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Abstract

Background: Optical slice microscopy is commonly used to observe cellular morphology in 3D tissue culture, e.g., the formation of
cell-derived networks. The morphometric quantification of these networks is essential to study the cellular phenotype. Commonly,
the quantitative measurements are performed on 2D projections of the image stack, resulting in the loss of information in the third
dimension. Currently available 3D image analysis tools rely on manual interactions with the software and are therefore not feasible
for large datasets.

Findings: Here we present Qiber3D, an open-source image processing toolkit. The software package includes the essential image
analysis procedures required for image processing, from the raw image to the quantified data. Optional pre-processing steps can be
switched on/off depending on the input data to allow for analyzing networks from a variety of sources. Two reconstruction algorithms
are offered to meet the requirements for a wide range of network types. Furthermore, Qiber3D’s rendering capabilities enable the user
to inspect each step of the image analysis process interactively to ensure the creation of an optimal workflow for each application.

Conclusions: Qiber3D is implemented as a Python package, and its source code is freely available at https://github.com/theia-dev/Q
iber3D. The toolkit was designed using a building block principle to enable the analysis of a variety of structures, such as vascular
networks, neuronal structures, or scaffolds from numerous input formats. While Qiber3D can be used interactively in the Python
console, it is aimed at unsupervised automation to process large image datasets efficiently.
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Background
The process of angiogenesis, the development of new blood ves-
sels from the existing vasculature, is the center of numerous re-
search questions. Studying the processes involved in vessel for-
mation, maturation, and remodeling is essential for a better un-
derstanding of normal development and angiogenesis-related dis-
ease stages [1,2]. In vitro angiogenesis models aim towards repli-
cating the formation of vascular-like networks in the labora-
tory [2]. Optical slice microscopy is commonly used to follow ves-
sel formation in in vitro angiogenesis models [3]. Thereby, multi-
ple images are acquired across different positions in the z-plane
throughout the specimen, capturing the cell morphology in 3D
[3]. The vascular phenotype can be assessed by qualitative obser-
vation or by morphometric quantification of fiber length, num-
ber of fibers, cross-sectional area, or volume, as well as branch-
ing [2]. The quantitative characterization of the morphological
phenotype is an essential tool to study cellular responses. Cur-
rently, most morphometric measurement approaches rely on 2D
projections, often maximum-intensity projections, of the 3D im-
ages. However, 2D quantification of 3D structures limits the accu-
racy of data obtained and results in the loss of relevant informa-

tion in the third dimension [4]. Consequently, there is a need for
quantification tools of 3D image files that can be adapted to var-
ious areas of research studying networks composed of elongated
or fiber-like structures.

Computational approaches exist to visualize and investigate
cell morphology in 2D and 3D. Proprietary software, e.g., Ami-
ra™ (ThermoFisher Scientific) [5], Imaris (Oxford Instruments), or
Metamorph® (Molecular Devices), is capable of 3D, 4D, and 5D im-
age processing and analysis. However, proprietary software pack-
ages are often black boxes tailored to machines sold by the same
companies. While the documentation usually covers the funda-
mental methodology of a function, the actual implementation is
not revealed. Regularly, these software packages are designed to
be stand-alone all-in-one products, making their automated in-
tegration into analysis protocols cumbersome. Furthermore, the
licensing expenses restrict accessibility to these software pack-
ages and therefore significantly limit the transferability and repro-
ducibility of protocols using them. A multitude of open-source im-
age processing software packages capable of 3D image visualiza-
tion and processing have been developed in response [6–8]. Many
of these tools are widely extensible by the use of plugins [6,9].

Received: June 23, 2021. Revised: October 30, 2021. Accepted: December 7, 2021
C© The Author(s) 2022. Published by Oxford University Press GigaScience. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://orcid.org/0000-0003-3157-7948
https://orcid.org/0000-0003-4771-1435
https://orcid.org/0000-0002-1174-0018
mailto:anna.jaeschke@hdr.qut.edu.au
https://github.com/theia-dev/Qiber3D
http://creativecommons.org/licenses/by/4.0/


2 | GigaScience, 2022, Vol. 11, No. 1

Thereby, software that was not specifically developed for process-
ing image stacks, such as ImageJ/Fiji [9], can be used for 3D image
analysis.

Available 3D quantification protocols often combine existing
software packages, and usually require manual handling, at least
for parts of the image analysis workflow [10–12]. Besides carrying
the risk of user-based subjectivity, this also limits the throughput
of samples for experiments with large image datasets. In some
cases, switching between multiple existing software packages is
necessary [12], making the image processing time- and resource-
consuming and, therefore, again, not feasible for large datasets.

Automation, at least for parts of the image analysis workflow,
can be achieved through external scripts or, in the case of Im-
ageJ/Fiji [9], by using macros. While this is a feasible route for
smaller datasets, the automation of image processing tasks using
tools designed primarily for a graphical user interface (GUI) is lim-
ited. These limitations become especially obvious if one aims at
using high-performance computing (HPC) clusters or cloud com-
puting resources. While the use of these tools on shared comput-
ing resources is challenging, running them without a GUI (head-
less) and unsupervised for a prolonged time requires extensive
effort. Overall, it is impractical to design an unsupervised auto-
mated workflow that can quantify 3D structures in bulk with the
available graphical image analysis tools.

Here we present Qiber3D, an open-source software package for
morphometric quantification of networks from 3D image stacks.
Qiber3D combines the required tools for a complete analytical
workflow, from the raw image to final measured values. The core
method of Qiber3D for the 3D reconstruction of networks is based
on thinning. While this approach covers many applications, e.g.,
vascular-like networks or scaffolds, we also offer the kimimaro
implementation of the Tree-structure Extraction Algorithm for
Accurate and Robust skeletons (TEASAR) [13, 14] as an alterna-
tive skeletonization method. With the implementation of two re-
construction modes, Qiber3D is usable for the quantification of a
variety of networks from image stacks.

Qiber3D generates a graph representation of a network based
on a variety of input formats. The option to inspect the network
interactively at each step of the workflow assists in optimizing
the image processing parameters. The extracted quantitative mor-
phometric data can be exported in a multitude of options to pro-
vide broad compatibility with other software. The implementa-
tion as an open-source Python package creates a highly customiz-
able program suitable for image analysis automation and tight
integration into existing workflows. By design, Qiber3D is suitable
for applying general batch distribution approaches to be used on
HPC clusters, enabling high-throughput image analysis for large
datasets.

Findings
Design principles
Qiber3D is designed to quantify a large number of network im-
age stacks without manual user intervention. To achieve this goal,
we realized the toolkit within the Python ecosystem. The access
to the wide selection of open-source modules, such as SciPy [15]
or scikit-image [16], enabled us to build upon a well-maintained
foundation. Because the Python language is widely used in the
scientific community, Qiber3D can be easily included as a build-
ing block into new and existing image analysis workflows. Using
a Jupyter [17] notebook as an easy platform to develop new work-
flows directly on a shared computing resource will help to fa-

Read raw 3D image stack
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Figure 1: Qiber3D’s pipeline combines the required image processing
steps for 3D morphometric quantification of networks. Optional tools
are provided to cover a range of image content.

miliarize the user with Qiber3D quickly and enable collaborative
work. Moreover, with the growing interest in machine-learning al-
gorithms for computer vision tasks, the straightforward integra-
tion with toolkits such as TensorFlow [18] and PyTorch [19] pro-
vides an additional advantage. An often-cited drawback of using
Python is the speed limitation compared to compiled languages.
Python code needs to be interpreted at runtime and is therefore
not optimized for the hardware it is running on. Memory usage
needs to be considered with large input datasets because the na-
tive Python datatypes can be inefficient. These limitations are mit-
igated by the fact that most scientific routines utilized in Qiber3D
are written in C or Fortran and compiled for the CPU architecture.

Qiber3D provides the tools for a complete analytical workflow,
from the raw image input to the morphometric quantification.
Aiming for high customizability, we provide a streamlined way to
configure the various parameters used in Qiber3D. Optional steps
can be included or excluded from the image processing pipeline
(Fig. 1), allowing for Qiber3D to be applied on raw as well as pre-
processed images from a variety of sources. We focused the soft-
ware’s backbone on a selected set of tools that we could test
extensively using the datasets available to us. Specific research
questions and the nature of the input data may demand cus-
tom steps/extensions/algorithms. Because we cannot anticipate
such requirements, we choose to design Qiber3D as compactly as
possible. Eventually, every image processing protocol should be
adapted for the input data and required measurements. While
deconvolution and planar illumination correction are commonly
used in image processing, they are not included in Qiber3D. During
the design and testing of Qiber3D, we concluded that deconvolu-
tion was not beneficial for our example dataset and is probably
not relevant for many users of this toolkit. Two measures can be
influenced by the point-spread function (PSF) of the microscope:
fiber radius and position. The point-spread primarily manifests
by elongating the objects in the image stacks along the z-axis.
Because the PSF is uniform over the image stack and the recon-
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struction functions find the center of the fibers, only a constant
shift of the network along the z-axis is expected. Such a shift is
without consequences for our purposes because we have no outer
frame of reference. The radius along the fibers is measured by
the shortest distance for each central voxel to the background.
As the minimum is used, the x/y-plane with an often higher res-
olution becomes the dominant source for the radius definition.
The typical PSF of the microscope has nearly no influence on the
measured radii because the fibers are assumed to have a circular
cross-section. All in all, we think that the effort necessary to gener-
ate a high-quality PSF and the time to compute the deconvolution
is not required for most use cases. Uneven illumination correc-
tion in the x/y-plane was not suitable for our testing data. Slight
changes in the illumination over the plane are already evened out
by the binarization step. Moreover, there is a chance of introduc-
ing artifacts by correcting uneven illumination on a slice-by-slice
basis. In cases where these steps are unavoidable, Qiber3D can be
extended, utilizing the many implementations of image process-
ing tasks readily available in Python. Overall, the open-source na-
ture of the software avoids analytical black boxes and allows for
researchers to tailor it to their data.

Qiber3D’s test-driven design allows for well-structured collab-
orative development. Because the size of experimental image
stacks restricts their use for integrated testing, we included a
method to create synthetic network images. This method takes a
reconstructed network as input and renders it as a layered 3D im-
age that can subsequently be stored in the desired format. This
allows for proper unit tests of the source code without the need
to download large datasets. All in all, the open-source approach
combined with the test-driven design enables the long-term evo-
lution of the project through user contributions.

Qiber3D is developed as a command-line tool, enabling smooth
integration into existing workflows, as well as automated, high-
throughput image analysis. We are aware that building Qiber3D as
a command-line tool results in a higher barrier to entry. Qiber3D
and its documentation is designed to ease the transition into using
command-line tools. Moreover, visualization using vedo [20] al-
lows the user to interact with the image output at different stages
during image processing.

Implementation
Data IO
Because interoperability is an essential goal of the Qiber3D toolkit,
a wide variety of import and export options is paramount. Con-
focal images are usually acquired using commercial imaging
platforms, and the image files are saved in a proprietary file
format containing the metadata. Qiber3D’s support for multi-
dimensional image formats is based on PIMS [21]. This choice al-
lows the use of essential image formats like .tiff-stacks, as well
as proprietary file formats from microscope vendors like Leica,
Nikon, Olympus, and Zeiss, as input. Physical size information (the
voxel size) and, for multi-channel images, the channel of inter-
est for network reconstruction is provided upon image loading or
set as configuration variable for automated workflows. For some
file formats, Qiber3D is able to extract the required metadata di-
rectly from the input file. Besides loading 3D image stacks to cre-
ate the “Network” object, it can be built from files describing the
network. Qiber3D supports the MicroVisu3D format .mv3d, tradi-
tionally used for vascular networks, as well as the .swc and the
.ntr format, popular for neuronal networks.

The internal representation of the Qiber3D network can be
stored as a binary file (.qiber) that allows for fast loading of the

Figure 2: Intensity attenuation correction in the example image of the
microvascular network. Orange indicates original signal; blue, corrected
signal; and black, intensity fit.

reconstructed network into the software. Easy visualization in
web applications, and the import into specialized rendering soft-
ware like Blender, is achieved by saving the 3D representation as
a collection of truncated cones in the .x3D file format. Moreover,
Qiber3D supports several human-readable formats. The spatial
data of the reconstructed network can be exported as .mv3d, .swc,
and .csv files. When exporting to a .json or Microsoft Excel .xlsx
file format using openpyx [22], the complete set of metadata and
calculated properties is included. Furthermore, the network can
be exported as a 3D .tiff image stack.

Image pre-processing
Median filter (optional)

The primary purpose of the 3D median filter, also known as the
despeckle filter, is the removal of speckles and extrema [23]. The
median of its surrounding voxels replaces the value of each voxel.
By default, a 3-voxels-wide neighborhood is used. However, this
size can be modified in the configuration depending on the noise
present in the image.

Intensity attenuation correction (optional)

In 3D confocal images, light absorption can cause a decrease in
signal intensity in slices located deeper into the sample. An ex-
ponential curve is fitted to the mean intensities IA in each of the
slices to their physical stack position z to correct for this intensity
attenuation (Fig. 2).

IA = a exp(bz) (1)

The optimal parameters a and b for the intensity correction are
determined using a non-linear least-squares fit.

Resampling to an isotropic voxel size

Commonly, the x/y resolution of image stacks differs from the res-
olution along the z-axis. As a cubic voxel size is beneficial to op-
timize the subsequent image processing steps, the z-axis or the
x/y-plane of the image is resampled to a uniform resolution using
a third-order spline interpolation [24].

Gaussian filter (optional)

The image stack is blurred with a Gaussian filter simultane-
ously in all three dimensions to minimize the effect of noise on
the image segmentation by reducing sharp differences between
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A B

Figure 3: Network optimization. After thinning (A), the network is
optimized by replacing tiny segments with more extensive structures
and smoothing out voxel artifacts (B). Scale bar: 12.3 μm (10 voxels).

neighboring pixels. Applying a Gaussian filter reduces the noise
level and imaging artifacts significantly. Because the values now
change smoothly from the outside to the inside of a structure, a
border created by a cut-off will be more consistent and less rough.

Image segmentation
Binarization

The gray-scale image is reduced to a binary representation to lo-
cate the structures’ boundaries and label the segments. All voxels
equal to or greater than a threshold are set to “True” and all oth-
ers to “False.” A dynamic threshold calculation for each stack is
performed, permitting an automated workflow. By default, Otsu
thresholding, an unsupervised, nonparametric method that tries
to maximize the separability of the resultant classes (exactly 2
in the binary image), by utilizing the zeroth- and first-order mo-
ments of the histogram [25], is applied. Other thresholding algo-
rithms can be selected, depending on the image. Alternatively, the
threshold can be set directly as a percentage value of the signal
intensity.

Morphological operations (optional)

The obtained structures in the binarized image stack might not
be perfectly solid, depending on the quality of the input data. A
combination of dilation steps followed by an equal number of ero-
sion steps fills small holes and compacts the segments’ surface.
The number of steps is configurable. In this section, small islands
caused by imaging artifacts can also be removed on the basis of a
threshold set by the user.

Network reconstruction
Reconstruction by thinning (default)

The default network reconstruction approach is based on thin-
ning, a morphological operation to remove selected foreground
pixels from binary images. Initially, the image stack is distance
transformed and every foreground (“True”) voxel in the stack is
assigned the shortest Euclidean distance to a background (“False”)
voxel. Subsequently, the Lee-Kashyap algorithm [26] is applied to
extract the medial axis, and the binary image is reduced to its
skeleton. The remaining foreground voxels, the skeleton, are mod-
eled as a graph using NetworkX [27], defined by vertices that are
connected by edges. Each foreground voxel represents a vertex,
and connecting edges are formed between neighboring voxels. A
radius is assigned to each vertex on the basis of the earlier dis-
tance transformation. To form “Segments” (see below for details),
the graph is reduced to contain only vertices representing end and
branch points.

Distinctive edges are often formed along with branch points,
sharp bends, or on the network’s rim. Such edges occur between
vertices that are direct neighbors, and the resulting path is partic-
ularly jagged (Fig. 3B). This resolution artifact results in an over-
estimation of the fiber length and volume and an inflated branch

Fiber 1

Fiber 2

S4

S5

S6

S7

S8

S2

S3

S1

Network

Figure 4: Qiber3D’s hierarchical structure. Segments S1–S3 generate
Fiber 1 (filled points), and segments S4–S8, Fiber 2 (hollow points),
forming the Network. Branch points are colored in gray.

point count. To mitigate these drawbacks, edges shorter than 6
voxels are merged with larger neighbors or removed if isolated
and each edge is interpolated using a cubic spline (Fig. 3B). New
points are generated by default at a rate of ∼1 point every 10 vox-
els. All edges are fit to a spline with ≥5 points.

Reconstruction with TEASAR (alternative)

Initially, the TEASAR method aimed to generate organ centerlines
from 3D imaging generated by MRI, or CT scans [13,14]. It has since
been used in a variety of applications, from pore networks in clay
rocks [28,29] to neuronal networks [30,31]. Qiber3D incorporates
the kimimaro [32] implementation of the TEASAR algorithm that
was developed to skeletonize neurons. For processing networks
that resemble neuronal structures, i.e., branching of structures
(dendrites) from a cell body (soma), the use of this method is rec-
ommended over the thinning-based reconstruction. The output
of the skeletonization step is a connected graph, from which we
extract the quantitative measurements of the network.

Morphometric measurement
In Qiber3D the reconstructed network is represented in a hier-
archical structure (Fig. 4). We use the terms “Network,” “Fiber,”
and “Segments” to describe the components of the reconstruction.
Note that these expressions are purely used conceptually to label
Qiber3D’s output and that the terms might not refer to the ac-
tual structure. A Fiber might be a real fiber, an elongated cell, or
another object depending on the application.

The largest entity is the Network, which represents the entirety
of the structure. It is composed of a collection of Fibers formed
by connected Segments, the smallest elements. A Segment is de-
scribed by a collection of sorted points stored along the corre-
sponding radius. The vertices between the points are interpreted
as truncated cones. Segments end when they reach a branch point
(gray points, Fig. 4). Therefore, Segments themselves are never
branched. A branch point belongs to all Segments that it connects.

Each element, on the different hierarchical levels, is defined by
a unique identifier and several quantitative properties, e.g., the
volume or the mean radius. The mean radius can be misleading
considering that the distance between the points forming an el-
ement can be non-uniform, resulting in a skewed measurement.
Therefore, we included the notion of a length-weighted cylindrical
radius and return the radius of a cylinder with the same volume
and length as the element of interest. While modeling the vol-
ume as overlapping truncated cones is sufficient in most cases, an
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Figure 5: Synthetic network example with (A) view on the x/y-plane and
(B) view on the z/y-plane. (C) A branch point of the synthetic network
with the original (black) and reconstructed (red) centerlines.

improved volume estimation can be obtained from the rasterized
network. As the start and end points of a Fiber within a given 3D
image stack are interchangeable, the directional data are analyzed
on the basis of the assumption that all Fibers are pointing up-
wards (positive z-axis). Depending on the application, Fibers can
be convoluted and the orientation of the Segments can be more
meaningful in some cases. In both cases, the orientation of each
element is described using the azimuth and altitude regarding a
half-sphere.

For the Network additional measurements, such as the num-
ber of Fibers, Segments, and branch points, or the bounding box
volume, are provided. The Network object also stores the relevant
metadata of the input.

Visualization
Qiber3D uses vedo, a lightweight Python module, that is based on
VTK [33] and numpy [34], to visualize the network in 3D. The em-
bedded rendering capability allows the users to quickly inspect a
network by rotating the camera view and zooming into regions of
interest. A linked view of the different reconstruction steps and
the resulting skeleton enables the user to examine them in rela-
tion to each other. The network’s color can be customized to repre-
sent different network properties, such as fiber length, volume, or
mean radius. In addition to the interactive visualization, 3D views
can be exported as static images or animations.

Results
To provide a comprehensive overview of the features, Qiber3D was
applied to the synthetic example image, as well as two experimen-
tal datasets, an in vitro microvascular network, and a neuron that
was reconstructed elsewhere.

Synthetic example image
The output of the synthetic example image is presented in Fig. 5
and Supplementary Movie S1. The synthetic example network
was visualized in 3D and the segments composing the fibers were
observed (Fig. 5A). The measurements of the synthetic network re-

Table 1. Comparison of the synthetic network with the output of
Qiber3D after reconstruction

Parameter
Synthetic
network

Qiber3D
output

No. of fibers 4 4
Total length (μm) 1,141.44 1,120.84
Total volume (μm3) 4,688.67 4,665.62
Mean radius (μm) 0.94 0.96
Cylinder radius (μm) 1.14 1.15

constructed with Qiber3D were in agreement with the input data
(Table 1). Interestingly, the branch points of the fibers were slightly
displaced (Fig. 5C) without affecting the measured total volume
of the synthetic network (Table 1). This discrepancy is due to the
thickness of the fibers concealing the original merging points dur-
ing reconstruction.

Microvascular network
Qiber3D was used to analyze a confocal image of a cellular net-
work derived from microvascular cells grown in vitro (Fig. 6A).

The analysis was performed, including all optional procedures
of the workflow (Fig. 6). The application of the median filter re-
sulted in a clearer image with fewer extrema (Fig. 6B). Upon cor-
rection of the intensity attenuation, the signal distribution was
found more even along the z-axis (compare Fig. 6B and C, lower
panels). The quantitative observation was confirmed by the dis-
tribution of the mean signal intensity slice along the z-axis be-
fore (Fig. 2, orange line) and after (Fig. 2, blue line) the correc-
tion step. If the z-drop correction was switched off, the vessels in
the lower part of the image were lost after reconstruction of the
microvascular network (Supplementary Fig. S1B, D–F). Following
the intensity attenuation correction, application of a Gaussian fil-
ter resulted in noise reduction and smoothing of the boundaries
(Fig. 6D). After pre-processing the image using the optional filters,
image segmentation was performed. Morphological operations, in
the form of a combination of dilation and erosion (each with 5 it-
erations) and the removal of islands smaller than 100 μm3, were
applied to the binary image (Fig. 6E). Omitting the morphological
operations prior to reconstruction resulted in the presence of nu-
merous small particles that were not connected to the microvas-
cular network (“islands”) (Supplementary Fig. S1C–E). Finally, the
skeleton of the microvascular network was successfully recon-
structed from the 3D image stack (Fig. 6F, Supplementary Movie
S2). Each step was visualized interactively while processing the
input image and compared together afterwards (Supplementary
Movie S3). Removing the optional filter steps for the image of the
microvascular-like network led to artifacts in the reconstructed
network (Supplementary Fig. S1B, E, and F).

The distribution of network attributes can be visualized in
Qiber3D in the form of a histogram. In Fig. 7A the distribution of
the cylinder radius in the cellular network is presented as an ex-
ample. The fiber radii followed a normal distribution between 1
and 10 μm, with a mean at 6.2 μm. To visualize the directional
distribution in 3D, we introduced a spherical histogram. In Fig. 7B
every bin represents a part of a half-sphere. The start point for
every network fiber was considered to be at the center of the half-
sphere. The segments of each fiber were averaged into a single
vector that captures the fiber’s dominant direction. Because the
surface areas of the different bins of a half-sphere are not per-
fectly equal, the number of intersecting vectors was divided by
the bin’s surface area. Furthermore, the fiber density of each bin
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Figure 6: Qiber3D’s image processing workflow. An image of each step is
shown as a mean intensity projection along the z-axis (upper panels)
and along the x-axis (lower panels). (A) Raw image. Green indicates
AlexaFluor 488-staining of CD31, a surface marker specific for
endothelial cells. Scale bar: 500 μm. (B) Image after median filter. (C)
Image corrected for intensity attenuation (z-drop correction). (D) Image
after Gaussian blur and surface compacting. (E) Binarized image. (F)
Reconstructed microvascular network.

was scaled using the mean fiber density over the half-sphere to al-
low for streamlined comparisons between multiple networks. The
color scale indicates the scaled fiber density. For the microvascu-
lar network, the majority of fibers are located parallel to the x/y-
axis (Fig. 7B).

Processing a 1-GB nd2 file with Qiber3D on an Intel Core i7-6700
machine with 16 GB RAM running a Windows 10 (64-bit) operat-
ing system took ∼7.5 minutes. Manually analyzing a similar im-
age takes ∼8.5 min, not considering the time to switch between
various software packages [12]. While this is a slight decrease in

A

B

Figure 7: Graphical output of quantitative data from the microvascular
network in Qiber3D. (A) Distribution of the cylinder radius of the fibers
within the network. (B) Orientation distribution of the fibers in 3D.

processing time of 1 image, Qiber3D can be applied to numerous
images without user interaction, making it suitable for analyz-
ing large datasets. Because Qiber3D is designed to run on a single
CPU, running multiple processes of Qiber3D in parallel will ac-
celerate the mean image processing time for large datasets sig-
nificantly. The use of built-in multiprocessing tools in Python en-
ables straightforward implementation of parallel processing. For
larger deployments on HPC clusters, task management using MPI
for Python enables the analysis of vast image datasets. The imple-
mentation of Qiber3D as a Python package enables smooth inte-
gration with other Python libraries to build customized tools that
meet the requirements of varying computational environments,
e.g., different HPC centers.

Neuron morphology
We used Qiber3D to visualize and measure a reconstructed neu-
ron from a red-necked wallaby [35]. The published .swc file was
obtained from NeuroMorpho.org [36]. We compared the 3D ren-
dering of the neuron in Qiber3D with 2 other methods. The thick-
ness of the structures was clearly visible in the Qiber3D visual-
ization (Fig. 8C, Supplementary Movie S4), similar to the image on
NeuroMorpho.org (Fig. 8B). In contrast, in the rendering with NL-
Morphology Viewer, a commonly used software tool to visualize
neuron morphology, all fibers were displayed with the same di-
ameter (Fig. 8B). The measurements from Qiber3D were in agree-
ment with the published data on the NeuroMorpho.org website,
as well as the output from NLMorphology Viewer (Table 2). The

http://neuromorpho.org/
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Figure 8: Visualization of the reconstructed neuron (A) in NLMorphology
Viewer, (B) on NeuroMorpho.org, and (C) with Qiber3D. Note that the
single neuron in this example represents exactly 1 fiber in Qiber3D.

Table 2. Comparison of the quantitative output from the Neuro-
Morpho.org website, NLMorphology Viewer software, and Qiber3D

Parameter NeuroMorpho.org
NLMorphology

Viewer Qiber3D

Branch points 30 30 30
Mean diameter (μm) 1.09 NA 1.38
Total length (μm) 5,097.48 5,046.92 4,991.83
Total volume (μm3) 6,362.05 6,347.60 6,288.30

NA: Not applicable.

quantification of the total length in Qiber3D excludes the soma
of the neuron, resulting in a slightly lowered output compared to
the measurements with the other tools.

Conclusion
Here we present Qiber3D, a toolkit to visualize, reconstruct, and
quantitatively analyze networks from 3D image stacks. Qiber3D
combines the tools for a complete analytical workflow, from the
raw image input to the morphometric quantification, within a
highly configurable ecosystem. However, it can also be used in
conjunction with other software packages and integrated into
existing analysis pipelines. By applying a building block princi-
ple, Qiber3D is developed to be highly customizable and adapt-
able for a variety of input datasets. By default, Qiber3D offers
2 skeletonization algorithms to cover a variety of input network
types. The thinning-based core method of this software package
is suitable for reconstructing cell-derived as well as artificial fi-
brous networks. Additionally, 3D reconstruction based on the kim-
imaro implementation of the TEASAR algorithm [13,14] is possible
in Qiber3D. The embedded visualization capability allows for the
inspection of each image processing step to aid optimization of
the image processing workflow. While the overall processing time
is similar to manual processing, Qiber3D is designed to be used
entirely hands-off to automate image analysis of large datasets.
Running Qiber3D-based analysis on HPC clusters makes it suit-

able for high-throughput processing. Qiber3D’s test-driven design
within the Python ecosystem allows for long-term evolution of the
project. For example, integration with TensorFlow and PyTorch
will be of interest in the future to apply machine-learning algo-
rithms for computer vision tasks. In summary, Qiber3D is a versa-
tile 3D image analysis toolkit that is accessible for a wide range of
research questions.

Methods
Cell culture
Prostate microvascular cells (PrMECs) were obtained from Sci-
enCell™ (Australian Biosearch, Wangara, WA, Australia) and ex-
panded in endothelial cell medium (ECM) (Australian Biosearch,
Wangara, WA, Australia). Cancer-associated fibroblasts (CAFs)
were kindly provided by the Prostate Cancer Research Group, De-
partment of Anatomy and Developmental Biology, Monash Uni-
versity [37]. The fibroblasts were cultured in RPMI 1640 medium
(no phenol red) (Gibco, ThermoFisher Scientific, Scoresby, VIC,
Australia) supplemented with 10% fetal bovine serum (Gibco,
ThermoFisher Scientific, Scoresby, VIC, Australia), 1 nM testos-
terone (Sigma-Aldrich, CastleHill, NSW, Australia), 10 ng mL−1 hu-
man fibroblast growth factor 2 (FGF-2) (Miltenyi Biotec, Macquarie
Park, NSW, Australia), 100 U penicillin, and 100 μg mL−1 strep-
tomycin (Gibco, ThermoFisherScientific, Scoresby, VIC, Australia).
All cells were maintained at 37◦C in a humidified incubator con-
taining 5% CO2, with media changes every 2–3 days.

Preparation of hydrogel cultures
The 3D co-cultures were obtained using hydrogels composed of
synthetic starPEG and maleimide-functionalized heparin as de-
scribed previously [38,39]. Briefly, PrMECs and CAFs were seeded
into hydrogels at a density of 6 × 106 and 6 × 105, respectively. Vas-
cular endothelial growth factor (VEGF) (Peprotech, Lonza, Mount-
Waverly, VIC, Australia), FGF-2, and stromal cell-derived factor 1
(SDF-1) (Miltenyi Biotec, Macquarie Park, NSW, Australia) were in-
cluded into the gel at a concentration of 5 μg mL−1 each. Addition-
ally, 2 mol of RGD-SP (H2N-GCWGGRGDSP-CONH2) were added to
the gel. A molar ration of starPEG to heparin-maleimide of 1:0.75
was used to obtain a stiffness of ∼500 Pa (storage modulus). The
starPEG-heparin hydrogels were maintained in ECM for 7 days at
37◦C in a humidified incubator containing 5% CO2.

Immunofluorescence of hydrogels
The cell-containing hydrogels were fixed in 4% (v/v)
paraformaldehyde (Sigma-Aldrich, Castle Hill, NSW, Australia)
for 45 min. Blocking and permeabilization were achieved by
incubation with 5% goat serum (Gibco, ThermoFisher Scientific,
Scoresby, VIC, Australia) and 0.1% Triton-X100 (Merck Millipore,
Bayswater, VIC, Australia) in phosphate-buffered saline (PBS) for
2 h at room temperature. Primary antibody staining against the
endothelial marker CD31 (cat No. bba7, R&D Systems; 1:200 in
1% goat serum) was performed overnight at 4◦C. Subsequently,
the samples were washed in 1% goat serum in PBS for 8 h with
3 changes of the washing buffer. Polyclonal goat anti-mouse IgG
conjugated to Alexa-Fluor 488 (cat No. A11001, Invitrogen, Ther-
moFisher Scientific, Scoresby, VIC, Australia; 1:300) secondary
antibody, Alexa-Fluor 633 conjugated Phalloidin (Invitrogen,
ThermoFisher Scientific, Scoresby, VIC, Australia; 1:100), and 5 μg
mL−1 4′, 6-diamidino-2-phenylindole (DAPI) in 1% goat serum/PBS
were applied overnight at 4◦C. Images were acquired on a Nikon
A1R inverted confocal microscope (Nikon Instruments Inc.; 10x,
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1.32 × 1.32 μm px−1, z-step size 2.5 μm × 181). Image analysis was
performed on the AlexaFlour-488 (green) channel of the acquired
images to analyze the networks formed by the microvascular
endothelial cells.

Availability of Source Code and
Requirements
� Project name: Qiber3D
� Project home page: https://github.com/theia-dev/Qiber3D
� Operating system(s): Platform independent
� Programming language: Python
� Other requirements: Python ≥3.7; for a list of required Python

libraries, refer to the project’s requirements.txt
� License: MIT
� biotoolsID: qiber3D
� RRID:SCR_021790

Data Availability
The raw images of the microvascular-like network are available
as nd2 and tiff files at [40]. Supplementary Movies S1–S4 are also
available on FigShare under [41], [42], [43] and [44] respectively.
Snapshots of our code and other supporting data are openly avail-
able in the GigaScience repository, GigaDB [45].

Additional Files
Supplementary Figure S1. Qiber3D’s image processing workflow
with various combinations of optional steps in comparison to Fig.
6 in the main manuscript.
Supplementary Movie S1. Synthetic network
Supplementary Movie S2. Microvascular network
Supplementary Movie S3. Compare extraction steps
Supplementary Movie S4. Neuronal network
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