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Abstract

Thyroid hormones (THs) are involved in the development and function of the male 
reproductive system, but their effects on the prostate have been poorly studied. This work 
reviews studies related to the interrelationship between the thyroid and the prostate. 
The information presented here is based upon bibliographic searches in PubMed using 
the following search terms: prostate combined with thyroid hormone or triiodothyronine, 
thyroxine, hypothyroidism, hyperthyroidism, or deiodinase. We identified and searched 49 
articles directly related to the issue, and discarded studies related to endocrine disruptors. 
The number of publications has grown in the last 20 years, considering that one of the first 
studies was published in 1965. This review provides information based on in vitro studies, 
murine models, and clinical protocols in patients with thyroid disorders. Studies indicate 
that THs regulate different aspects of growth, metabolism, and prostate pathology, 
whose global effect depends on total and/or free concentrations of THs in serum, local 
bioavailability, and the endocrine androgen/thyronine context.

Introduction

The purpose of this review is to compile and discuss 
findings related to the role of thyroid hormones (THs) 
in the development, physiology, and pathology of the 
prostate gland. The study of the prostate is of interest in 
the field of reproductive biology and urology. In mammals, 
this gland produces and secretes essential components for 
the protection and viability of spermatozoa. In middle 
age or later, men become highly prone to developing 
prostatic hyperplasia and/or cancer. However, the thyroid-
prostate relationship has been poorly studied in the fields 
of endocrinology or cancer. This can be explained by the 
fact that thyroid function in non-metabolic tissues had 
been underestimated for a long time. Androgens and 
not THs are the main hormonal stimuli for the prostate. 
The gonad and not the prostate is the principal target of 
THs in the reproductive sphere, and it has been assumed 
that metabolic actions of THs invariably lead to cancer 

progression. It is well established that THs regulate testis 
development and function, and some thyroid effects on 
the prostate are explained by the regulation of the gonadal 
axis; however, essential components of thyroid signaling 
have also been identified in prostate cell lines or the prostate 
gland, suggesting direct actions of THs on this target organ. 
This paper reviews: (i) elements related to TH transport, 
bioavailability, and thyroid signaling that have been 
identified in the prostate; (ii) the influence of the thyroid 
status on prostate weight during different critical periods 
of development; (iii) TH effects on gene expression and/or 
activation of enzymes involved in the prostatic glandular 
function and thyroid response; (iv) epidemiological and 
experimental evidence suggesting that THs could increase 
or reduce the risk of developing prostate cancer, and 5) the 
interaction of THs with androgens and other endocrine 
systems in the prostate.
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Thyroid hormone overview

THs are synthesized in the thyroid gland. They are 
mainly represented by tetraiodothyronine (T4) and 
triiodothyronine (T3), and both are essential for the 
development, maintenance, and metabolism of almost 
all tissues. The effects of THs on the target tissues are 
determined by factors that control their bioavailability 
and signaling, such as transporters, integrins, deiodinases, 
nuclear receptors, coregulators, among others. Circulating 
levels of hormones and their transporters determine the 
relation of free hormone/total hormone in serum, while T4 
and/or T3 entry into tissues and the deiodinase enzymatic 
system regulates the generation or inactivation of THs  
in situ (1). T3 generation from T4 is catalyzed by the 
enzymes type 1 deiodinase (DIO1) and type 2 deiodinase 
(DIO2), whereas T4 or T3 inactivation is mainly catalyzed 
by type 3 deiodinase (DIO3) and by DIO1 (2). Thyroid 
nuclear receptors activation and the αvβ3 integrin pathway 
are part of the canonic and non-canonic mechanisms 
involved in thyroid signaling. It is well known that T4 
acts as a prohormone and T3 as a hormone, since T3 
exhibits a 10- to 15-fold higher affinity than T4 for nuclear 
receptors (1). A non-canonical pathway of THs includes 
the activation of αvβ3 integrin signaling (3). Integrins 
are members of a family of cell adhesion receptors that 
regulate the attachment of epithelial cells to the basement 
membrane, and in prostate cancer, they mediate cell 
invasion, immune escape, and angiogenesis (4). It has been 
recognized that physiological concentrations of T4 (100 
nM) and supraphysiological concentrations of T3 (10 nM) 
bind at or near the arginine–glycine–aspartic acid (RGD) 
recognition site of the extracellular domain of integrin 
αvβ3 (3). All these components are required for THs action, 
and some of them have been described in normal and/or 
neoplastic prostate cells.

Transport, uptake, and bioavailability of 
thyroid hormones in the prostate

The internalization of T4 and T3 in target cells is mediated 
by specific and non-specific transporters, among which are 
members of the monocarboxylate transporters (SLC16A2 
or MCT8, SLC16A10 or MCT10), the organic anion-
transporting polypeptides (OATPs), and/or the L-type 
amino acid transporters. However, and for both hormones, 
MCT8 seems to be the most efficient and specific transporter 
in most tissues (5). There are no studies that show an active 
transport of THs into stroma or prostate epithelium. MCT8 

expression (mRNA) was detected in LNCaP prostate tumors 
(6), and RNA seq studies indicate that human samples of 
normal and cancerous prostate express the SLC16A2 gene, 
which encodes for MCT8 protein (www.proteinatlas.org).

A study in androgen-dependent (LNCaP) and 
androgen-independent (DU145, PC-3) prostate cancer cell 
lines showed a high accumulation of T3 in cells transfected 
with the high-affinity T3-binding protein known as 
μ-Crystallin (CRYM) (7), revealing the ability of these cells 
to internalize T3. This binding protein is endogenously 
expressed in human prostate tumors and LNCaP cells (8). Its 
overexpression inhibits the androgenic response in LNCaP 
cells and reduces the invasive capacity of DU145 and PC-3 
cells (7). These antitumor effects of CRYM/T3 have been 
explained by a reduction of T3 binding to nuclear receptors 
(7). Moreover, it has been proposed that this complex 
potentially contributes to the cytoplasmic reservoir of 
T3 and the transport of this hormone to the nucleus (9). 
CRYM undoubtedly controls the intracellular availability 
of T3, but its relevance to prostate physiopathology 
remains to be elucidated.

Deiodinases belong to a system of enzymes that 
regulate the local bioavailability of T3 in the target tissues 
(1). Pioneer studies in euthyroid adult rats revealed that 
around 20% of prostatic T3 content derives from thyroxine 
(T4) deiodination, and the remainder comes from plasma 
(10). Later, it was shown that DIO1 enzymatic activity is 
present in the prostate of pubescent rats and in 3-month-
old young-adult rats. In contrast, this activity is practically 
undetectable in the postnatal period and in rats older than 
five months of age (11, 12). Sexual behavior is the central 
stimulus for prostate function, and a study in breeding rats 
showed that sexual activity prevents the decline of DIO1 
activity associated with aging (12).

On the other hand, it has been shown that the 
sympathetic input activated by sexual behavior increases 
prostate DIO1 activity after consecutive ejaculations (13). 
In addition, DIO1 activity is under endocrine control; it 
is stimulated by T4, estrogens, and prolactin (PRL) and is 
negatively regulated by androgens (11). An association 
between enzymatic activity and prostatic T3 levels was 
observed during different physiological challenges (12, 13). 
Nevertheless, the contribution of DIO1 to T3 generation 
has been questioned in recent years, and instead, it has 
been suggested that this enzyme contributes to iodine 
recycling (1, 2). Biochemical studies have shown that 
DIO2 activity is not present in the rat prostate (11), but 
a low mRNA expression has been identified in the rat 
(11), mouse (14), and human prostate biopsies (www.
proteinatlas.org). An inverse correlation between Dio1 or 
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Dio2 and Dio3 gene expression was observed in the normal 
and cancerous prostate of euthyroid mice supplemented 
with T3. Physiological doses of T3 reduced Dio1 and 
Dio2 expression and increased Dio3 (T3-catabolizing 
enzyme), which allowed maintaining a euthyroid prostatic 
environment. Besides, it was found that T3 does not 
accelerate prostate cancer development in an early stage 
(14). However, longitudinal studies must be carried out 
to understand the role of T3/DIO3 in cancer progression. 
Some studies support the notion that Dio3 induction is 
part of a neoplastic program in which the proapoptotic 
and differentiating actions of THs are suppressed, and 
local hypothyroidism induced by the high DIO3 leads to 
an increase in cell proliferation (2). miRNA, miR-379, and 
miR-154 of the delta-like 1 homolog-deiodinase 3 cluster 
are increased in serum of prostate cancer patients, and 
apparently, they promote metastasis to bone (15).

Thyroid signaling in the prostate

The direct canonic effects of THs are exerted through the 
binding of T3 to the nuclear T3 receptors (TRs), which act as 
transcription factors by binding to response elements (TREs) 
in the regulatory regions of target genes (1). A pioneering 
study showed an abundant relative expression of thyroid 
hormone receptor alpha THRA, variants 1 (THRA1 or TRα1) 
and 2 (THRA2 or TRα2) and thyroid hormone receptor beta 
(THRB or TRβ) in human samples of hypertrophic prostate 
(16). TRβ protein has been identified in non-cancerous 
(PZ-HPV-7, RWPE-1) and cancerous prostate cell lines 
(PZ-HPV-7, CA-HPV-10, LNCaP, LAPC4, VCaP, PC-3, and 
DU145) by immunoblotting (7, 17). In the LNCaP line, T3 
binds to nuclear receptors with high affinity (5 × 10−11 M) 
and binding capacity (206 pg/mg DNA). This binding was 
not modified in the presence of a synthetic androgenic 
agonist (R1881), suggesting that thyroid response could 
not be regulated by androgens (18). In vivo, TRα1 and TRβ 
proteins were mainly immunodetected in the epithelial 
cells of the normal and cancerous prostate (14), suggesting 
that nuclear thyroid receptors could regulate glandular 
activity. The effects of THs on the prostate also seem to be 
mediated by integrins. In particular, the integrin αvβ3 is a 
heterodimeric transmembrane glycoprotein that mediates 
cell adhesion to the extracellular matrix by recognizing 
conserved RGD motifs in various ligands, including 
osteopontin, vitronectin, and fibronectin (4). Integrin 
αvβ3 is expressed in prostate cancer (4), and THs can bind 
the RGD motif and activate downstream pathways (19). 
Altogether, these studies show that prostate cell lines and 

the prostate gland contain key elements to respond to THs 
actions, whose effects are reviewed below.

Biological effects of thyroid hormones

Prostate weight

THs are essential for the development of reproductive 
organs. In critical periods of growth, a deficiency or 
excess modifies the size and function of the prostate in 
adulthood. Hypothyroidism has dual actions, and it can 
either promote or reduce prostate weight, depending on 
the period in which the deficiency occurs (Fig. 1). In adult 
rats, gestational hypothyroidism induced from days 9 to 
14 or 21 post-coitum decreases the ventral lobe size and 
diminishes the testosterone levels, even with high levels of 
expression and binding capacity of the androgen receptor 
(AR) in the prostate (20). A reduction in prostate weight also 
occurs when hypothyroidism is induced from postnatal 
to puberty (days 160 or 90), or from puberty to sexual 
maturity (days 31–60 or 90). This reduction was related to 
low testosterone levels as a consequence of delayed puberty 
and impairment of testis function (21, 22). No alterations 
in testosterone levels or ventral prostate weight are shown 
in adult rats when hypothyroidism is transiently induced 
within the first 15 postnatal days (20). However, an increase 
in the prostatic weight and high expression and binding 
capacity of AR occurs when thyroid deficiency is induced 
from birth to the prepubertal period (days 1–25 to 30) 
(20, 23). This trophic effect was associated with a delay in 
puberty and an extension of the prostate morphogenesis 
time (23, 24). In adult rats, hypothyroidism does not affect 
the weight of gonads but reduces the luteinizing hormone 
and testosterone levels, and it indirectly decreases prostate 
weight (25). On the other hand, the effects of excessive 
THs on the prostate have been less studied. Figure 1 shows 
that hyperthyroidism induced during puberty increases 
testosterone levels but paradoxically reduces prostate 
weight in adult rats (26), suggesting that this effect is not 
related to androgen deficiency. A pioneering study showed 
that administration of a physiological supplement of T4 
during the postnatal period (days 1–35) reduced prostate 
weight in prepubertal rats (27), while an increase in prostate 
weight was observed in T4-treated castrated rats (28). 
All these studies reveal the importance of the euthyroid 
state in the control of prostatic growth. TH effects are 
related to androgenic status and androgenic response 
during development, while their actions in adulthood are  
less understood.

This work is licensed under a Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 
International License.

https://doi.org/10.1530/EC-21-0581
https://ec.bioscientifica.com © 2022 The authors

Published by Bioscientifica Ltd

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1530/EC-21-0581
https://ec.bioscientifica.com


B Anguiano et al. Thyroid hormones and 
prostate physiopathology

e210581

PB–XX

11:2

Prostate function

There are no studies that show a direct effect of THs on 
prostate metabolism, but substantial evidence shows 
that thyroid disruptions affect the activity of metabolic 
enzymes in a lobe-specific manner. Table 1 shows that 
hypo- and hyperthyroidism up or downregulated, 
respectively the activity of Na+/K+, Ca2+, Mg2+ ATPases, 
acid and alkaline phosphatases, and enzymes involved 
in the conversion from complex carbohydrates to 
monosaccharides, such as β-glucosidases, β-galactosidase 
and β-N-acetylglucosaminidase (26, 29, 30). Although 
these effects could be indirectly related to changes in 
the steroidogenic status (diminution of testosterone 
and estradiol by hypothyroidism, and vice versa), in vitro 
studies suggest possible direct actions. T3 stimulates the 
activity of glycosidase enzymes and the levels of sugars 
such as fucose, fructose, sialic acid, and hexosamines, 
fundamental components for osmotic balance and 
metabolism of spermatozoa (26). These findings indicate 
that THs regulate the prostatic metabolic homeostasis 
in a lobe-specific manner. Regarding the endocrine 
environment, THs regulate the expression of prolactin 
receptor (PRLR) and its binding capacity (31, 32), as well as 
the release of some peptides such as calcitonin gene-related 
peptide (33), thyrotropin-releasing hormone (TRH), and 

TRH-glycine (34). As reviewed later, some studies suggest 
that prostatic TRH stimulates the thyroid gland through a 
prostate–thyroid feedback loop.

Prostate pathologies

Benign prostate hyperplasia
Benign prostate hyperplasia (BPH) is the most common 
non-malignant growth of the prostate, with an incidence 
of 50% in men by age 50 (35). A prospective study carried 
out in air force veterans from the USA (598 cases/1087 
patients) showed no relationship between thyroid status 
(total or free T4) and risk of developing BPH (36). Another 
study showed that hyperthyroidism (191 cases/832 
patients) apparently increases the risk of BPH, but when 
data were adjusted by age and metabolic comorbidities, the 
correlation was lost (37). In contrast, a positive correlation 
between prostate volume and elevated physiological 
levels of free T3 (40 subjects) or free T4 (5708 subjects) 
was observed in patients diagnosed with BPH (38, 39). 
The effects of thyroid-stimulating hormone (TSH) on 
BPH development are less understood. Some studies did 
not observe any relationship (36), whereas others have 
shown a negative correlation between TSH and prostate 
size (38). Concordantly, elevated levels of TSH (>4 mU/L) 
have been associated with a lower score of lower urinary 

Figure 1
Influence of thyroid status during critical periods of development on prostate growth in rat model. Both, gestational and pubertal hypothyroidism impair 
gonadal development, decrease circulating levels of testosterone and reduce the weight of the ventral lobe in adult rats. A similar effect occurs when 
hypothyroidism is induced in rats after puberty. In contrast, hypothyroidism selectively induced during the postnatal period does not modify 
testosterone levels but increases prostate growth. Hyperthyroidism increases testosterone levels but reduces prostate weight, suggesting the 
involvement of extra-androgenic factors on prostate growth control.
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tract symptoms (40). Moreover, increased TSH levels and 
improved symptoms were observed in BPH patients treated 
with an inhibitor of the local conversion from testosterone 
to dihydrotestosterone or subjected to partial or total 
prostatectomy, revealing a complex thyroid-androgens-
prostate or TSH/prostate relationship (40). The possible 
relationship between thyroid status (TSH, T4, T3, free T4, 
and free T3 levels) and the onset of BPH (lower urinary 
tract symptoms, prostate volume, prostate-specific antigen 
(PSA) levels) should be analyzed from a more integrative 
approach.

Prostate cancer
Prostate cancer is the second most frequent cancer in men 
and the sixth cause of death worldwide (41). The role of 
THs in the initiation and/or progression of this disease 
has been poorly studied, but experimental and clinical 
evidence suggest that these hormones exert dual actions, 
depending on the cellular context (Table 2).

In vitro studies Most of the studies have been carried out 
in the LNCaP cell line, which expresses a functional AR and 
is representative of an early cancer model. But also, some 
androgen-independent prostate cancer cell lines, such as 
PC-3 and DU145, have been used as advanced cancer mod-
els. Table 2 shows that physiological concentrations of T3 
stimulate the proliferation in the LNCaP line, while 100-
fold higher concentrations are required to stimulate the 

proliferation in the PC-3 line (17, 18, 42). In LNCaP cells, 
a gradual proliferative effect is observed at concentrations 
of up to 1.0 nM of T3, but at concentrations of up to 1 µM 
a plateau is reached (17, 18, 42). These effects seem to be 
mediated in part by the reduction of B-cell translocation 2 
protein, whose expression is directly regulated by negative 
TREs (43). Androgens exert a biphasic effect in the prolifer-
ation of LNCaP cells; at physiological concentrations, they 
stimulate cell proliferation, while at supraphysiological 
concentrations they inhibit proliferation (18). In this con-
text, T3 potentiates the androgenic proliferative response, 
but this interaction is lost at concentrations higher than 
1.0 nM of R1881 (synthetic agonist) (18). It is known that 
T3 increases the expression and amount of AR in LNCaP 
cells (7, 18, 42), but does not increase the nuclear AR levels 
over androgen alone (7), suggesting that proliferative T3 
actions could be relevant in low androgen conditions.

In addition to stimulating cell proliferation, T3 
regulates the production and secretion of kallikreins (KLKs) 
in the LNCaP line. KLK3, also known as PSA, is involved in 
the breakdown of semenogelins and semen liquefaction. 
T3 stimulates the secretion of KLK3 in a dose-dependent 
manner (18, 42). These effects have been explained by a 
functional TRE site in the PSA gene promoter, which is 
transactivated in the presence of androgens (44). On the 
other hand, studies carried out in LNCaP cells showed 
that T3 induces senescence (increase in BHLHE40) and 
cell arrest (increase in p15) in a dose-dependent manner 

Table 2 Cellular effects of thyroid hormones in prostate cancer cell lines.

Cell lines Biological effect References

T3
 0.1 nM–1 µM for 6 days LNCaP Stimulates cell proliferation ([3H] thymidine incorporation). (18)
 0.1 nM–1 µM for 6 days LNCaP

DU145
Stimulates cell proliferation (MTS assay) in LNCaP but not in DU145. (43)

 10–50 ng/mL for 72 h MDA
PCa 2b

Stimulates cell proliferation ([3H] thymidine incorporation). (8)

 0.1–100 nM
 0.1–10 µM for 7 days

LNCaP
PC-3

Stimulates cell proliferation in LNCaP and DU145 ([3H] thymidine 
incorporation).

(42)

 0.1 nM–1 µM for 6 days LNCaP
CA-HPV-10
PC-3
DU145

Stimulates cell proliferation (MTS assay) in LNCaP, but not in CA-HPV-10, 
PC-3, DU145.

(17)

 10 nM for 4 or 6 days LNCaP
DU145

Reduces invasive capacity (transwell assay) stimulated by a β-adrenergic 
activator and the acquisition of projections like neurites (phase contrast 
microscopy). Treatment for 4 days had no effect in DU145.

(6)

 0.1 nM–1 µM for 6 days LNCaP Induces senescence (β-galactosidase assay) in a dose-dependent manner. (45)
T4
 100 nM for 7 days PC-3 Increases cell migration (transwell assay) and reduces apoptosis  

(flow cytometry) in anoikis-resistant cells.
(46)

 100 nM for 4 or 6 days LNCaP
DU145 

Increases cell invasion (transwell assay) and the acquisition of projections 
like neurites (phase contrast microscopy). Treatment for four days had no 
effect in DU145.

(6) 
 

MTS, tetrazolium salt.
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in a range from 0.1 to 10 nM (45), and that 10 nM of T3 
increases the levels of some metabolites, such as glycine, 
glutamate, creatine, and taurine (7). In contrast, T4 
effects have been less studied. T4 (100 nM) increases cell 
proliferation, the acquisition of neurite-like projections, 
and vascular endothelial growth factor (VEGF) production 
in the LNCaP cell line, but not in DU145 (6, 14, 46). Also, 
T4 reduces apoptosis (decreases protein levels of apoptosis 
inhibitor XIAP and annexin V-phosphatidylserine 
binding) and increases protein levels of MMP2 and 
cell migration (46). These protumoral effects seem to 
be mediated by αvβ3 integrin/pERK signaling (14, 46). 
Integrin αvβ3 regulates processes like cell proliferation, 
survival, angiogenesis, and chemoresistance in prostate 
cancer (4).

In vivo studies A physiological supply of T3 reduced pros-
tate tumor weight and epithelial PCNA levels in the trans-
genic adenocarcinoma of the mouse prostate (TRAMP) 
model. These effects could be directly related to both an 
increase in T3 and a reduction in T4 levels as a result of a 
negative feedback loop (14). Consistently, T4 hyperthy-
roidism increases tumor growth in a PC-3 xenograft model 
(47). In another study, a supplement of T3 attenuated the 
growth of LNCaP xenograft tumors and prevented the rise 
in the tumoral expression of neuroendocrine (NE) fac-
tors (synaptophysin, neuron-specific enolase) and VEGF 
induced by a β-adrenergic activator (6). NE tumors com-
monly occur after androgen deprivation therapy and are 
highly aggressive (48). Primary tumors of TRAMP mice 
develop adeno- and NE carcinoma by the inactivation of 
retinoblastoma protein and p53 (49); hence, it would be 
interesting to analyze the role of T3 in this model. Over-
all, these findings suggest that the proliferative actions of 
T3 observed in vitro do not translate into increased tumor 
growth in in vivo models, whereas T4 effects consistently 
stimulate tumorigenic processes.

Epidemiological and clinical studies There is evidence 
that subclinical or overall hypothyroidism does not mod-
ify the risk of prostate cancer, while hyperthyroidism or 
reduced levels of TSH significantly increase this risk when 
these parameters are age-adjusted and with any other 
potential confounder factor [reviews: (50, 51, 52, 53, 54)]. 
A prospective study (326 cases/9981 patients) showed that 
subclinical and frank hypothyroidisms are not associ-
ated with cancer risk (50). In comparison, a lower risk was 
observed in smoker men with frank hypothyroidism (20 
cases/75) and elevated TSH levels (54). Mondul et al. (54) did 

not find an association between overall hyperthyroidism 
and prostate cancer risk (20 cases/75), while several other 
studies have shown that hyperthyroid subjects (53) and 
subjects with low levels of TSH <0.50 mU/L (10 cases/160) 
(50) or high physiological levels of free T4 (126 cases/1623) 
have an increased risk of developing prostate cancer (55). 
Moreover, a positive association between T3 levels and 
prostate cancer aggressiveness, based on the Gleason score, 
tumor grade, and/or tumor percentage involvement, was 
reported in euthyroid patients (56, 57). Overall, these data 
suggest that physiological increments of free T4 or sub-
clinical (decrease in TSH levels) and frank hyperthyroidism 
(decrease in TSH and increase in THs) increase the risk of 
developing prostate cancer, whereas incremented levels of 
T3 seem to be associated with more aggressive tumors. All 
these clinical studies provide valuable information and put 
in perspective the need to conduct multicenter studies to 
determine the relevance of thyroid status on prostate can-
cer epidemiology.

Interplay of T3 with other endocrine systems

A bidirectional interaction of T3 and other endocrine 
messengers, such as androgens, PRL, growth factors, and 
catecholamines has been widely documented in the 
normal and cancerous prostate tissue (Table 3).

Androgens

As mentioned before, THs regulate the activity of the 
pituitary–gonad axis and androgen signaling in target 
tissues. The coexistence of putative response sites to 
androgens (ARE) and THs (TRE) has been reported in 
genes related to T3 (deiodinases, thyroid receptors) and 
androgen (5α-reductase and AR) signaling (58); however, 
the prostatic crosstalk between androgens and T3 has been 
poorly studied. It is known that T3 increases the AR levels 
and androgen target gene expression of KLK3 in LNCaP 
cells (7, 18, 42), and a decrease in AR protein levels was 
consistently found in the prostatic ventral and dorsolateral 
lobes during gestational and/or postnatal hypothyroidism 
(20). TREs have not been identified in the promoter region 
of the AR gene, suggesting an indirect regulation by T3. 
Beyond the AR, T3 directly up-regulates the expression 
of nuclear receptor coactivator 4 (NCOA4), which was 
previously identified as an AR-associated protein (ARA70) 
(59). ARA70 induces apoptosis and reduces the invasive 
potential of prostate cancer cells through AR-dependent 
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and independent mechanisms (60). An increase in ARA70 
expression was observed in LNCaP prostate tumors of 
nude mice supplemented with T3 (6). These findings 
suggest that T3 could modulate the prostatic response to 
androgens by increasing the levels of AR and its coactivator. 
As mentioned, androgens do not seem to modify the levels 
of nuclear receptors to T3 in LNCaP cells (18), but Dio2 
expression increases in pluripotency conditions in LNCaP 
and CWR22Rv1 cells (androgen-independent), and Dio2 
knockdown results in a reduction in the expression of 
androgen target genes (61). All these data indicate that T3 
could modulate androgen signaling primarily in low or 
absent androgen levels.

Prolactin

The interaction between THs and PRL has been amply 
studied in the biology of reproduction, and an inverse 
relation between THs and PRLR has been described in the 
rat prostate. Hypothyroidism increases PRL binding to its 
receptor, and T3 reverses this effect (32), while PRL increases 
DIO1 enzymatic activity (11). These data indicate that T3 
regulates PRLR and that PRL might regulate the availability 
of THs and/or iodine in the prostate. Mutations of THRB 
in the T3 binding site induce mammary hyperplasia and 
activation of the PRL signaling pathway mediated by 
STAT5, while T3 represses STAT5 activation and cyclin D1 
in the native THRB (62). Additional studies are required 
to know the implications of the T3/PRL interaction in the 
function and pathology of the prostate.

Growth hormone and insulin-like growth factor

A positive correlation between TH and growth hormone 
(GH)/insulin-like growth factor has been observed in 
prostate cancer cell lines. T3 stimulates gene expression 
of the GH receptor, as well as expression of IGF1 and its 
receptors (IGF1R, IGF2R) (63, 64).

Norepinephrine

It is well established that sympathetic norepinephrine (NE) 
input stimulates the thyroid axis and regulates deiodinase 
activity in several tissues (65). The prostate is innervated 
by parasympathetic (pelvic nerve) and sympathetic 
(hypogastric nerve) fibers. The adrenergic input maintains 
prostate tone, and the activation of α1-adrenergic receptors 
stimulates the contraction of the vascular and non-
vascular loose muscle. In contrast, β2-adrenergic receptor 
activation leads to relaxation and regulates the expression 
of genes related to prostate function (66, 67). It has been 
shown that sexual activity increases prostate DIO1 activity 
(12) and that this response could depend on sympathetic 
NE input (13). The impact that the relationship between 
NE and deiodinases could have on the physiology and 
pathology of the prostate is unknown, but substantial 
evidence indicates that sympathetic overactivity increases 
the risk and/or progression of hyperplasia and prostate 
cancer (66, 67). As mentioned, BPH patients have high 
serum T3 levels, and hyperthyroid patients have increased 
micturition frequency and nocturia (68, 69), but there 
are no studies that connect NE/T3 interaction in cancer. 
Studies in the human prostate show that cancerous 
epithelium expresses higher levels of β2-adrenergic 
receptors than normal or hyperplasic tissue (70), but levels 
of these receptors are decreased in metastatic prostate 
cancer with the mesenchymal phenotype (71). Expression 
of the β2-adrenergic receptor depends on androgens and 
consequently is downregulated by androgen deficiency. 
The basal expression of the β2-adrenergic receptor is 
T3-independent, but in the absence of androgens, T3 
upregulates its expression and compensates for the lack of 
androgens (70). This finding agrees with the presence of a 
cyclic-AMP response element and a TRE in the promoter 
region of the β2-adrenergic gene (72). Stimulation of β2-
adrenergic receptors, as well as androgen deprivation, 
activates NE transdifferentiation programs (48, 73). As 
previously mentioned, T4 stimulates and T3 prevents 

Table 3 Effects of triiodothyronine (T3) in the expression of some messengers and endocrine receptors.

T3 (nM) Cell lines Gene expression and/or protein levels References

0.1 and 1.0 LNCaP Increases gene expression and protein levels of AR, as well as expression of target  
genes (PSA).

(7, 18,42)

100 LNCaP
LNCaP C4-2

Increases β2-adrenergic receptor levels. (70)

0.1 LNCaP Biphasic response. Increases the specific binding to GH and GH receptor expression 
within the first 24 h and reduces the binding at 72 h.

(63)

0.1 LNCaP Increases gene expression of IGF-1, IGF1R, and ESR2 (ERβ). (64)

AR, androgen receptor; ESR2, estrogen receptor 2; GH, growth hormone; IGF-1, insulin-like growth factor 1; IGF1R, insulin-like growth factor type one 
receptor; PSA, prostate-specific antigen.
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the acquisition of neurite-like projections induced by 
β-adrenergic stimulation (6). A recent study showed that 
αvβ3 integrin was selectively detected in primary prostate 
tumors, and metastatic lesions and expression levels were 
higher in the NE niches (74). The αvβ3 integrin itself is 
involved in various processes, including cell proliferation 
and angiogenesis, but the role of THs as activators of this 
pathway has not been studied.

General discussion and perspectives

The influence that THs have on the prostate has been 
recognized over the last 40 or 50 years, but the information 
has remained disarticulated. The findings reviewed here 
show that prostate cells express mechanisms, such as 
transporters, deiodinases, nuclear receptors, αvβ3 integrin, 
that confer the capability for responding to thyroid 
stimuli. Transcriptome analysis and studies of gain or loss 
of function of deiodinases and/or receptors are required 
to better approach this issue. T3 is an important regulator 
of androgen signaling, and more specific studies must be 
performed to discriminate between androgen-dependent 
and independent mechanisms. TH effects on cancer 
progression seem to be divergent and depend on the 
tumoral environment (51, 75). As previously reviewed, THs 
exert dual actions. In vitro, they promote cell proliferation 
and invasive capacity but also induce cell arrest and 
senescence; while in vivo, they increase or decrease the 
growth of prostate tumors. Discriminating between T3 
and T4 effects has often been speculative, given that T4 has 
the potential to be converted to T3; however, it would be 
interesting to analyze if changes in the T3/T4 ratio impact 
on development or susceptibility to diseases. Analyzing 
TH effects on different cell niches and performing 
longitudinal studies are necessary to fully understand the 
mechanisms and identify the global effects that prevail 
during cancer development. Finally, it has been recognized 
that many antineoplastic drugs cause hypothyroidism 
(76); hence, it would be interesting to analyze if T3, either 
alone or combined with androgens, could maintain 
the differentiation of tumor cells and sensitize them to 
therapy.

Conclusions

In recent years, data obtained from epidemiological 
and experimental studies suggest that thyroid function 
impacts the growth, function, and pathology of the 

prostate, but whose effects and mechanisms are far from 
being understood. Cell lines and whole prostate express 
mechanisms to maintain an euthyroid microenvironment 
and respond to subtle changes in thyroid status. This 
review provides evidence that the prostate is a target organ 
for THs and highlights the importance of performing 
integrative androgen/thyronine studies in the prognosis of 
the evolution and treatment of their pathologies.
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