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Introduction
Over the past decades, nonalcoholic fatty liver dis-
ease (NAFLD), which is often referred to as hepatic 
manifestation of the metabolic syndrome, has 
become the most frequent chronic liver disease.1,2 
NAFLD is one of the main causes for liver trans-
plantation,3–5 and was shown to be present in 58.5% 
of hepatocellular carcinoma (HCC) patients in the 
United States.6 Hence, progressing from simple 
steatosis to steatohepatitis (NASH) and cirrhosis, 
NAFLD is a major risk factor for the development 
of HCC,7 which is the second leading cause of can-
cer death worldwide.8 Yet, it is not fully understood 
which factors cause the progression from steatosis 
to HCC. However, a chronically inflammatory 

environment is the basis for hepatocellular carcino-
genesis.9 Among other inflammatory cells, mac-
rophages and their secretion of pro-inflammatory 
cytokines play a crucial role in NAFLD progression, 
and thus carcinogenesis.10,11 It has long been known 
that macrophages can polarize towards M1 or M2 
phenotypes.12 While M1 polarization is related to 
progressive NAFLD, M2-polarized macrophages 
mediate the opposite effect.13

Increasing food intake and sedentary lifestyle 
contribute substantially to the worldwide epi-
demic of metabolic syndrome and NAFLD. In 
recent decades, the dietary n-3/n-6 polyunsatu-
rated fatty acid (PUFA) ratio in industrialized 
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countries has been decreasing dramatically.14 
High levels of dietary n-6 PUFA are known to 
increase inflammation, constrict blood vessels 
and cause platelet aggregation,15 whereas n-3 
PUFAs are well known for their anti-inflamma-
tory properties. N-3 PUFAs have been shown to 
decrease the risk of, for example, cancer, cardio-
vascular diseases, diabetes, and obesity.16 N-3 
and n-6 PUFAs are endogenously converted to 
lipid mediators that account for their regulatory 
properties.17,18 Accordingly, n-3 PUFA-derived 
specialized proresolving lipid mediators, like 
resolvins, have been shown to suppress tumor 
growth.19 Physiologically, the essential fatty acid 
α-linolenic acid (ALA, n-3) and linoleic acid (LA, 
n-6) are converted to eicosapentaenoic acid 
(EPA), docosahexaenoic acid (DHA), and ara-
chidonic acid (AA), respectively.20 For this pro-
cess and the subsequent conversion to bioactive 
lipid mediators, n-3 and n-6 PUFAs compete for 
the same converting enzymes.17 Consequently, 
the dietary n-3/n-6 PUFA ratio substantially 
affects the profile of bioactive lipid mediators and 
the availability of the fatty acids in tissues.21

Even though numerous positive effects of n-3 
PUFAs have been shown in different diseases, 
including NAFLD, it is still unknown whether 
increased dietary n-3 PUFA uptake and increased 
n-3/n-6 PUFA ratios are able to prevent NAFLD-
related tumorigenesis. Therefore, we aimed to 
clarify whether increased dietary n-3 PUFA con-
tent and increased n-3/n-6 PUFA ratios alleviate 
NAFLD-related tumorigenesis.

Material and methods

Mouse model
For assessment of NAFLD-related tumorigene-
sis, the streptozotocin/high fat diet (STZ/HFD) 
mouse model was used as described previously by 
our group.22,23 The mice develop progressive 
NAFLD and display NASH with light fibrosis at 
12 weeks, and liver tumors at 20 weeks of age. In 
short, male C57BL/6 mice (Charles River, 
Sulzfeld, Germany) were injected with 200 µg 
STZ (Sigma-Aldrich, St. Louis, MO, USA) intra-
peritoneally at day 2 postnatal. At 28 days of age 
the mice were fed continuous HFDs. The general 
state of health was monitored daily, and blood 
glucose levels and body weight were measured 
weekly. Animals exhibiting normal blood glucose 
levels were excluded from the experiment. The 

mice were sacrificed at ages of 12 and 20 weeks 
and blood and tissue was collected as described 
previously by our group.23 The experimental 
design is illustrated in Figure 1(a). The mice were 
kept on water and food ad libitum at a 12 h light/
dark cycle with one to five mice per cage on 
chipped wood bedding and environmental enrich-
ment in form of a cardboard tube and nesting 
material. Approval requirements for studies 
involving animals in Germany are strict and 
ensure highest scientific, animal welfare, and ethi-
cal standards when conducting the studies. 
Requirements follow federal law laid out in the 
German Animal Welfare Act (Tierschutzgesetz) 
and the European Directive 2010/63/EU on the 
protection of animals used for scientific purposes. 
Approval to conduct research involving animals is 
given by the local authority of the state in which 
the research institution is located (for Mecklenburg-
West Pomerania: ‘State Office for Agriculture, 
Food Safety, and Fishery of Mecklenburg-West 
Pomerania’, (7221.3-1-022/15)). Compliance with 
all required and approved standards are enforced 
on an institutional level by the animal welfare 
officer of the institution. In addition, regular con-
trols are conducted by the local authorities.

Diets
At 28 days of age, the mice were assigned to dif-
ferent groups receiving different HFDs [60 kJ% 
fat; D12492(II) modified experimental diet; 
Ssniff, Soest, Germany]. Three diets were fed, 
which differed in their n-3/n-6 PUFA ratio and 
n-3 PUFA content (Figure 1a). While the con-
trol HFD exhibited an n-3/n-6 PUFA ratio of 
1:8, the other two HFD were fish-oil-supple-
mented, leading to an n-3/n-6 PUFA ratio of 1:1 
and 5:1, respectively. An n-6 PUFA oversupply, 
which is typical for western diets, is reflected by 
the 1:8 diet, whereas the fish-oil-supplemented 
diets allow the assessment of a well balanced n-3/
n-6 PUFA ratio (1:1) and a marked oversupply 
of n-3 PUFA (5:1). A fatty acid profiling analysis 
of the diets (Table 1) confirmed that the 1:1 diet 
differed from the control diet (1:8) only in its 
n-3/n-6 PUFA ratio, while the composition of 
saturated fatty acid (SFA), monounsaturated 
fatty acid (MUFA), and PUFA was similar. The 
5:1 diet contained less SFA and MUFA but more 
PUFA compared with the 1:8 diet due to high 
amounts of EPA and DHA, leading to an 
increased n-3/n-6 PUFA ratio of 5:1 and higher 
n-3 PUFA content.
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Hematological measurements and plasma 
analyses
Alanine aminotransferase (ALT) and glutamate 
dehydrogenase (GLDH) activity in EDTA 
plasma, blood glucose levels, and plasma triglyc-
eride content was measured as described previ-
ously by our group.23

Histology and immunohistochemistry
Formalin-fixed liver tissue was embedded in par-
affin and cut into 5 µm thick sections. The sec-
tions were then stained with hematoxylin/eosin 
(H&E) and Sirius red, respectively. All histologi-
cal analyses were performed in a blinded manner. 
NAFLD Activity Score was determined as pro-
posed by Kleiner and colleagues.24 The score for 
each section was determined by three independ-
ent observers. For analysis of Sirius red staining at 

least 20 photomicrographs were consecutively 
taken using a 20× objective and a polarization fil-
ter. The stained area was then quantified using 
Adobe Photoshop CS5 Extended 12.0.4 (Adobe, 
San José, CA, USA). For tumor analysis, photo-
micrographs of H&E-stained liver sections were 
taken using a 1.25× objective. The micrographs 
were then combined with a picture of the whole 
liver section. Areas of neoplastic foci or tumors, as 
well as the area of the whole section, were selected 
and measured using ImageJ 1.47v (Wayne 
Rasband, National Institutes of Health, Bethesda, 
MA, USA).

Oil Red O staining was performed as described 
previously by our group.23 At least 10 photomi-
crographs were taken per section using a 20× 
objective. The red stained area was quantified 
with ImageJ 1.47v.

Figure 1.  Experimental design and evaluation of general disease parameters. (a) Experimental design of 
mice treated with STZ and HFD, differing in n-3 and n-6 PUFA contents and ratios (n-3/n-6: 1:8, 1:1, 5:1). 
Body weight (b) and liver/body weight index (c) of STZ/HFD-treated mice fed HFDs differing in n-3/n-6 PUFA 
ratios (1:8, 1:1 and 5:1) (n = 10–12 per group). Values are given as mean ± SEM. Differences between the 
groups were assessed by two-way ANOVA followed by Tukey’s range test within each time point. *p < 0.05 
versus 1:8 fed mice, **p < 0.01 versus 1:8 fed mice. (d) Survival of STZ/HFD-treated mice fed HFDs differing 
in n-3/n-6 PUFA ratios (1:8, 1:1 and 5:1). Survival curves were created using the product limit method of 
Kaplan and Meier, and statistical analysis was performed using log-rank test and Bonferroni correction. 
*p < 0.05 (Bonferroni corrected p < 0.01667) versus 1:8 fed mice (HR: 0.375, 95 % CI; 0.182–0.776), **p < 0.01 
(Bonferroni corrected p < 0.0033) versus 1:8 fed mice (HR: 0.129, 95 % CI; 0.129–0.608).
HFD, high-fat diet; PUFA, polyunsaturated fatty acid; SEM, standard error of the mean; STZ, streptozotocin.
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Table 1.  Composition of the diets. Protein, fat, fibre, ash and energy content of the diets as provided by the 
manufacturer. SFA, MUFA and PUFA proportions in the experimental diets (given as percentage of total fatty 
acids) measured by gas chromatography.

1:8 diet 1:1 diet 5:1 diet

Crude protein (%) 24.4 24.4 24.4

Crude fat (%) 34.6 34.6 34.6

Crude fibre (%) 6.0 6.0 6.0

Crude ash (%) 5.4 5.5 5.5

Metabolizable energy 
(MJ/kg)

21.6 21.5 21.5

SFA
(% of total fatty acids)

C12:0 0.09 0.11 0.18

C14:0 3.03 3.71 5.18

C15:0 0.46 0.51 0.52

C16:0 26.18 26.34 21.03

C17:0 1.07 1.09 0.80

C18:0 21.89 21.11 12.88

C20:0 <0.01 <0.01 <0.01

C22:0 <0.01 <0.01 <0.01

Sum SFAa 53.19 53.32 41.33

MUFA
(% of total fatty acids)

C16:1cis-9 2.84 3.60 5.39

C18:1cis-9 31.58 29.79 19.17

C18:1cis-11 1.30 1.49 2.18

C18:1trans-11 1.82 1.88 0.88

Sum MUFAb 38.81 38.19 29.30

PUFA
(% of total fatty acids)

C18:2n-6 (LA) 6.68 2.58 2.99

C18:3n-3 (ALA) 0.92 0.38 0.79

C18:3n-6 <0.01 <0.01 <0.01

C20:2n-6 <0.01 <0.01 <0.01

C20:3n-6 <0.01 <0.01 <0.01

C20:4n-6 <0.01 <0.01 <0.01

C20:5n-3 (EPA) <0.01 2.86 14.00

 (Continued)
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Immunohistochemical staining against F4/80 was 
conducted as described previously by our group.23,25 
For analysis of the staining, at least 30 consecutive 
photomicrographs were taken using a 40× objec-
tive. The red stained F4/80 positive area was quan-
tified using the color threshold tool in ImageJ 1.47v.

Lipid extraction and fatty acid analysis
After homogenization of frozen liver samples, and 
the addition of C19:0 as an internal standard, 
total liver lipids were extracted in duplicate using 
chloroform/methanol (2:1, v/v) by the use of 
Ultra Turrax T25 (IKA, Staufen, Germany), 
3 × 15 sec, 15,780 × g, at room temperature. The 
detailed sample preparation procedure has been 
described previously.26

The fatty acid analysis of the liver lipids was per-
formed using capillary GC with a CP-Sil 88 CB 
column (100 m × 0.25 mm, Agilent, Santa Clara, 
CA, USA) that was installed in a PerkinElmer gas 
chromatograph CLARUS 680 with a flame ioni-
zation detector and split injection (PerkinElmer 
Instruments, Shelton, CT, USA). The detailed 
GC conditions were recently described.27 Fatty 
acid concentrations are displayed as the percent-
age of total fatty acid content in liver tissue.

RT-PCR
RT-PCR analyses were performed as described 
previously.28 Primers used for amplification are: 

Collagen 1α forward 5′-TGGACCTCCGGCT 
CCTGCTC-3′ and reverse 5′-TCGCACACA 
GCCGTGCCATT-3′, tumor necrosis factor-α 
(TNF-α) forward 5′-AGGCTCTGGAGAACA 
GCACAT-3′ and reverse 5′-TGGCTTCTCT 
TCCTGCACCAAA-3′ and RPS18 forward 
5′-AGGATGTGAAGGATGGGAAG-3′ and 
reverse 5′-TTGGATACACCCACAGTTCG-3′.

Statistical analysis
Statistical analyses were performed using 
GraphPad Prism 6.05 (GraphPad Software, La 
Jolla, CA, USA). Differences between the groups 
were assessed by two-way ANOVA followed by 
Tukey’s range test within each time point. 
Statistical significance was set at p < 0.05. 
Survival curves were created using the product 
limit method of Kaplan and Meier, and statistical 
analysis was tested using log-rank test and 
Bonferroni correction (Bonferroni corrected 
p-value for statistical significance: p < 0.01667). 
All data are presented as mean ± SEM.

Results

General aspects
No differences were detectable between the 
groups regarding body weight (Figure 1b) and 
blood glucose levels, which were constantly ele-
vated about the entire observation period (~20 
mmol/l) (data not shown). While liver weight/

1:8 diet 1:1 diet 5:1 diet

C22:4n-6 0.04 0.10 0.22

C22:5n-3 <0.01 <0.01 <0.01

C22:6n-3 (DHA) <0.01 1.58 7.70

Sum PUFAc 8.00 8.48 29.37

Sum n-3 PUFAd 0.94 5.28 24.69

Sum n-6 PUFAe 6.79 2.93 4.51

aSum SFA: 10:0+11:0+12:0+13:0+14:0+15:0+16:0+17:0+18:0+20:0+21:0+22:0+23:0+24:0.
bSum MUFA: 14:1+15:1+16:1+17:1+18:1t+18:1c9+C18:1c11+C22:1+C24:1.
cSum PUFA: 18:2tr-9,tr-12+18:2n-6+18:3n-3+18:4n-3+20:3n-6+20:4n-6+20:5n-3+22:1+22:4n-6+22:5n-3+22:6n-
3+c9,tr11CLA+18:3n-6+20:2n-6+20:3n-3+22:2n-6.
dSum n-3 PUFA: 20:3n-3+22:6n-3+22:5n-3+20:5n-3+18:4n-3+18:3n-3.
eSum n-6 PUFA: 22:2n-6+20:2n-6+18:3n-6+22:4n-6+20:3n-6+18:2n-6+20:4n-6.
MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid; SFA, saturated fatty acid.

Table 1.  (Continued)
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body weight index at 12 weeks of age was similar 
between the groups, the control-diet-fed mice 
exhibited a higher weight/body weight index 
(14%) than 1:1 (9.5%) and 5:1 (10.6%) fed mice 
at an age of 20 weeks (Figure 1c). This reduction 
was even significant in 1:1 fed mice compared 
with 1:8 fed mice. Of most interest, the dietary 
fatty acid composition affected the survival of the 
mice significantly (Figure 1d). While mice receiv-
ing the control diet had a survival of only 37% at 
20 weeks, feeding of the 1:1 diet resulted in a sig-
nificantly improved survival of 75% at 20 weeks. 
The protective effect of n-3 PUFA enriched diets 
was even more pronounced upon feeding of the 
5:1 diet, resulting in a survival of 93% at 20 weeks 
(Figure 1d). Nevertheless, the extent of liver 
injury was not markedly affected by the different 
diets, as no significant differences in the plasma 
activity of ALT and GLDH were observed (Table 
2). Plasma triglyceride analysis revealed a slight 
reduction at 20 weeks of age upon feeding n-3 
PUFA-rich diets, whereas no differences between 
the groups were observed at an age of 12 weeks 
(Table 2).

Fatty acid profiling
Analysis of fatty acid composition of liver tissue 
revealed highly significant impact of the diet com-
position on hepatic fat composition, which was 
independent of age and disease stage (Table 3, 
Figure 2). Percentage of SFA of all fatty acids in 
the liver did not change upon feeding of the 1:1 
diet compared with the control diet, whereas 
feeding of the 5:1 diet decreased SFA percentage 
at 12 and 20 weeks (Figure 2a). The difference 
was highly significant at 12 weeks compared with 
the 1:1 and 1:8 diet. Interestingly, even though 

the control and 1:1 diet per se did not differ in 
terms of SFA, MUFA, and PUFA content, the 
livers of 1:1 and 5:1 fed mice exhibited a signifi-
cantly lower percentage of MUFA (Figure 2b) 
and a significantly higher percentage of PUFA 
(Figure 2c) compared with control mice fed the 
1:8 diet. This difference was more pronounced in 
livers of 5:1 fed mice, which contained half as 
much MUFA, and twice as much PUFA com-
pared with the liver of mice receiving the control 
diet. These differences were not only highly sig-
nificant compared with 1:8 fed mice, but also 
compared with 1:1 fed mice.

Furthermore, highly significant differences in 
hepatic n-3 PUFA content were observed in cor-
relation with the composition of the diet. Thus, 
n-3 PUFA content was increased in livers of 1:1 
(~25 %) and 5:1 (~40 %) fed mice compared with 
livers of 1:8 fed control animals (~8 %) (Figure 
2d). Accordingly, the hepatic amount of n-6 
PUFAs was strongly reduced in 1:1 and 5:1 fed 
mice compared with mice receiving the 1:8 con-
trol diet, with no difference being present between 
1:1 and 5:1 fed mice (Figure 2e). Interestingly, 
compared with control mice feeding of the 1:1 
and 5:1 diet resulted in a significantly higher 
hepatic n-3/n-6 PUFA ratio of approximately 3:1 
and 4:1, respectively (Figure 2f).

Specific analysis of PUFAs revealed that DHA 
and EPA were the most abundant n-3 PUFAs 
observed in liver tissue. As also observed for the 
n-6 PUFAs LA and AA, profiles of these individ-
ual PUFAs (Figure 3) reflected the total hepatic 
content of n-3 and n-6 PUFAs displayed in Figure 
2(d and e). Thus, hepatic DHA and EPA contents 
(n-3) increased strongly with rising n-3/n-6 PUFA 

Table 2.  Plasma analyses. Analysis of triglyceride concentration, ALT and GLDH activities in plasma of 12 and 
20 week old STZ/HFD-treated mice receiving HFDs differing in n-3/n-6 PUFA ratios (1:8, 1:1 and 5:1) (n = 6–12 
per group). Values are given as mean ± SEM.

12 weeks 20 weeks

  1:8 1:1 5:1 1:8 1:1 5:1

Triglycerides [mg/dL] 423 ± 151 301 ± 116 384 ± 153 596 ± 228 540 ± 174 353 ± 156

ALT activity [U/L] 73 ± 11 60 ± 5 120 ± 25 208 ± 34 144 ± 49 145 ± 72

GLDH activity [U/L] 142 ± 73 36 ± 7 97 ± 21 139 ± 32 146 ± 85 143 ± 84

ALT, Alanine aminotransferase; GLDH, glutamate dehydrogenase ; HFD, high-fat diet; PUFA, polyunsaturated fatty acid; 
STZ, streptozotocin.
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Table 3.  Hepatic fatty acid composition. Hepatic SFA, MUFA and PUFA content of STZ/HFD-treated mice fed HFDs differing in 
n-3/n-6 PUFA ratios (1:8, 1:1 and 5:1) (n = 10 per group). The values are given as mean ± SEM in % of total fatty acids.

Fatty acid 12 weeks 20 weeks

  1:8 1:1 5:1 1:8 1:1 5:1

SFA C12:0 0.07 ± 0.02 0.06 ± 0.02 0.08 ± 0.03 0.05 ± 0.01 0.06 ± 0.02 0.07 ± 0.02

C14:0 0.72 ± 0.23 0.62 ± 0.20 0.71 ± 0.22 0.54 ± 0.17 0.58 ± 0.18 0.67 ± 0.21

C15:0 0.25 ± 0.08 0.24 ± 0.08 0.23 ± 0.07 0.21 ± 0.07 0.22 ± 0.07 0.24 ± 0.08

C16:0 22.31 ± 7.05 21.97 ± 6.95 16.70 ± 5.28 21.03 ± 6.65 21.65 ± 6.85 20.17 ± 6.38

C17:0 0.68 ± 0.21 0.53 ± 0.17 0.49 ± 0.16 0.63 ± 0.20 0.58 ± 0.18 0.59 ± 0.19

C18:0 9.38 ± 2.97 7.43 ± 2.35 8.17 ± 2.58 8.80 ± 2.78 8.72 ± 2.76 8.99 ± 2.84

C20:0 0.19 ± 0.06 0.29 ± 0.09 0.25 ± 0.08 0.19 ± 0.06 0.26 ± 0.08 0.22 ± 0.07

C22:0 0.08 ± 0.03 0.08 ± 0.03 0.06 ± 0.02 0.08 ± 0.03 0.08 ± 0.03 0.08 ± 0.03

Sum SFAa 33.98 ± 10.75 31.50 ± 9.96 26.96 ± 8.53 31.84 ± 10.07 32.50 ± 10.28 31.33 ± 9.91

MUFA C16:1cis-9 1.38 ± 0.44 1.95 ± 0.62 1.46 ± 0.46 1.22 ± 0.39 1.51 ± 0.48 1.39 ± 0.44

C18:1cis-9 35.11 ± 11.10 31.95 ± 10.10 18.54 ± 5.86 38.52 ± 12.18 29.78 ± 9.42 27.66 ± 8.75

C18:1cis-11 1.44 ± 0.45 1.35 ± 0.43 1.03 ± 0.33 1.73 ± 0.55 1.28 ± 0.41 1.20 ± 0.38

C18:1trans-11 0.43 ± 0.13 0.35 ± 0.11 0.25 ± 0.08 0.34 ± 0.11 0.32 ± 0.10 0.34 ± 0.11

Sum MUFAb 39.59 ± 12.52 36.67 ± 11.59 22.20 ± 7.02 43.23 ± 13.67 33.99 ± 10.75 31.64 ± 10.00

PUFA C18:2n-6 9.29 ± 2.94 3.92 ± 1.24 4.42 ± 1.40 7.20 ± 2.28 4.09 ± 1.29 5.76 ± 1.82

C18:3n-3 0.34 ± 0.11 0.19 ± 0.06 0.49 ± 0.15 0.56 ± 0.18 0.16 ± 0.05 0.34 ± 0.11

C18:3n-6 0.43 ± 0.14 0.07 ± 0.02 0.06 ± 0.02 0.19 ± 0.06 0.05 ± 0.02 0.16 ± 0.05

C20:2n-6 0.10 ± 0.03 0.04 ± 0.01 0.06 ± 0.02 0.12 ± 0.04 0.05 ± 0.02 0.07 ± 0.02

C20:3n-6 0.94 ± 0.30 0.34 ± 0.11 0.26 ± 0.08 0.98 ± 0.31 0.48 ± 0.15 0.51 ± 0.16

C20:4n-6 7.05 ± 2.23 3.03 ± 0.96 4.44 ± 1.40 7.49 ± 2.37 3.54 ± 1.12 4.90 ± 1.55

C20:5n-3 0.33 ± 0.11 4.79 ± 1.51 8.59 ± 2.72 0.27 ± 0.09 4.88 ± 1.54 4.60 ± 1.46

C22:4n-6 0.28 ± 0.09 0.06 ± 0.02 0.11 ± 0.03 0.36 ± 0.12 0.07 ± 0.02 0.15 ± 0.05

C22:5n-3 0.51 ± 0.16 2.01 ± 0.64 3.11 ± 0.98 0.42 ± 0.13 2.06 ± 0.65 1.87 ± 0.59

C22:6n-3 6.79 ± 2.15 17.01 ± 5.38 28.88 ± 9.13 6.90 ± 2.18 17.81 ± 5.63 18.32 ± 5.79

Sum PUFAc 26.26 ± 8.30 31.63 ± 10.00 50.77 ± 16.05 24.75 ± 7.83 33.34 ± 10.54 36.90 ± 11.67

Sum n-3 PUFAd 8.13 ± 2.57 24.13 ± 7.63 41.31 ± 13.06 8.36 ± 2.64 25.01 ± 7.91 25.29 ± 8.00

Sum n-6 PUFAe 18.12 ± 5.73 7.48 ± 2.36 9.38 ± 2.97 16.38 ± 5.18 8.31 ± 2.63 11.58 ± 3.66

HFD, high-fat diet; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid; SEM, standard error of the mean; SFA, saturated fatty 
acid; STZ, streptozotocin.
aSum SFA: 10:0+11:0+12:0+13:0+14:0+15:0+16:0+17:0+18:0+20:0+21:0+22:0+23:0+24:0.
bSum MUFA: 14:1+15:1+16:1+17:1+18:1t+18:1c9+C18:1c11+C22:1+C24:1.
c�Sum PUFA: 18:2tr-9,tr-12+18:2n-6+18:3n-3+18:4n-3+20:3n-6+20:4n-6+20:5n-3+22:1+22:4n-6+22:5n-3+22:6n-3+c9,tr11CLA+18:3n-
6+20:2n-6+20:3n-3+22:2n-6.

dSum n-3 PUFA: 20:3n-3+22:6n-3+22:5n-3+20:5n-3+18:4n-3+18:3n-3.
eSum n-6 PUFA: 22:2n-6+20:2n-6+18:3n-6+22:4n-6+20:3n-6+18:2n-6+20:4n-6.
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ratio of the diet (Figure 3a and b), while the con-
tent of LA and AA (n-6) was reduced upon feed-
ing of the 1:1 and 5:1 diet compared with mice 
receiving the control diet, with no difference 
between 1:1 and 5:1 fed mice (Figure 3c and d).

NAFLD severity
Severity of NAFLD was assessed using the 
NAFLD activity score, showing no significant 
differences between the groups at both time 
points (Figure 4a). Simultaneously, feeding of the 
1:1 and 5:1 diet resulted in a marked reduction of 
fat accumulation (Oil Red O positive area), at 
both time points, but particularly pronounced  
at 12 weeks of age (Figure 4b). Analysis of liver 

macrophages by means of F4/80 staining revealed 
an increased F4/80 positive area in n-3 PUFA-
rich-fed mice at an age of 20 weeks (Figure 4c 
and e). While liver sections of 1:8 fed control 
mice exhibited 0.4% F4/80 positive area, in liver 
sections of 1:1 and 5:1 fed mice, 1.1% and 3.2% 
of the total area was positively stained, respec-
tively. The difference was even significant in 5:1 
fed mice compared with mice receiving the con-
trol diet. Even though liver sections of 1:1 fed 
mice displayed a slightly larger F4/80 positive 
area, there were no significant differences between 
the groups at 12 weeks. Of interest, no differences 
in TNF-α mRNA levels were detected between 
the groups at 12 weeks of age, while TNF-α 
mRNA expression declined with increasing n-3 

Figure 3.  Analysis of hepatic n-3 and n-6 PUFAs. Quantitative analysis of hepatic DHA (a), EPA (b), LA (c), and 
AA (d) content of STZ/HFD-treated mice fed HFDs differing in n-3/n-6 PUFA ratios (1:8, 1:1, and 5:1) given as 
percentage of total fatty acids (n = 10 per group). Values are given as mean ± SEM. Differences between the 
groups were assessed by two-way ANOVA followed by Tukey’s range test within each time point. *p < 0.05 
versus 1:8 fed mice, **p < 0.01 versus 1:8 fed mice, ****p < 0.0001 versus 1:8 fed mice, ####p < 0.0001 versus 
1:1 fed mice.
AA, arachidonic acid; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; HFD, high-fat diet; LA, linoleic acid; SEM, 
standard error of the mean; STZ, streptozotocin.
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Figure 4.  (Continued)
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PUFA content of the diet at an age of 20 weeks 
(Figure 4d). Assessment of collagen deposition 
by Sirius red staining revealed a slight, but non-
significant, reduction at the fibrosis stage (12 
weeks) upon feeding of the 5:1 diet (Figure 4f). 
Additionally, there were no significant differences 
in collagen 1α mRNA levels between the groups 
at 12 weeks, but, at 20 weeks of age, collagen 1α 
mRNA levels of n-3 PUFA-rich-fed mice were 
slightly decreased compared with mice receiving 
the n-6 PUFA-rich control diet (Figure 4g).

Tumor analysis
To evaluate the impact of n-3 PUFAs on tumor 
progression, comprehensive macroscopic and 
microscopic analyses of tumor load were per-
formed. While only a few mice developed liver 
tumors at an age of 12 weeks, 20-week-old mice 
frequently developed numerous liver tumors 
(Figure 5). Thus, there were no apparent differ-
ences between the groups in 12-week-old mice 
reflecting tumor load (liver weight/body weight 
index, number of surficial tumors larger than 5 
mm, and number of neoplastic foci per section), 
whereas considerable differences were observed in 
20-week-old mice. On average, 20-week-old con-
trol diet (1:8) fed mice developed 1.6 surficial 
tumors larger than 5 mm, whereas 1:1 and 5:1 fed 
mice developed significantly fewer surficial tumors 
larger than 5 mm, with only 0.4 and 0.7 tumors 
being observed, respectively (Figure 5a and d). 
Concordantly, the number of neoplastic foci per 
liver section was reduced with increasing n-3 
PUFA content of the diet compared with control 
animals (Figure 5b and e). While the liver of con-
trol-diet-fed animals exhibited 9.7 neoplastic foci 
per section, only 7.0 and 2.9 neoplastic foci per 
section were counted in 1:1 and 5:1 fed mice, 

respectively. This decrease was significant in 5:1 
fed mice compared with control animals. 
Additionally, the area of neoplastic foci per sec-
tion was reduced at 20 weeks of age upon feeding 
of the n-3 PUFA rich diets compared with mice 
receiving the 1:8 control diet (Figure 5c).

Discussion
NAFLD is an increasingly important risk factor 
for HCC, and one of the major causes for liver 
transplantation in the United States.3–5,7 Over the 
past decades, dietary habits and lifestyle have 
changed dramatically, leading to increasing preva-
lence of obesity and NAFLD worldwide.1,14 Thus, 
prevalence of NAFLD-related end-stage liver dis-
ease is estimated to further increase.3 It is there-
fore of great importance to find new strategies and 
therapies against NAFLD progression. The results 
presented herein show that n-3 PUFA-enriched 
diets and high dietary n-3/n-6 PUFA ratios allevi-
ate NAFLD-related tumorigenesis.

Availability of n-3 PUFAs in the liver is detrimen-
tal for hepatic production of n-3 PUFA-derived 
lipid mediators, and, thus, its positive effects on 
NAFLD progression. Herein, we showed that 
dietary fatty acids also change the hepatic lipid 
profile in n-3 PUFA-rich HFD-fed mice. 
Interestingly, hepatic fatty acid composition 
reflects the fatty acid composition of the diet. 
Similarly, other studies reported altered hepatic 
fatty acid composition upon increased dietary n-3 
PUFA contents.29,30 Furthermore, lipidomic 
analyses of patient liver tissue showed increased 
SFA levels, decreased levels of DHA and EPA, 
and decreased n-3/n-6 PUFA ratio in NASH 
patients compared with patients with simple  
steatosis.31 Together, these findings indicate a 

Figure 4.  Assessment of NAFLD progression, inflammation and fibrosis. (a) NAFLD activity score of STZ/
HFD-treated mice fed HFDs differing in n-3/n-6 PUFA ratios (1:8, 1:1 and 5:1) (n = 10–12 per group). 
Histomorphometric quantification of Oil Red O (b), F4/80 (c), and Sirius red (f)-stained liver sections of STZ/
HFD-treated mice fed HFDs differing in n-3/n-6 PUFA ratios (1:8, 1:1 and 5:1) (n = 8–12 per group). Values are 
given as mean ± SEM. Differences between the groups were assessed by two-way ANOVA followed by Tukey’s 
range test within each time point. **p < 0.01 versus 1:8 fed mice. Quantitative RT-PCR analysis of hepatic 
TNF-α (d) and Collagen 1α (g) expression of STZ/HFD-treated mice receiving HFDs differing in n-3/n-6 PUFA 
ratios (1:8, 1:1 and 5:1) (n = 10–12 per group). Values are given as mean ± SEM. Differences between the 
groups were assessed by two-way ANOVA followed by Tukey’s range test within each time point. **p < 0.01 
versus 1:8 fed mice. (e) Representative photomicrographs of F4/80 stained liver sections of 20-week-old 
STZ/HFD-treated mice receiving HFDs with n-3/n-6 PUFA ratios of 1:8, 1:1 and 5:1, respectively. Scale bar 
represents 50 µm.
HFD, high-fat diet; NAFLD, nonalcoholic fatty liver disease; RT-PCD, reverse transcriptase-polymerase chain reaction; SEM, 
standard error of the mean; STZ, streptozotocin; TNF-α, tumor necrosis factor-α.
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connection between NAFLD severity and hepatic 
fatty acid composition.

Interestingly, it has already been shown that fat-1 
transgenic mice, which endogenously convert n-6 
PUFAs to n-3 PUFAs, have increased hepatic con-
tents of anti-inflammatory mediators.21 Therefore, 
it could be suggested that increased contents of n-3 
PUFAs and increased n-3/n-6 PUFA ratios, as 
seen in mice receiving n-3 PUFA-rich HFDs, prob-
ably increase hepatic anti-inflammatory lipid medi-
ator concentration. Thus, high amounts of n-3 
PUFAs may contribute to an overall attenuated 
inflammatory state in NAFLD. Inflammation is an 
important feature of NAFLD progression. Beside 
other cells, Kupffer cells and monocyte-derived 
macrophages play a crucial role in NASH and 
NAFLD progression.10,32 For a long time it has 
been known that macrophages can polarize towards 
M1 or M2 phenotypes.12 While M1-polarized mac-
rophages produce high amounts of pro-inflamma-
tory cytokines, M2-polarized macrophages secrete 
anti-inflammatory cytokines and phagocyte more 
efficiently. Thus, M1-polarized macrophages pro-
mote inflammation while M2-polarized mac-
rophages decrease inflammation and promote 
resolution of inflammation. In this study, we report 
an increasing number of macrophages in liver tissue 
with increasing n-3 PUFA content and n-3/n-6 
PUFA ratio of the diet. Despite a higher number of 
macrophages, we observed decreasing TNF-α 
mRNA levels in the liver tissue upon feeding of n-3 
PUFA-rich diets, suggesting accumulation of 
M2-polarized macrophages in the livers of n-3 
PUFA-rich-fed mice. Interestingly, it is known  
that M2-polarized macrophages infiltrate inflamed 
tissue during resolution of inflammation and 
phagocyte cell debris without stimulating further 
inflammation.33 Feeding a standard HFD pro-
motes a chronic inflammatory environment by 
induction of liver macrophage M1 polarization.34 
Contrarily, n-3 PUFAs and their lipid mediators 
promote M2 polarization of macrophages in adi-
pose tissue of HFD-fed mice.35,36 Furthermore, 
endogenously increased n-3 PUFA levels of fat-1 
transgenic mice promote M2 polarization of bone 
marrow macrophages.37 Concordantly, protective 
effects of n-3 PUFA treatment of ischemia reperfu-
sion injury of the liver are also mediated by M2 
polarization of liver macrophages.38–40

Dietary consumption of n-3 PUFAs is well known 
to be protective regarding different diseases like dia-
betes, cardiovascular disease, and NAFLD.41,42 

Furthermore, fish consumption is independently 
correlated with reduced risk of HCC.43 Herein, we 
observed reduced liver tumor number and size in 
n-3 PUFA-rich-fed mice, indicating inhibition of 
NAFLD-related tumorigenesis and tumor growth. 
Reduced tumorigenesis upon increased n-3 PUFA 
tissue levels has been reported for NAFLD-
independent DEN-induced liver tumors in fat-1 
transgenic mice.21 Furthermore, dietary n-3 PUFAs 
and increased n-3/n-6 PUFA ratios were reported 
to decrease DEN-induced tumorigenesis in rats and 
in a rat multi-organ cancer model.44,45 Nevertheless, 
Enos and colleagues reported in 2015 that different 
dietary n-3/n-6 PUFA ratios (1:1 and 1:20) had no 
effect on NAFLD.46 In contrast to our study, Enos 
and colleagues used ALA to supplement the diet 
and to increase the n-3/n-6 PUFA ratio. 
Interestingly, only minor amounts of ALA are 
endogenously converted to EPA and DHA.47 As the 
HFDs used in the present study were enriched with 
EPA and DHA, we suppose that the positive effects 
of increased n-3/n-6 PUFA ratios are mediated by 
DHA and EPA rather than ALA.

Interestingly, DHA and EPA derived lipid media-
tors (resolvin D1, D2, and E1) have been shown to 
reduce tumor growth, especially in the presence of 
cell debris in the tumor.19 This effect was reported 
to be macrophage-dependent, as no effect of 
resolvins was observed in macrophage-depleted 
mice. Concordantly, we showed that the number 
of macrophages increased with a simultaneous 
decrease in TNF-α mRNA levels in n-3 PUFA-
rich-fed mice with NAFLD-related liver tumors.

Finally, and of most importance, n-3 PUFA-rich 
diets and increased n-3/n-6 PUFA ratios had a 
significant impact on the survival rate of the mice, 
in that they almost prevent mortality in the STZ/
HFD mouse model.

A limitation of the study is the mouse model used, 
as the mice are lean and thus, do not reflect the 
human situation of obesity. Although many models 
of NAFLD exist that mimic human metabolic syn-
drome better, mouse models of liver tumors from 
progressive NAFLD are rare, and often come with 
various limitations like slow disease progression 
and low tumor incidence.48–50 Hence, the NASH-
tumor mouse model is a broadly used model to 
study NAFLD progression and tumorigenesis as it 
reflects various stages of NAFLD resulting in 
tumors with a high incidence in a short period of 
time.51–56 The results obtained from this mouse 
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model need to be evaluated carefully, but still give 
new insights on possible therapeutic approaches to 
limit NAFLD progression to tumors.

Conclusion
In conclusion, high dietary n-3/n-6 PUFA levels 
and n-3 PUFA contents alleviate NAFLD-caused 
tumorigenesis and tumor growth, which drasti-
cally improves survival in STZ/HFD-treated mice. 
This effect is accompanied by pronounced changes 
in hepatic fatty acid composition and accumula-
tion of macrophages in the liver. Further studies 
have to be conducted to clarify mechanisms and 
pathways and the role of individual fatty acids like 
EPA and DHA. This anti-inflammatory approach 
may be a treatment option of NAFLD that reduces 
the risk for NAFLD-related tumorigenesis.
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