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ABSTRACT
Background: Consumption of ultra-processed foods has been linked
with higher energy intakes. Food texture is known to influence eating
rate (ER) and energy intake to satiation, yet it remains unclear
whether food texture influences energy intakes from minimally
processed and ultra-processed meals.
Objectives: We examined the independent and combined effects of
food texture and degree of processing on ad libitum food intake. We
also investigated whether differences in energy intake during lunch
influenced postmeal feelings of satiety and later food intake.
Methods: In this crossover study, 50 healthy-weight participants
[n = 50 (24 men); mean ± SD age: 24.4 ± 3.1 y; BMI: 21.3 ± 1.9
kg/m2] consumed 4 ad libitum lunch meals consisting of “soft
minimally processed,” “hard minimally processed,” “soft ultra-
processed,” and “hard ultra-processed” components. Meals were
matched for total energy served, with some variation in meal
energy density (±0.20 kcal/g). Ad libitum food intake (kcal and g)
was measured and ER derived using behavioral coding of videos.
Subsequent food intake was self-reported by food diary.
Results: There was a main effect of food texture on intake, whereby
“hard minimally processed” and “hard ultra-processed” meals were
consumed slower overall, produced a 21% and 26% reduction in food
weight (g) and energy (kcal) consumed, respectively. Intakes were
higher for “soft ultra-processed” and “soft minimally processed”
meals (P < 0.001), after correcting for meal pleasantness. The
effect of texture on food weight consumed was not influenced
by processing levels (weight of food: texture∗processing-effect,
P = 0.376), but the effect of food texture on energy intake was
(energy consumed: texture∗processing-effect, P = 0.015). The least
energy was consumed from the “hard minimally processed” meal
(482.9 kcal; 95% CI: 431.9, 531.0 kcal) and the most from the
“soft ultra-processed” meal (789.4 kcal; 95% CI: 725.9, 852.8 kcal;
�=↓∼300 kcal). Energy intake was lowest when harder texture was

combined with the “minimally processed” meals. Total energy intake
across the day varied directly with energy intakes of the test meals
(�15%, P < 0.001).
Conclusions: Findings suggest that food texture–based differ-
ences in ER and meal energy density contribute to observed
differences in energy intake between minimally processed and
ultra-processed meals. This trial was registered at clinicaltrials.gov
as NCT04589221. Am J Clin Nutr 2022;116:244–254.
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Introduction
Ultra-processed foods have been defined by the NOVA

classification system as “industrial formulations of processed
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food substances (i.e., oils, fats, sugars, starch, protein isolates)
that contain little or no whole food, and typically include
flavorings, colorings, emulsifiers and other cosmetic additives”
(1). Numerous association studies have linked diets high in ultra-
processed foods with higher risk of obesity (2, 3) and with other
cardiometabolic health risks (4–6). A recent inpatient metabolic
ward feeding study demonstrated that consuming ultra-processed
diet for 2 consecutive weeks led to an increase of >500 kcal in
daily energy intake compared with a similar period consuming
a minimally processed diet. These sustained differences in daily
energy intakes led to weight gain on the ultra-processed diet and
weight loss on the minimally processed diet (7). Importantly, the
meals in the ultra-processed diet were higher in energy density
and consumed at a 50% faster energy intake rate (EIR; kcal/min)
than meals in the minimally processed diet (7). This suggests
that a combination of faster eating rate (ER) and higher energy
density (kcal/g) may be one of the mechanisms by which ultra-
processed food consumption promotes higher sustained energy
intakes. Comparisons of energy intake from foods classified
as ultra-processed are likely to also depend on differences in
energy density, and the presence of softer textures and rapid ERs
often associated with foods in this category. As such, observed
differences in energy intake between minimally processed and
ultra-processed diets may be attributed to differences in a food’s
texture, oral processing, and energy density, which are often
themselves a consequence of food processing.

Cumulative empirical evidence has demonstrated that eating
at a slower rate can reduce ad libitum energy intakes (8). A
reduced bite size with increased chews per bite and a longer
oral exposure time has been shown to lower food intake (9,
10), whether manipulated through verbal instructions to chew
for longer, within-meal prompts to slow consumption, or by
changing the textural properties of the food being consumed
(8). Texture-led changes to ER have been shown to effectively
moderate eating speed, as people adapt their oral processing
behaviors in response to the structural properties of a food being
consumed (11). For example, a soft/thin and less chewy food can
be consumed at a faster rate than harder-textured, chewy, less
lubricated, and more viscous foods (12–14). Variations in these
textures are found within the food environment (12, 13, 15–17),
where the most obvious distinction lies between foods of different
forms from liquids to semisolids and solids (18).

Several ad libitum studies have successfully demonstrated that
food texture modification can reduce eating speed and overall
energy intake, without an associated reduction in postmeal
satisfaction (19–21). Previous findings show that a food’s sensory
properties and eating speed contribute to dietary energy intakes
(22), and the rate of energy intake (kcal/min) has been shown to
vary widely among foods, from minimally processed to processed
and ultra-processed categories (23). It remains unclear whether
changes in food texture and ER can influence energy intake
differently in minimally processed and ultra-processed meals.
Food texture–based differences in ER have been suggested as
a possible mechanism for the observed differences in energy
intake between minimally processed and ultra-processed diets in
a randomized controlled trial (23, 24). No study has yet tested
whether food texture will influence energy intake from meals
that independently differ in both texture and their degree of food
processing.

The current study examined the independent and combined
effects of food texture and degree of processing on ER, EIR, and
ad libitum food intake. We also investigated whether differences
in energy intake during lunch influenced postmeal ratings of
satiety and later food intake.

Methods

Study design

In a randomized crossover 2 × 2 repeated-measures design,
participants attended 4 lunchtime sessions to assess the indepen-
dent and combined effects of food texture (harder and softer) and
degree of processing (minimally processed and ultra-processed)
on ER (g/min), EIR (kcal/min), and ad libitum food intake
(measured in both g and kcal). Participants also rated their
postmeal appetite and subsequent food intake after each of the test
meals. The 4 test meals consisted of meal components chosen to
represent soft or hard textures from both minimally processed and
ultra-processed categories, as defined by the NOVA classification
(1) (see Supplemental Figure 1 and Supplemental Table 1).

The primary outcome of the study (NCT04589221) was a
comparison of ER (g/min), EIR (kcal/min), and ad libitum food
intakes (g and kcal) after consumption of each of the 4 test meals.
The secondary outcome was a comparison of the sensory ratings,
postmeal appetite ratings, and later food intake after each of the
4 test meals.

Participants

A priori power calculation was used to determine a sample
size adequate to test the main effects and interaction across the
4 meals. The article of Bolhuis et al. (19) was used to estimate the
effect of a similar texture manipulation on ER and energy intake.
In that study, a 32% reduction in ER led to a significant (13%)
reduction in energy intake, using a repeated-measures design. We
predicted that the texture manipulation (which was designed to
be matched across processing levels) would drive differences in
intake over the processing level. Based on this, we conducted a
power calculation in G∗Power version 3.1.9.2 (Heinrich-Heine-
Universität Düsseldorf) to estimate the sample required to test a
similar magnitude of difference in ER on energy intake across the
4 conditions at 80% power, using a repeated-measures design and
α = 0.05. This suggested a minimum of 23 participants would be
required, which we raised to a recruitment target of 50 to account
for dropouts and the unknown effect of processing level in this
context.

Fifty healthy participants (52% women) with a mean age
of 24.4 y were recruited from the general public in Singa-
pore through advertisement, and from a participant database
(see Table 1 for general characteristics of participants). To
conceal the main focus of the study, participants were informed
that the study aimed to investigate how sensory properties of
commonly consumed foods influence eating behavior. Partic-
ipants were recruited to have a BMI in the healthy range
(18.5–24.9 kg/m2), were not pregnant, without allergies or
aversions to any of the test foods, with no underlying eating
difficulties, with low dietary restraint (25), and none of the
participants were currently trying to lose weight or using
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TABLE 1 General characteristics of participants1

Men (n = 24) Women (n = 26)

Age, y 24.5 ± 2.9 24.4 ± 3.4
Body weight, kg 66.4 ± 7.8 54.0 ± 4.2
BMI, kg/m2 22.2 ± 2.0 20.5 ± 1.4
Body fat, % 27.6 ± 3.3 27.6 ± 3.3
Dietary restraint score (0–8)2 3.3 ± 1.3 4.0 ± 1.4

1n = 50. Values are means ± SDs.
2Measured with the revised Three-Factor Eating Questionnaire-18

(25), where 0 represents no dietary restraint, and 8 represents highest dietary
restraint.

medication known to affect appetite or energy metabolism.
Written consent was obtained from all the participants before
the study. This study was approved by the Agency for Science,
Technology and Research Institutional Review Board (IRB), Sin-
gapore (IRB reference: 2019-084) and conducted in accordance
with the Declaration of Helsinki on research involving human
participants.

Experimental procedure

Participants were screened for their eligibility which included
anthropometric measurements, body weight and height (Seca 763
digital scale), and percentage of body fat (bioelectrical impedance
analysis, Tanita BC-418). Eligible participants were invited to
attend 4 ad libitum lunch meal sessions across nonconsecutive
test days at the Clinical Nutrition Research Centre. Each test day
followed the same procedure and was separated by a minimum
of 7 d.

Participants refrained from strenuous physical activities and
were instructed to fast for a minimum of 10 h from the evening
before each test session, which was confirmed verbally with
research staff the morning of each test day (08:00–09:00). To
equilibrate premeal appetite, participants were provided with a
standardized breakfast and mid-morning drink, which they were
instructed to consume at 4 and 2 h before their ad libitum
lunchtime session, respectively.

Participants returned for lunch at the same time for each of
the 4 meals (12:00–13:00), and were provided with an ad libitum
portion of each meal and 250 mL of water. Participants began by
completing a first set of appetite ratings, and were instructed to
rate their hunger, fullness, desire to eat, and prospective intake
on a 0- to 100-mm visual analog scale (VAS), anchored by
“Not at all” (0) to “Extremely” (100). All ratings were presented
in a randomized order. Participants were instructed to taste
the meal and complete ratings of pleasantness for each meal
component, overall meal pleasantness, and perceived intensity
for overall flavor, salty, chewy, springy, and firmness. Sensory
attribute ratings were captured using the same 0- to 100-mm
VAS line scale as for the appetite ratings. After the sensory
and pleasantness ratings, participants were allocated 20 min and
instructed to complete their meal in their normal way until they
felt comfortably full. Participants were then instructed to report
their reasons for stopping eating using the newly developed
Reasons Individuals Stop Eating Questionnaire (RISE-Q) (26),
right after their meal. Those who finished their portions were
free to request another, although no participant requested a
second portion. The total weight of the test meal and water

consumed was recorded to the nearest 0.01 g using a Sartorius
balance.

Participants rated their appetite immediately after their meal,
and then repeated these ratings online with their mobile phone
every 15 min for the next 90 min. During this 90-min period,
participants refrained from eating or drinking anything except
water. Participants were also instructed to keep a food diary to
record any of their subsequent meal intakes for the rest of the
test day. All returned diet records were checked for accuracy and
completeness and were keyed in by a trained researcher using
Food-Works 10.0 software (Food-Works Professional, Xyris
Software Pty Ltd).

Test meals

Foods selected for inclusion in the test meals were chosen for
being familiar and regularly consumed in Singapore, and were
selected from a Singaporean FFQ, which represents >95% of
daily energy intake in Singaporean adults (27). The standardized
breakfast consisted of orange juice (Marigold: 350 mL), a packet
of nut-chocolate oat cookies (Munchy’s Oat Krunch Crackers:
26 g), and a muesli bar (Uncle Toby’s strawberry-flavored
yoghurt tops: 24 g), for a total of 356.9 kcal. Participants received
a mid-morning drink (124 kcal) of malt chocolate milk (Nestle
Milo: 200 mL). Both breakfast and mid-morning drink provided
women 28% and men 22% of their respective daily energy intake
requirements, based on the recommendations from the Health
Promotion Board, Singapore (28).

The test lunch meals consisted of “soft minimally processed,”
“hard minimally processed,” “soft ultra-processed,” and “hard
ultra-processed” meal components. Supplemental Figure 1 shows
the 4 ad libitum test meals that varied in terms of food textures
(soft compared with hard) and degree of NOVA processing
(minimally processed compared with ultra-processed). All meal
components were chosen to reflect a wide range of savory-tasting
foods that differed in their degree of processing and included
potatoes, grains, fish, chicken, fruits, vegetables, sauces, and
dairy products (Supplemental Table 1). Based on the NOVA
classification, minimally processed meals were defined as meals
that have been subjected to minimal or no processing, whereas
ultra-processed meals were defined as industrial formulations
of processed food substances (oils, fats, sugars, starch, protein
isolates) that contained flavorings, colorings, preservatives,
emulsifiers, or other cosmetic additives (1). The 4 test meals were
matched for energy from macronutrients, although there were
differences in the energy density of each meal (±0.2 kcal/g),
total weight (g), and overall energy content (kcal) served
(Supplemental Figure 1). Pilot testing was completed to ensure
meal components were hedonically acceptable and familiar, and
efforts were made to match test meals for palatability of meal
components and overall liking. The energy density for each meal
component was calculated from the food composition database
of the Singapore Health Promotion Board (28) and the USDA
National Nutrient Database for Standard Reference (29).

All ad libitum test meals were prepared fresh on the
morning of each test day using standardized cooking procedures
in order to achieve realistic, consistent, and reproducible
texture manipulations. Each meal was served warm at 50–
60◦C, with a fork and a glass of water (250 mL), and
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TABLE 2 Sensory ratings (0–100) of the 4 test meals1

Soft-textured Hard-textured
Main effect of

type of test meals,
P value

Minimally
processed

Ultra-
processed

Minimally
processed

Ultra-
processed

Meal pleasantness 66.3 ± 2.7a 68.4 ± 2.4a 35.8 ± 3.3b 75.0 ± 2.8a <0.001
Meal component pleasantness

Carbohydrate 38.9 ± 3.3b 37.8 ± 3.4b 32.6 ± 3.8b 61.3 ± 3.6a <0.001
Vegetable 53.2 ± 3.5a 50.8 ± 3.7a 40.1 ± 4.0b 49.4 ± 3.6a 0.028
Protein 63.3 ± 3.2b 75.5 ± 2.4a 28.3 ± 3.1c 78.4 ± 2.4a <0.001
Fruit 76.1 ± 2.1a 43.0 ± 3.7b 78.5 ± 2.3a 49.4 ± 3.7b <0.001
Dairy 45.1 ± 4.3b 73.4 ± 3.4a 53.7 ± 3.9b 82.5 ± 2.1a <0.001
Sauce 52.4 ± 4.2b,c 62.4 ± 3.2b 49.6 ± 4.1c 73.2 ± 3.4a <0.001

Overall firmness2 24.9 ± 2.0a 25.1 ± 1.5a 59.5 ± 2.4b 53.7 ± 2.5b <0.001
Overall chewiness2 27.0 ± 2.1a 28.6 ± 1.4a 52.3 ± 2.6b 53.2 ± 2.4b <0.001
Overall springiness2 22.0 ± 2.5a 24.8 ± 2.3a,b 30.3 ± 2.6b,c 32.8 ± 2.3c 0.001

1n = 50 (24 men). Values are means ± SEMs. Means in a row without a common superscript letter differ, P < 0.05 with Bonferroni adjustments for
multiple comparisons.

2Averaged values from the 4 main meal components (carbohydrate, protein, vegetable, and fruit) in each test meal.

participants were provided with salt and pepper to season their
meal.

Oral processing characteristics

Oral processing behaviors were quantified using behavioral
coding analysis of video recordings of each participant con-
suming each test meal, using a method described previously
(30). Behavioral coding was completed by trained researchers
and validated in line with previously described standards (12).
Data collection was completed in individual booths equipped
with a tablet (Microsoft Surface Go Lte 128GB 8GB) with
webcam (Logitech HDc310) positioned to capture participants’
eating behaviors during consumption. Participants were unable
to view the video of themselves during consumption. A series
of predefined oral processing behaviors were quantified with a
predefined behavioral coding scheme and videos were annotated
using specialized software (ELAN version 4.9.1; Max Planck
Institute for Psycholinguistics, The Language Archive) (31).
Behavioral coding recorded the frequency of bites, chews, and
swallows and the duration of food in mouth (oral exposure time in
s). Measured oral processing behaviors were related back to total
weight and energy of food consumed to derive meal ER (g/min)
and EIR (kcal/min).

Statistical analysis

Descriptive statistics were reported as mean ± SEM, unless
otherwise indicated. The assumptions of the statistical model
were verified before data analysis. These assumptions included
distribution and homogeneity of the residuals, independence
of the data points, independence of the random effects from
the covariates, linearity of the relation between predictor and
response, and absence of measurement error in the predictor.
The estimated mean values of each derived oral processing
behavior, food intake (g and kcal), and sensory and appetite
ratings from a total of 50 participants were reported for
each meal. No missing data were reported in the current
study.

Repeated-measures linear mixed models were used to examine
the independent and combined effects of food texture (soft
compared with hard; within-subject) and degree of processing
(minimally processed compared with ultra-processed; within-
subject) on outcome variables, including ER (g/min), EIR
(kcal/min), and overall food and energy intake (g and kcal).
In these models food texture, degree of processing, and
their interactions were added as fixed factors. Unstructured
correlation with homogeneous variance was used as the co-
variance structure because no constraints were imposed on the
correlation pattern. An additional covariate, participants’ rating
of overall meal pleasantness, was adjusted for in the models
where overall meal intakes (g and kcal) were the outcome
variables; whereas, the pleasantness of the individual meal
components was adjusted for in the models where intakes
of individual meal components (g and kcal) were the out-
comes. Post hoc Bonferroni adjustments were used to compare
means.

Average sensory and appetite ratings were reported per
meal and in the case of appetite at each time point. Similar
repeated-measures linear mixed models were used to examine
the independent and combined effects of food texture (soft
compared with hard; within-subject) and degree of processing
(minimally processed compared with ultra-processed; within-
subject) on sensory and appetite ratings. Appetite ratings were
controlled for their baseline measures and participants’ sex
(men compared with women; between-subject). An additional
within-subject variable of time (prelunch to 90 min postlunch)
was added to the analysis model of appetite. The incremental
area under the curve (iAUC) was also calculated for each
appetite sensation (i.e., hunger, fullness, desire to eat, and
prospective intake) from time point 0 min (prelunch) to 90 min
postlunch using the trapezoidal rule (32, 33), ignoring the area
beneath the baseline. Mean satiety quotient (SQ; mm/kcal)
for each of the 4 appetite sensations was also calculated
by subtracting the average appetite response at the postmeal
VAS from the fasting response (mm) and dividing it by the
total energy consumed from a test meal (kcal), which was
then multiplied by 100 (34). SQ is a marker of the satiating
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capacity of a meal/food per unit of energy consumed (kcal);
a higher SQ for each appetite sensation indicates a greater
satiating capacity. Repeated-measures linear mixed models were
used to test for differences in the iAUC and SQ of appetite
sensations between test meals. All repeated-measures linear
mixed models were executed using an unstructured covariance
structure with homogeneous variance and Bonferroni post hoc
adjustments.

All statistical analyses were performed using IBM SPSS
for Windows version 26.0 (IBM) and P values < 0.05 were
considered statically significant.

Results

Hedonic and sensory characteristics

Table 2 summarizes the mean sensory and hedonic ratings
of the 4 test meals. In line with the texture manipulation, the
soft-textured meals were rated as significantly less firm
(P < 0.001), less chewy (P < 0.001), and less springy (P = 0.03)
than the hard versions for foods classified as minimally processed
and ultra-processed. Three of the test meals had similar ratings
for meal pleasantness, and the “hard minimally processed” test
meal had significantly lower ratings for meal pleasantness than
the other meals.

Oral processing characteristics

Figure 1 presents the mean ER and EIR of each test meal.
There was a main effect of food texture (F = 282.76; P < 0.001)
on ER, such that both “soft minimally processed” and “soft-ultra-
processed” meals were consumed at a significantly faster rate
than the hard versions (P < 0.001), which led to an overall 35%
difference in ER between the hard- and soft-textured meals. There
was a significant processing effect on ER (F = 20.83; P < 0.001).
As reported in Figure 1, the “soft ultra-processed” meal was
consumed fastest (52.3 g/min; 95% CI: 47.6, 57.0 g/min),
followed by the “soft minimally processed” meal (45.9 g/min;
95% CI: 42.6, 49.3 g/min), with similar ERs reported for
the “hard minimally processed” (30.3 g/min; 95% CI: 27.6,
33.0 g/min) and “hard ultra-processed” meals (33.4 g/min; 95%
CI: 30.7, 36.2 g/min; P = 0.077). Food texture accounted for the
observed differences in ER, and differences in degree of food
processing contributed to differences in ER between the soft-
textured meals, although the interaction term was not statistically
significant (texture∗processing-effect, F = 3.75; P = 0.059).

There were significant main effects of food texture
(F = 387.37; P < 0.001) and degree of processing
(F = 98.82; P < 0.001) on EIR, but no significant interaction
(texture∗processing-effect, F = 0.03; P = 0.954). Both
“soft minimally processed” (53.5 kcal/min; 95% CI: 49.5,
57.4 kcal/min) and “soft ultra-processed” meals (66.6 kcal/min;
95% CI: 60.7, 72.6 kcal/min) had a significantly higher EIR than
the “hard minimally processed” (29.7 kcal/min; 95% CI: 26.8,
32.7 kcal/min) and “hard-ultra-processed” meals (43.0 kcal/min;
95% CI: 39.5, 46.6 kcal/min; P < 0.001). EIR was significantly
higher for both ultra-processed meals (P < 0.001), with an
overall increase of 24% between the ultra-processed and
minimally processed meals. Energy density was higher for the

FIGURE 1 ER (A) and EIR (B) of the 4 test meals. Values are mean
(95% CI), n = 50 (24 men), repeated-measures linear mixed models.
Within each graph, bars without a common letter differ (Bonferroni post
hoc test, P < 0.001; ER: texture∗processing-effect, P = 0.059; EIR:
texture∗processing-effect, P = 0.954). EIR, energy intake rate; ER, eating
rate.

ultra-processed meals, and both meal texture and degree of food
processing accounted for the differences in EIR overall.

Food and energy intake at ad libitum lunch

Figure 2 depicts the mean intakes of the 4 test meals (g and
kcal), after controlling for differences in meal pleasantness. There
was a main effect of food texture (F = 227.34; P < 0.001)
such that participants consumed significantly less of the hard-
textured meals (482.1 g; 95% CI: 447.0, 517.3 g) than the soft-
textured meals (621.2 g; 95% CI: 575.7, 666.7 g), whereas a
relatively small effect of meal pleasantness (F = 4.24; P = 0.042)
was observed. There was no significant effect of degree of food
processing on the amount (g) of food consumed (F = 0.36;
P = 0.549), and degree of processing did not interact with
meal texture to influence intake (F = 0.79; P = 0.376).
Participants consumed significantly less energy from the harder
meals (555.6 kcal; 95% CI: 510, 601.2 kcal) than from the softer
meals (756.5 kcal; 95% CI: 699.4, 813.6 kcal; P < 0.001), with



Texture-based differences in eating rate 249

FIGURE 2 Intake of meals as weight (A) and energy (B) consumed
across the 4 test meals, controlling for rated meal pleasantness. Values are
mean (95% CI), n = 50 (24 men), repeated-measures linear mixed models.
Within each graph, bars without a common letter differ (P < 0.05), with
Bonferroni adjustment (weight of foods consumed: texture∗processing-effect,
P = 0.376; energy consumed: texture∗processing-effect, P = 0.015).

a 26% reduction in ad libitum energy intake (texture effect,
F = 214.14; P < 0.001). The least energy was consumed
from the “hard minimally processed” meal (482.9 kcal; 95%
CI: 431.9, 531.0 kcal) with a decrease of 300 kcal compared
with the “soft ultra-processed” meal (789.4 kcal; 95% CI:
725.9, 852.8 kcal). There was a significant main effect of food
processing on energy intake (F = 39.93; P < 0.001) such
that participants consumed more energy from the soft and hard
versions of the ultra-processed meals than from the soft and hard
versions of the minimally processed meals (texture∗processing-
effect, F = 6.27; P = 0.015). Ad libitum energy intake
was lowest when a combination of both harder-texture and
lower–energy density minimally processed foods were consumed
within a meal, and this effect persisted after controlling for
meal pleasantness (pleasantness-effect, F = 9.93; P = 0.002).
Importantly, the differences in food (g) and energy (kcal) intakes
were not different when individual intakes were adjusted for
differences in rated meal pleasantness. In addition, results from
the RISE-Q showed that the predominant reason for stopping
eating was self-reported to be fullness (physical satisfaction),

and this did not differ across each of the 4 meals (data not
shown).

Across the test meals there were 6 meal components that
had the same commodity that was presented in ≥2 forms. For
example, potatoes were presented as instant potato mash or
as waffle fries in the ultra-processed meals. This enabled a
comparison of the intake of individual meal components across
different textures and degrees of food processing. Figure 3 shows
the weight and energy consumed for different forms of similar
meal components, after controlling for their respective rated
pleasantness. Among the 6 meal components, the protein element
in each meal was the most consumed (g) (texture∗processing-
effect, F = 0.89; P = 0.350). An equivalent weight of
carbohydrate was consumed across 3 test meals, the exception
being the hard ultra-processed meal (texture∗processing-effect,
F = 4.90; P = 0.031). The vegetable component was less
consumed (g) in hard-textured meals than in the soft-textured
meals (texture-effect, F = 152.22; P < 0.001). Energy from
protein was the most consumed for both soft minimally processed
and soft ultra-processed meals (texture-effect, F = 212.92;
P < 0.001). Energy consumed from carbohydrate in both hard-
textured meals was higher than energy from carbohydrate in
both soft meals (texture-effect, F = 86.11; P < 0.001). The
vegetable component contributed more to energy consumed for
the ultra-processed meals than for the minimally processed meals
(processing-effect, F = 143.27; P < 0.001).

Postmeal energy intake

Figure 4 shows the total energy consumed during the remain-
der of each test meal day. Daily energy intake across each of the
4 test days varied directly in proportion to the differences in en-
ergy intake at the lunchtime test meal (�kcal = 15%; P < 0.001).
The observed total daily energy intake was lower during the
“hard minimally processed” condition (1800.3 kcal/d; 95% CI:
1651.0, 1949.5 kcal/d) than during the “soft ultra-processed”
condition (2029.2 kcal/d; 95% CI: 1897.5, 2160.8 kcal/d). There
was no significant interaction between food texture and degree
of processing (F = 0.24; P = 0.625). Despite large differences
in energy intake at lunch (i.e., �kcal = 300), participants did not
compensate at subsequent meals within the same day (P = 0.964).

Changes in rated appetite and postmeal satiety

Figure 5 shows the changes in rated hunger, fullness, desire to
eat, and prospective intake over 90 min across the 4 test meals,
after correcting for the baseline ratings and participants’ sex.
There was a significant effect of time on the 3 rated appetite
sensations (all, P < 0.001), with similar prelunch appetite ratings,
decreasing immediately after lunch, and gradually increasing
from 15 to 90 min postconsumption for all 4 meals. The
opposite pattern was observed in rated fullness (time-effect,
P < 0.001). Consistent differences in appetite over time were
observed between the different test meals, and were associated
with differences in the energy consumed for each ad libitum meal,
although the interactions between food texture, processing level,
and time on 3 of the 4 appetite sensations were not statistically
significant (hunger: texture∗processing∗time-effect, F = 0.73;
P = 0.65; prospective intake: texture∗processing∗time-effect,
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FIGURE 3 Intake of meal components as weight (A) and energy (B) consumed across the 24 meal components in the 4 test meals, controlling for their
respective rated meal component pleasantness. Values are mean (95% CI), n = 50 (24 men), repeated-measures linear mixed models (carbohydrate: weight
of foods consumed: texture∗processing-effect, P = 0.031; energy consumed: texture∗processing-effect, P = 0.985; vegetable: weight of foods consumed:
texture∗processing-effect, P < 0.001; energy consumed: texture∗processing-effect, P = 0.289; protein: weight of foods consumed: texture∗processing-effect,
P = 0.350; energy consumed: texture∗processing-effect, P = 0.994; fruit: weight of foods consumed: texture∗processing-effect, P = 0.414; energy consumed:
texture∗processing-effect, P < 0.001; dairy: weight of foods consumed: texture∗processing-effect, P = 0.508; energy consumed: texture∗processing-effect,
P = 0.053; sauce: weight of foods consumed: texture∗processing-effect, P = 0.053; energy consumed: texture∗processing-effect, P = 0.228). Within each
component of each graph, bars without a common letter differ (P < 0.05), with Bonferroni adjustment.
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FIGURE 4 Total energy intake across each test day, controlling for rated meal pleasantness. Values are mean (95% CI), n = 50 (24 men), repeated-measures
linear mixed models. Bars without a common letter differ (P < 0.05), with Bonferroni adjustment (texture∗processing-effect, P = 0.625).

F = 0.82; P = 0.58; fullness: texture∗processing∗time-effect,
F = 1.77; P = 0.17; desire to eat: texture∗processing∗time-effect,
F = 3.39; P = 0.025). The lower postmeal ratings for fullness
for the “hard minimally processed” meal were associated with
lower amounts of energy consumed. Similarly, there were no
significant differences in postmeal iAUC90 values of appetite
sensations across the test meals, except for the iAUC90 value of
fullness (Table 3). The iAUC90 value of fullness showed that
both hard and soft ultra-processed meals were more filling than
the hard minimally processed meals, and were associated with
greater amounts of energy consumed during the 2 ultra-processed
meals. The mean SQs (i.e., satiating capacity of a meal per unit
energy consumed; mm/kcal) for hunger, fullness, desire to eat,
and prospective intake did not differ across the 4 meal conditions
(Table 3), suggesting all meals were equally satiating calorie for
calorie.

Discussion
We tested the independent and combined effects of food

processing and food texture on ad libitum food and energy intakes
to better understand the potential reasons for higher energy
intakes from ultra-processed meals observed previously (7).
Results showed that meal texture, rather than processing level,
accounted for differences in the amount of food (g) consumed
within an ad libitum test meal, whereas meal texture and the
higher energy density of ultra-processed meals accounted for
observed differences in energy intake (kcal). Energy intake was
lowest in the minimally processed harder-textured condition, and
highest in the soft-textured ultra-processed condition. Although
intake was higher for the softer meals, all meals were rated as
equally satiating postconsumption, with no energy compensation
for missing or additional energy at subsequent meals. These
findings suggest that texture and energy density in combination
were driving differences in food and energy intake across meals

that differed in their degree of food processing. Softer texture
influenced intakes for both minimally processed and ultra-
processed meals, although the size of effect was not equivalent
across both sets of meals. Differences in meal energy intake
at lunch were not adjusted for in later food intake, suggesting
differences in texture and energy density had a stronger effect on
satiation than on satiety.

The soft ultra-processed meal was consumed at the fastest rate
and to the greatest extent, whereas the ERs (g/min) of the hard
versions of the minimally processed and ultra-processed meals
were very similar. This aligns with previous research identifying
food texture as a major driver of a food’s ER, where foods that are
softer in texture require fewer chews per bite and are consumed at
a faster rate (35). For example, ER was observed to be 32% lower
for a lunch of harder foods than for a similar meal comprising
softer foods (19). The ER of composite foods can be reduced
by between 29% and 33% when increasing the hardness level
of a food (i.e., from bread to cracker) (36). The current study
demonstrates that both food texture and degree of processing as
defined by the NOVA classification had a significant impact on
the rate of energy intake (kcal/min), which was higher for the
ultra-processed meals. A higher energy density has previously
been associated with both higher acute energy intake and higher
cardiometabolic risk (37). Recent comparisons of the EIRs for a
wide range of foods that differed in their degree of processing
highlight that reported increases in energy intake associated with
increased consumption of ultra-processed diets may be attributed
to underlying differences in a food’s ER and energy density (23).
If it can be demonstrated that a higher EIR is the mechanism
by which ultra-processed foods promote greater energy intakes,
it creates new opportunities to reformulate foods to have both
lower energy density and more challenging food textures that
require longer oral processing and reduce eating speed to better
regulate energy intake, while maintaining a food’s sensory
appeal and postmeal satisfaction. Promoting the consumption
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FIGURE 5 Changes in rated hunger (A), fullness (B), desire to eat (C), and prospective intake (D) from before lunch to after lunch and during subsequent
15-min intervals for 90 min postlunch, controlling for the baseline ratings and participants’ sex. The 4 test meals varied in texture and processing
levels. Values are mean (95% CI), n = 50 (24 men), repeated-measures linear mixed models (hunger: texture∗processing∗time-effect, P = 0.65; fullness:
texture∗processing∗time-effect, P = 0.17; desire to eat: texture∗processing∗time-effect, P = 0.025; prospective intake: texture∗processing∗time-effect,
P = 0.58). ∗Significant difference between test meals at these time points, P < 0.05.

of harder minimally processed foods that have lower energy
density offers an approach to reduce the risk of excessive energy
intakes.

The “hard ultra-processed” meal was consumed 2 times slower
than the “soft ultra-processed” meal, and was associated with
16%–25% reductions in food and energy intakes. This aligns
with previous findings where, across a number of studies, texture-
based reductions in ER of 20% supported a decrease of between
10% and 13% in ad libitum energy intakes (38). The implication
is that ultra-processed diets may not always promote increased
energy intake (39), if enhanced food texture is combined
with reductions in energy density to support reduced intake.
Participants in the current study consumed a similar weight (g)
of food within the same texture condition (hard compared with
soft), and this was observed for both the minimally processed
and ultra-processed versions of the soft- and hard-textured meals.
Energy intake increased in line with the higher energy density
of both the soft and hard versions of the ultra-processed meals.

Taken together, these results highlight that texture and energy
density had a consistent impact on ad libitum food and energy
intake, and have both an independent and a combined effect on
total energy consumed to fullness across minimally processed
and ultra-processed meals.

The present study suggests that consistent increases in energy
intake from diets composed of ultra-processed meals (7) may
be driven by the softer textures and higher energy density
often associated with ultra-processed foods. Several putative
mechanisms by which ultra-processed foods affect energy
intake have been previously suggested, including that ultra-
processed foods are “hyper-palatable” and promote hedonic
overeating (40). Meal pleasantness did not significantly influence
intake differences observed in the current study, although the
“hard minimally processed” meal had significantly lower rated
pleasantness than the other meals. This finding highlights that
although it is possible to influence meal ER and reduce the risk
of overconsumption, challenges remain in understanding how to



Texture-based differences in eating rate 253

TABLE 3 iAUC90 and SQ for appetite sensations of the 4 test meals1

Soft-textured Hard-textured Main effect of
type of test meals,

P valueMinimally processed Ultra-processed Minimally processed Ultra-processed

iAUC90, mm × min
Hunger 12.4 ± 8.7 4.8 ± 3.2 14.6 ± 8.3 12.7 ± 9.3 0.561
Fullness 3661.8 ± 304.9a,b,c 4243.7 ± 264.2a,c 2913.5 ± 294.0b 4072.5 ± 289.7c <0.001
Desire to eat 11.7 ± 10.6 8.0 ± 6.0 29.3 ± 12.5 6.8 ± 5.1 0.102
Prospective intake 0.9 ± 0.6 8.4 ± 8.2 44.6 ± 25.4 29.2 ± 16.2 0.184

SQ, mm/kcal
Hunger 5.7 ± 0.6 6.0 ± 0.6 8.2 ± 1.1 7.4 ± 0.7 0.082
Fullness − 4.4 ± 0.5 − 5.3 ± 0.5 − 5.4 ± 1.0 − 5.7 ± 0.7 0.602
Desire to eat 5.4 ± 0.6 6.0 ± 0.6 6.5 ± 0.9 6.8 ± 0.7 0.510
Prospective intake 4.9 ± 0.5 5.5 ± 0.5 6.6 ± 1.0 6.0 ± 0.7 0.363

1n = 50 (24 men). Values are means ± SEMs. Means in a row without a common superscript letter differ, P < 0.05 with Bonferroni adjustments for
multiple comparisons. iAUC90, 90-min postmeal incremental area under the curve; SQ, satiety quotient.

modify these meal properties while still maintaining the sensory
appeal.

Calorie for calorie, there was no observed difference in
subjective appetite ratings or subsequent food intake behavior
across the test meals, despite large differences in the energy
consumed within each meal. This preliminary finding is in
line with the previous randomized controlled trial which also
demonstrated no differences in postmeal satiety, despite large
and sustained increases in intake from the ultra-processed diet
(7). Findings suggest that texture and energy density are likely
to affect energy consumed to satiation (15, 19, 21, 41–43), rather
than postmeal satiety (1). Further controlled studies are needed
to specifically test whether the postmeal satiety derived from
minimally processed and ultra-processed meals differs when
meals are consumed as a fixed portion of energy, rather than
consumed ad libitum.

A strength of this study is the controlled nature of data
collection and the use of realistic, everyday composite meals that
varied in the texture of meal components. Despite differences
in rated pleasantness, when this was included as a covariate
it did not significantly change the overall differences in food
(g) or energy (kcal) intakes observed. Findings from the RISE-
Q also highlighted that the main reason participants gave for
concluding the meal was fullness (physical satisfaction) across
the 4 meals. A lower meal pleasantness rating for the “hard
minimally processed” meal also reflects a realistic outcome, and
highlights that although results consistently show it is possible
to reduce ER and energy intake by changing a food’s texture, it
is challenging to implement changes in food texture without also
affecting a food’s sensory appeal.

The test meals were matched for energy served, but there were
residual differences in meal energy density (±0.2 kcal/g) and, as
a result, the total weight of food served ad libitum to participants.
These differences are mainly attributed to the high energy density
of some of the ultra-processed meal components, which had
higher sugar, fat, and sodium content. The current trial focused
on acute (24-h) differences in intake in response to a controlled
test lunch of unprocessed and ultra-processed foods, and all
meals were consumed in a controlled laboratory-based setting.
Future studies should extend these findings further to include a
longer observation and normal food intake behavior in a home
setting. In an effort to focus the comparison on the properties

of the foods served, the current study recruited normal-weight
healthy adult participants, and findings cannot be generalized
to a wider population. Future research should examine whether
similar effects of texture and processing are observed across a
broader population.

Our findings demonstrate that food texture accounted for
observed differences in the amount (g) of food consumed across
minimally processed and ultra-processed diets, and texture and
degree of processing (energy density) accounted for observed
differences in energy intake. These findings suggest it may be
possible to reformulate foods to enhance their texture, slow
eating speed, and reduce energy density to support reduced
energy intake from ultra-processed foods, while also promoting
the consumption of harder minimally processed foods. Future
studies should test whether food texture and energy density
manipulations can be combined to reduce energy intakes
over an extended period of time to better regulate energy
intakes.
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