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ABSTRACT The Sulfitobacter bacteria are ubiquitous and important players in or-
ganic sulfur cycling in marine environments. Here, we report the complete genome
sequence of �GT1 infecting Sulfitobacter sp. HGT1, both of which were isolated from
coastal sediment. �GT1 has a 40,019-bp genome containing 69 predicted protein-
encoding genes.

The genus Sulfitobacter belongs to the family Rhodobacteraceae, which is one of the
major alphaproteobacterial groups in aquatic environments (1). Sulfitobacter bac-

teria have been isolated from diverse marine habitats and are known to affect the
biogeochemical sulfur cycle in the ocean (1–5). Five Sulfitobacter phages have been
isolated (Table 1), all of which are marine podoviruses (6–8).

The host bacterium Sulfitobacter sp. HGT1 and phage �GT1 were isolated from a
tidal flat (37.62°N, 126.37°E) in the Yellow Sea, South Korea, in August 2011. A surface
sediment sample was resuspended with a filtrate of ambient seawater that had been
prefiltered with a 0.22-�m-pore membrane filter (Millipore). An aliquot of the slurry was
spread on marine agar (Difco), and the plate was incubated aerobically at 30°C. Strain
HGT1 was purified and identified as described previously (3). Phages in the filtrate
(0.22-�m pore size) of ambient seawater were concentrated using Amicon Ultra-4
centrifugal filter units (Millipore). The phage concentrate was inoculated onto a host
bacterial culture according to the double-layer plaque assay protocol (9). A single
plaque, designated �GT1, was selected and purified by four rounds of double-layer
plaque assays.

To extract genomic DNA, �GT1 concentrates were precipitated with polyethylene
glycol 8000 (Sigma) from fully lysed plates as described previously (10). DNA was
extracted using the QIAamp MinElute virus spin kit (Qiagen). A sequencing library was
constructed with the Accel-NGS 2S PCR-free DNA library kit (insert size, �300 bp; Swift
Biosciences) and sequenced by Macrogen, Inc. (Seoul, South Korea), using the Illumina
MiSeq platform with a 2 � 300-bp paired-end format. Raw reads were processed with
Trimmomatic version 0.39 (11) with default settings to trim the adapter and low-quality
sequences. PhiX control reads were removed using the bbduk.sh script in the BBMap
package version 38.84 (12). The trimmed reads (705,348 reads in total) were
assembled using de novo assembly with default settings in CLC Genomics Work-
bench version 8.51 (Qiagen, Aarhus, Denmark), resulting in a circular contig with an
average coverage of 3,795�. Phage termini and packaging mode were identified using
PhageTerm with default settings (13). Open reading frames (ORFs) were predicted
using Phage Search Tool Enhanced Release (PHASTER), GeneMark, GeneMarkS, and
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GeneMark.hmm (14–16). Translated ORFs were examined using PsiBLAST version
2.2.28� and HHpred version 3.2.0 (17, 18) searches against the Protein Data Bank (PDB),
Pfam, and NCBI conserved domain databases (19–21). Phylogenetic analysis of the large
terminase sequence of �GT1 (phiGT1_2) was performed using the UCSC Sequence
Alignment and Modeling system version 3.5 (22) and MrBayes version 3.2 (23), as
described by Casjens et al. (24). The complete genome sequence of �GT1 was used as
a query for MegaBLAST searching with default settings against the NCBI nonredundant/
nucleotide database (release 237.0) to find highly similar sequences.

The host bacterium Sulfitobacter sp. HGT1 was most closely related to the type strain
of Sulfitobacter marinus (25), based on the 16S rRNA gene sequence similarity (99.7%),
with a GC content of 57.9%. The complete genome of �GT1 is 40,019 bp, with a GC
content of 56.4% and a total of 69 predicted ORFs (Table 1). The �GT1 genome was
concluded to be circularly permuted by a headful packaging system based on the
results from the analysis of reads using PhageTerm and the similarity of the large
terminase sequence to other headful packaging terminases. For reporting, the first base
of the �GT1 genome was intentionally set at a start position of the gene encoding a
putative small terminase subunit (phiGT1_1), the coding sequence of which typically
contains the recognition and cleavage sites for the first end produced on the concate-
mer (26). The genome-wide comparison showed that the best hit for �GT1 was the
temperate Sulfitobacter phage NYA-2014a in the Podoviridae family (Table 1). In terms
of genome size and GC content, �GT1 was more similar to the three known temperate
Sulfitobacter phages (40,929 to 42,092 bp, with GC contents of 58.5 to 59.0%) than the
two known lytic Sulfitobacter phages (73,325 to 74,480 bp, with GC contents of
43.0 to 47.0%) (Table 1). Although �GT1 was distantly related to the three known
temperate Sulfitobacter phages, with 21 to 25% coverage and 74.8 to 80.5% identity
(Table 1), those three temperate phages were aligned among themselves over sub-
stantial fractions of their genomes (74 to 95%), with high identity values (99.5 to 99.9%).
No significant match was found between �GT1 and the two known lytic Sulfitobacter
phages (Table 1). �GT1 displayed a lytic life cycle based on plaque characterization (i.e.,
clear plaque formation) and gene content, including the presence of lysis genes
(endolysin [phiGT1_23] and holin [phiGT1_24]) and the absence of an integrase gene.
Neither terminal repeats nor RNA polymerase genes were found in �GT1, but ORFs
homologous to podoviral core tail proteins P22 gp10 (phiGT1_15) and T7 tubular tail A
(phiGT1_14) were found, indicating that �GT1 is likely to be a new marine lytic
Sulfitobacter phage in the family Podoviridae.

Data availability. The annotated complete sequence of �GT1 has been deposited

in DDBJ/ENA/GenBank under the accession number MT584811 (BioProject number
PRJDB9847 and BioSample number SAMD00233255). The version of the phage genome
described in this paper is the first version. The raw sequence reads are available in the
DDBJ Sequence Read Archive with the accession number DRA010407. The genome
sequence of the host bacterium Sulfitobacter sp. HGT1 is also available in DDBJ/
ENA/GenBank under the accession number BLWI01000000 (BioSample number
SAMD00228206).

TABLE 1 Genomic characteristics of �GT1 and other Sulfitobacter phages

Phage Life cycle
GenBank
accession no.

Genome
size (bp)

GC content
(%)

No. of
ORFs

Coverage with
�GT1 (%)

Identity with
�GT1 (%)

Source or
reference

�GT1 Lytic MT584811 40,019 56.4 69 100 100 This study
NYA-2014a Temperate NC_027299 42,092 58.5 71 25 74.8 GenBank
�CB2047-A Temperate NC_020858 40,929 58.8 73 21 80.5 6
�CB2047-C Temperate NC_020856 40,931 59.0 71 21 78.2 6
�CB2047-B Lytic NC_020862 74,480 43.0 92 NSa NS 7
EE36�1 Lytic NC_012696 73,325 47.0 79 NS NS 8
a NS, no significant similarity.
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