL-2, and TNF-a, thus activating natural killer (NK) cells and dendritic cells (DC), as
well as recruiting other immune cells through upregulation of the vascular cell adhesion molecule-1 (VCAM-1) on the endothelial cells. In addition, TRM can directly
lyse the infected cells by producing high levels of granzyme B and perforin. TRM, tissue-resident memory T cells; KLRG, killer cell lectin-like receptor G1; TGF,
transforming growth factor; IFN, interferon; IL, Interleukin; TNF, tumor necrosis factor; NK, natural killer; DC, dendritic cells; VCAM, vascular cell adhesion molecule.
TABLE 1 | Comparison of CD103+ TRM and CD103- TRM.

CD103+ TRM CD103- TRM Reference

Location More in the IE More in the LP (12, 13)
Cytokine involved TGF-b IL-12 and TNF-b (26, 27)
KLRG expression None Subset (24, 25)
Cytotoxic Less More, especially the KLRG+

subset
(12, 25)

Cytokine release More
polyfunctional

Less polyfunctional (24)

TCR
restimulation

More responsive Less responsive (25)
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of TRM primarily rely on the cytokines they secrete. Upon cognate
peptide rechallenge, the released IFN-g induces the expression of
various antiviral and antibacterial genes in the surrounding cells to
limit the initial pathogen invasion (48, 49). Furthermore, TRM-
induced IFN-g is required for the rapid recruitment of the
circulating B and memory T cells via vascular cell adhesion
molecule-1 (VCAM-1) upregulation on the endothelial cells (50).
IL-2 stimulates granzyme B expression in the natural killer cells and
the bystander memory T cells. The proinflammatory cytokine TNF-
a facilitates the maturation of dendritic cells by upregulating CCR7
and other co-stimulatory molecules (49). Comparing subsets of
intestinal TRM, LP CD8+CD103+ TRM are more polyfunctional in
cytokine production than LP CD8+CD103- TRM and IE
CD8+CD103+ TRM (12, 25). For LP CD4+ TRM, both CD103+

and CD103- subsets are very potent producers of cytokines IFN-g,
IL-2, and TNF-a (13).

Second, some TRM exhibit direct effector function. A fraction of
intestinal TRM can directly lyse the infected cells by expressing high
levels of cytotoxic granules such as granzyme B at an early stage (23,
51). This effector-like phenotype of the intestinal TRM mainly
depends on the cytokine mil ieu of the intes t ina l
microenvironment rather than the persistent antigen stimulation
(23). Interestingly, it was found that the expression of cytotoxic
granules is quite similar between CD4+ and CD8+ TRM (19).
CD8+CD103- TRM, especially those still expressing KLRG1,
exhibit high cytotoxic and proliferative potentials (12, 25). As
mentioned above, they may represent TRM populations recently
recruited and maintained in the intestinal mucosa. Previous studies
using two-photon laser scanning microscopy have shown restricted
motility of the intestinal TRM (52). They may stay at the sites of
previous infections to surveil potential recurring pathogens. The
actual contribution of the effector functions in immunologic
protection mediated by the intestinal TRM needs further evaluation.

As shown in the mouse infection model, intestinal TRM undergo
proliferation in situ in response to antigen rechallenging (Figure 1)
(19, 53). Two recent studies have demonstrated that reactivated
TCM maintain the potential to form CD103- TRM and few CD103+

TRM, but the efficiency of reactivated TCM is extremely lower than
naïve T cells (53, 54). Under steady-state conditions, the intestinal
TRM populations are maintained mainly by longevity rather than
local proliferation (12).

Recent evidence suggested that intestinal TRM are not terminally
differentiated as previously thought (Figure 1) (54). After pathogen
rechallenge, intestinal TRM are able to egress from the intestine and
differentiate into circulating memory T cells. And some “ex-TRM”
can migrate to the draining lymph nodes and give rise to the local
TRM (54–56). Such a process may be initiated by the antigen-driven
downregulation of Hobit expression (56). In addition, “ex-TRM” that
re-joined the circulating pool are advantaged to migrate back and
re-differentiated into intestinal TRM (54). A TRM differentiation
program is epigenetically maintained for those cells despite their
developmental plasticity (54, 55). The differentiation potential of
TRM enables them to shape systemic T cell responses after
reinfection (56).

In general, the intestinal TRM can exert protective functions
locally by expressing proinflammatory cytokine and cytolytic
Frontiers in Immunology | www.frontiersin.org 4
granules. Based on these findings, developing vaccines that
induce TRM to combat recurrent infections may be a promising
strategy to enhance immunological protection.
TRM AND COLORECTAL CANCER

CD8+ T cells contribute to the immunosurveillance against cancer,
and their protective effects are highly correlated to their ability to
enter and survive in the immunosuppressive microenvironment of
the tumor compartments (10). Therefore, TRM present within the
tumor may be critical for controlling tumor growth. Recent
reports have recognized the immunosurveillance function and
prognostic significance of TRM in CRC.

Over a decade ago, large numbers of CD103+CD8+ tumor-
infi ltrating lymphocytes (TIL) were observed in the
microsatellite instability (MSI) sporadic CRC (57). Further
investigations suggested that these TRM-like TIL may be
divided into two subsets based on the expression of CD39
(58). CD39, an ectonucleotidase that hydrolyzes ATP and ADP,
marks CD8 T cells for chronic antigen stimulation. The
expression level of CD39 in the TIL varies significantly in the
CRC patients and is remarkably high in patients with high MSI
(59). CD39+CD103+ TIL are enriched for tumor antigen-
specific T cells which may contribute to the control of tumor
growth. In comparison, CD39-CD103+ TIL recognize cancer-
unrelated epitopes and are named “bystander” T cells (59, 60).
When activated in vitro, the CD8+CD39+CD103+ TIL are
highly capable of killing the tumor cells in an MHC-
dependent manner (59). One possible explanation is that the
interaction between the CD103 on the TIL and E-cadherin on
the tumor cells induces the polarization and exocytosis of
cytotoxic granules at the immune synapse. As a result, the
effector function of the tumor-resident memory T cells is
enhanced (61). Consistent with that, a co-culture system of
intestinal tumor organoids and T cells showed the significance
of CD103/E-cadherin signals for antitumor immune response
(62). However, whether intestinal TRM are able to suppress
tumors in vivo by target cell killing has not been validated. In
addition to direct cell killing, intestinal TRM may suppress
tumor cell growth by secreting cytokine TNF-a and IFN-g
(63, 64). Current studies also confirmed that infiltration of
CD103+CD8+ TIL is an independent predictor of survival for
patients with CRC (65).

CD39+CD103+ TIL promote the gene transcription of typical
markers related to exhaustion and immunomodulation (PD-1,
CTLA-4, and TIM-3) (59), which implies a possible immune
escape mechanism of tumor cells. Such TRM-like TIL are an
appealing target of immune checkpoint inhibitor (ICI) therapy
due to their expression of immunomodulatory markers and
proliferative potential (58, 59, 66). In fact, CD103 expression
highly correlates with clinical response to anti-PD-L1
immunotherapy in patients with lung and bladder cancer (67).
A recent study also identified IFN-g-producing CD8+ TRM as a
potential therapeutic target of ICI–colitis (68). It was found that
most activated T cells in ICI-colitis co-express CD69 and CD103
May 2022 | Volume 13 | Article 912393
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(68). Moreover, the proportion of activated CD8+ TRM in
intestinal mucosa is highly correlated with clinical and
endoscopic scores of ICI-colitis (68).

Taken together, TRM contribute to the tumor immunosurveillance
in the intestinal mucosa and act as a prominent target of ICI therapy
and ICI-colitis. A more comprehensive understanding of the
identification, regulation, and function of TRM-like TIL is required
for improving current cancer treatment.
TRM AND INFLAMMATORY
BOWEL DISEASE

IBD, including Crohn’s disease (CD) and ulcerative colitis (UC),
is a chronic inflammatory disease of the intestinal tract
characterized by local relapsing flares (69). The pathogenesis of
IBD involves abnormal immune responses against intestinal
microbiome (70). Some properties of TRM suggest that they
may be the key player in the onset and relapse of IBD. TRM

possess the capacity to secrete pro-inflammatory cytokine and
recruit other leukocytes. Also, TRM in the intestine mucosa are
confined to certain regions with limited ability to migrate, which
may explain the localized pattern of flares seen in IBD (52).

Recent evidence suggests that CD4+ TRM may serve as a driver
for IBD (71). Zundler et al. reported that knockout of Hobit and
Blimp-1, the two core transcriptional factors of TRM, prevented the
development of colitis in several experimental mouse models (71).
Furthermore, in the T cell transfer colitis model, the mouse with
Hobit-Blimp-1 double knockout CD4+ T cells showed impaired
secretion of pro-inflammatory cytokines (IFN-g, IL-13, and IL-17A)
and recruitment of granulocytes and macrophages (71). In humans,
the same authors observed that CD4+CD69+ T cells in the LP of
IBD patients produce markedly more pro-inflammatory cytokines
(IFN-g, IL-13, IL-17A, and TNF) when compared to CD4+CD69- T
cells. High CD4+CD69+CD103+ TRM proportion in LP was
prospectively associated with earlier relapse in both UC and CD
patients (71). Consistently, a study by Lamb et al. showed that the
high expression of CD103 in CD4+ T cells is associated with
elevated pro-inflammatory cytokine production and lowered
regulatory markers expression in UC patients (72). Furthermore,
CD4+CD103+ TRM are enriched for Th17/Th1 lineage cells, which
co-express IL-17A and IFN-g (72). Bishu et al. investigated colon
samples of CD patients and found that CD4+ TRM in CD patients
expresses higher levels of IFN-g and IL-17A relative to controls
(73). Particularly, CD4+ TRM are identified as the major mucosal
TNF-a-producing T cell subsets in the CD patients (73). Despite
the pathogenic role of CD4+ TRM, it remains controversial whether
CD4+ CD103+ TRM are increased in the gut of IBD patients
(71, 74).

The heterogeneity and functional profile of CD8+ TRM in IBD
were also investigated. Bottois et al. observed two distinct subsets of
CD8+ TRM in the ileum of CD patients, defined by the mutually
exclusive expression of CD103 and KLRG1 (25). CD8+ CD103+

TRM were decreased in inflamed mucosa from IBD patients when
compared to non-inflamed mucosa and controls, while
CD8+KLRG1+ TRM showed a significant increase (25).
Frontiers in Immunology | www.frontiersin.org 5
CD8+CD103+ TRM in CD patients expressed higher levels of IL22,
IL26, and CCL20. These three Th17-related cytokines are involved
in tissue homeostasis and innate immune response (25). Similarly,
single-cell RNA-sequencing of CD8+ T cells from the colon of UC
patients showed that the expression of IL26 was enriched in the
CD8+CD103+ population (75). In addition, CD8+CD103+ TRM

express high levels of CD39 and CD73, two key functional
markers of regulatory T cells (76). CD39 and CD73 can
hydrolyze extracellular ATP into adenosine, which is a potent
immunoregulator (77). Roosenboom et al. observed that
CD8+CD103+ TRM were significantly decreased in patients with
active IBD compared to patients with endoscopic remission and
healthy controls (74). These findings suggest that CD8+CD103+

TRM may contribute to tissue homeostasis and immunoregulation.
By contrast, CD8+KLRG+ TRM have higher proliferative and
cytotoxic potential (12, 25).

The pathogenic role of TRM makes them a promising target for
IBD treatment. For instance, etrolizumab is a humanized
monoclonal antibody that targets the b7 subunits of aEb7 and
a4b7 integrins. In a completed phase III trial in UC, etrolizumab
met its primary endpoint in two induction studies but not in any
maintenance studies (78–81). Phase III trials assessing etrolizumab
in CD are still ongoing with positive results in an exploratory
induction cohort (82). The clinical efficacy of Etrolizumab may be
partially explained by impairing the retention of CD103+ TRM. In
fact, a phase II trial in UC showed that the response to etrolizumab
is associated with the number of CD103+ cell in the colon samples
(83). However, CD103 is also expressed on a subset of intestinal
dendritic cells (84), so it remains to be investigated whether TRM are
the real target of etrolizumab. Another pharmacological that might
target TRM is S1PR modulators. Recently, the S1PR modulator
ozanimod has been approved for UC (85). By triggering the
internalization and degradation of the S1P receptors, S1PR
modulators inhibit lymphocyte egress from lymphoid organs and
may impair local generation of intestinal TRM (86).

Collectively, a growing body of evidence implicates that TRM

participate in the pathogenesis of IBD. Therefore, they might be
the potential target of some currently developed drugs, especially
etrolizumab and S1PR modulators. It is not surprising that TRM

have also been identified as key mediators in other intestinal
immunopathologies, such as celiac disease (87) and acute graft-
versus-host disease (88). Further exploration is needed to better
understand the role TRM play in different intestinal
immunopathologies and to develop therapies that specifically
target pathogenic TRM.
CONCLUSIONS

A large number of CD8+ and CD4+ TRM are permanently located
in the human intestinal LP and IE (12, 13). After developing within
the gut microenvironment, CD8+ and CD4+ TRM differ from their
circulating counterpart both at the phenotypical level and
transcriptional level (29). In recent years, studies in mouse models
and human biopsies have demonstrated a crucial role for intestine
TRM in the protect ion against enter ic pathogens ,
May 2022 | Volume 13 | Article 912393
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immunosurveillance of intestinal malignancy, and probably
inducing intestinal chronic inflammation (26, 59, 71). Advancing
our knowledge of the properties and functions of intestinal TRM
may provide insights into developing efficacious vaccines and
therapies against intestinal diseases.
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