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Abstract

Background: Eubacterium rectale is one of the most prevalent human gut bacteria,
but its diversity and population genetics are not well understood because large-scale
whole-genome investigations of this microbe have not been carried out.

Results: Here, we leverage metagenomic assembly followed by a reference-based
binning strategy to screen over 6500 gut metagenomes spanning geography and
lifestyle and reconstruct over 1300 E. rectale high-quality genomes from
metagenomes. We extend previous results of biogeographic stratification, identifying
a new subspecies predominantly found in African individuals and showing that
closely related non-human primates do not harbor E. rectale. Comparison of pairwise
genetic and geographic distances between subspecies suggests that isolation by
distance and co-dispersal with human populations might have contributed to
shaping the contemporary population structure of E. rectale. We confirm that a
relatively recently diverged E. rectale subspecies specific to Europe consistently lacks
motility operons and that it is immotile in vitro, probably due to ancestral genetic
loss. The same subspecies exhibits expansion of its carbohydrate metabolism gene
repertoire including the acquisition of a genomic island strongly enriched in
glycosyltransferase genes involved in exopolysaccharide synthesis.

Conclusions: Our study provides new insights into the population structure and
ecology of E. rectale and shows that shotgun metagenomes can enable population
genomics studies of microbiota members at a resolution and scale previously
attainable only by extensive isolate sequencing.
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Introduction
The composition of the human gut microbiota is variable across individuals and only few

bacterial species are consistently present in populations of different geographic origin and

lifestyle. Current large-scale metagenomic surveys [1] reported that merely three species

(Eubacterium rectale, Faecalibacterium prausnitzii, Ruminococcus torques) and few other

poorly characterized microbes are detected at > 0.1% relative abundance in more than

90% of adult healthy individuals [1]. In a recent study using metagenomic assembly and

reference-independent binning, E. rectale was the species for which the most genomes

from metagenomes could be reconstructed [2]. The large number of publicly available

metagenomic cohorts and accurate methods for genome reconstruction from metagen-

omes thus provide an unprecedented opportunity to gain insights into this otherwise rela-

tively poorly investigated bacterial species using metagenomic data at a global scale.

E. rectale is a member of the Firmicutes phylum, belonging to the Lachnospiraceae

family. The proposed type strain of E. rectale (A1–86) is rod-shaped, Gram-positive,

strictly anaerobic, and motile [3]. E. rectale produces butyrate and other short-chain fatty

acids (SCFAs) from carbohydrates not directly accessible by the host, which play a role in

promoting intestinal health in the host [4]. The relative abundance of E. rectale in the gut

has been reported to be reduced compared to controls in diseases such as cystic fibrosis

[5], Crohn’s disease [6], ulcerative colitis [7], and colorectal cancer [8], suggesting that it is

replaced or outcompeted in certain disease states. E. rectale is an important gut anaerobe,

and it is thus crucial to study its population genetics and strain-level epidemiology.

The population structure of E. rectale has been investigated in previous studies [9–11],

which have used read-mapping-based approaches to study the population-level genetics

of bacterial commensals from metagenomes. Although these approaches provided valu-

able insights such as the variable degree of intra-species biogeographic stratification in dif-

ferent species including E. rectale, they were not conducted at the resolution of whole

genomes. Metagenomic assembly together with reference-free binning has recently been

employed in meta-analyses showing that microbial genomes can be consistently recon-

structed from metagenomes [2, 12, 13]. However these reference-free binning approaches

could miss genomic regions with divergent tetranucleotide frequencies.

In this work, we extracted more than 1300 high-quality E. rectale genomes

from more than 6500 gut metagenomic assemblies using a targeted, reference-

based binning approach that is applicable when at least a few (isolate) genomes

are available. This pipeline produced genomes that compare favorably to genomes

from a reference-free binning approach. The genomes that were assembled from

metagenomes were used for the first large-scale genome-based population-level

genomic analysis of E. rectale exemplifying how studies typically performed with

cultured isolate sequencing data can be performed on carefully quality-controlled

genomes from metagenomes. We extended the number of subspecies identified in

previous investigations [9–11] by identifying a subspecies predominantly found in

African individuals. Comparing median genetic distances to estimated geographic

distances between pairs of subspecies indicated that pairs of subspecies are iso-

lated by distance, in turn suggesting host-microbe co-dispersal. Whole-genome

functional analysis confirmed the presence of a uniquely non-motile subspecies

exhibiting loss of motility associated with a shift in carbohydrate metabolism

gene repertoire.
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Results and discussion
Reconstruction of > 1300 high-quality Eubacterium rectale genomes from > 6500

metagenomes

Metagenomic samples are a rich source for microbial genomes, but reconstructing bacterial

genomes from metagenomes with sufficient completeness and accuracy remains challenging.

To extract E. rectale genomes from metagenomes, we developed a three-step procedure con-

sisting of (i) single-sample metagenomic assembly, (ii) compilation of high-quality E. rectale

reference sequences, and (iii) use of these references to bin the metagenomic assemblies

(Additional file 1: Fig. S1, “Materials and methods”). We applied this pipeline on a collection

of 6775 gut metagenomic assemblies obtained from our previous studies [2, 14]. These

assemblies were generated using metaSPAdes [15] if paired-end reads were available or

MegaHIT otherwise [16]. We produced 47 manually curated reference (MCR) E. rectale

genomes from 170 assembled metagenomes of diverse geographic origin in which E. rectale

was particularly highly abundant (“Materials and methods”). These genomes are smaller than

genomes obtained from isolate sequencing due to prioritization of specificity over sensitivity

in the manually curated binning process (“Materials and methods”). For the last step of the

pipeline, we used the 47 MCR genomes (Additional file 2: Table S1) together with seven E.

rectale isolate genomes from NCBI available at the time (Additional file 3: Table S2) as

references for the reference-based binning that was applied to all 6775 assembled metagen-

omes (“Materials and methods”). Semi-simulated metagenomic assemblies (“Materials and

methods”) allowed us to set optimal parameter values for the binning procedure (Fig. 1a).

We found that this pipeline reconstructs E. rectale genomes with high fidelity, out-

performing reference-free metagenomic binning in terms of completeness [2, 18] while

slightly increasing contamination (1.7% median increase in completeness, 0.5% median

increase in contamination) (Fig. 1d, Fig. 1e). The pan-genome characteristics of the re-

constructed E. rectale genomes more closely resemble those of isolate E. rectale ge-

nomes than the E. rectale genomes coming from reference-free binning (Fig. 1f, g),

further suggesting that they generally are of high quality.
We obtained a total of 1321 high-quality (HQ) E. rectale genomes by applying our

pipeline to a set of 6613 publicly available gut metagenomic assemblies as well as 162

gut metagenomic assemblies from rural populations in Madagascar and Ethiopia we re-

cently sequenced [2, 19] (Fig. 1b, Additional file 4: Table S3). The combined cohort of

6775 gut samples encompasses 38 datasets from 30 countries with samples collected

from individuals ranging in age from infants to elderly, and spanning different health

conditions and lifestyles (Additional file 5: Table S4). The 1321 HQ E. rectale genomes

contain less than 400 contigs and passed recently proposed completeness and contam-

ination cutoffs (90% and 5% respectively) for high-quality metagenome-assembled ge-

nomes [20]. In line with recent large-scale metagenomic assembly efforts [2, 12, 13], we

did not consider the presence of tRNA and rRNA genes as criteria for high-quality

metagenome-assembled genomes because of the inherent difficulty of reconstructing

genes that are conserved across related species [20]. The genomes were however fur-

ther required to pass an additional quality measure we developed based on poly-

morphic site rates across core genes to flag genomes that are likely to incorporate

strain-level variation from more than one strain (“Materials and methods”). The HQ

genomes had an average length of 3.39M bases (s.d. 0.22M) and an average GC con-

tent of 41.47% (s.d. 0.27%), which was consistent with the genomes from isolate
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sequencing available for this species (Fig. 1c). The quality, number, and diverse nature

of this combined cohort enabled us to undertake a large-scale genomic investigation of

this currently under-characterized gut anaerobe species.

A large-scale phylogeny refines E. rectale population structure and association with

geography

To get an overview of the E. rectale population structure, we first performed a phylo-

genetic analysis of the 1321 HQ genomes in combination with eight publicly available

cultured isolate genomes and two additional E. rectale isolates we sequenced for this

work (“Materials and methods”, Additional file 3: Table S2). The core gene concaten-

ation approach we used (“Materials and methods”) yielded 1071 core genes and a total

alignment length of 1.02M nucleotides. The maximum likelihood phylogeny and the

ordination based on this alignment (Fig. 2a, b) confirmed previous observations that E.

Fig. 1 Reconstruction of 1321 high-quality (HQ) E. rectale genomes from 6775 fecal metagenomes. a The
parameters for the binning step of our reference-based workflow (average identity and fraction of contig
aligned) were chosen using E. rectale-free metagenomic assemblies spiked with E. rectale sequences
obtained from isolate genomes (“Materials and methods”). We report the median number of false positive
(FP) bases (binned contigs not coming from spike-in) and false negative (FN) bases (contigs coming from
spike-in that were not binned). FP and FN values are scaled with respect to the average E. rectale isolate
genome size. The red square indicates the parameter value combination used in this study. b Estimation of
completeness and contamination for all extracted genomes using CheckM [17]. c Comparison of genome
characteristics for E. rectale isolate genomes, genomes from metagenomes reconstructed with a semi-
supervised approach (MCR), and the large set of automatically reconstructed genomes (HQ). d, e
Completeness and contamination estimates for bins extracted using the reference-based binning approach
used in this study and bins produced by a reference-independent pipeline using metaBAT2 [2, 18]. Only
genomes with > 90% completeness and < 5% contamination in both approaches are shown. f The sizes of
the E. rectale genomes reconstructed with the reference-based pipeline are very consistent with the
genome sizes (gray area) from cultured isolate sequencing (gray shading) while the reference-independent
pipeline produces genomes of smaller size. g Pan-genome characteristics for seven E. rectale isolate
genomes from NCBI available at the time of processing (Additional file 3: Table S2) as well as seven
genomes from the reference-based binning and from Pasolli et al. [2]. For both binning methods, we
considered the same seven, randomly selected European metagenomes as well as all seven cultured isolate
genomes originating from studies in Europe/North America
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rectale strains fall into discrete groups [9–11]. Clustering of core gene genetic distances

using partitioning around medoids (PAM) [21] supported the existence of four subspe-

cies (prediction strength consistently over 0.8 for k = 4, Additional file 1: Fig. S2, Fig. 2d,

“Materials and methods”), one of which was not observed before [9–11]. Three of these

four subspecies are large and well-defined monophyletic subtrees in the phylogeny, and

only a minority of strains of the four E. rectale subspecies showed very strong geo-

graphic enrichment and were named accordingly. The three most represented subspecies

correspond to what we designated as ErEurasia, ErEurope, and ErAsia as they predominantly

comprised strains from these regions. ErAfrica, the fourth and previously unobserved subspe-

cies, included strains derived mostly from sub-Saharan African countries (Madagascar,

Tanzania, Liberia) but also contains strains from Peru and Indonesia (Fig. 2a, Fig. 2d). While

ErAfrica, ErEurope and ErAsia are geographically relatively well contained, ErEurasia appears

Fig. 2 E. rectale consists of four geographically stratified subspecies. a Maximum likelihood phylogenetic
tree of all E. rectale genomes, built from a concatenated core gene alignment using PhyloPhlAn2 (“Materials
and methods”) and rooted based on a phylogenetic tree including E. rectale sister species. b Non-metric
multidimensional scaling plot of pairwise genetic distances between all E. rectale genomes. c Distribution of
intra- and inter-subspecies core gene genetic distances. p values were obtained using bidirectional
Wilcoxon rank-sum tests. d Subspecies assignment using PAM clustering with k = 4 (“Materials and
methods”). Black points indicate genomes obtained from cultured isolate sequencing
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to be comparatively widespread (Additional file 1: Fig. S3) with strains retrieved from gut

metagenomes in Ethiopia and Fiji also belonging to this subspecies, albeit with divergent gen-

etic makeup (Fig. 2b, Additional file 1: Fig. S4, Additional file 1: Fig. S5). Nonetheless, ErEura-

sia appears specifically enriched in central/northern Asian countries, with individuals from

Kazakhstan, Mongolia, and Russia almost exclusively harboring genetically representative

ErEurasia strains (Fig. 3a, Additional file 1: Fig. S4, Additional file 1: Fig. S6). While

subspecies-specific SNV analysis confirmed that ErEurope and ErEurasia occasion-

ally co-exist, the other subspecies almost never co-colonize (Additional file 1: Fig.

S7, Additional file 1: Fig. S8, “Materilas and methods”) and thus the geographic

distribution inferred from our reconstructed E. rectale genomes does not obscure

lowly abundant strains. Subspecies membership of the ten strains for which we had

isolate genomes is congruent with their putative geographic origin (Additional file 3:

Table S2), and while discrepancies between subspecies assignment and the geo-

graphical association of some strains exist (Additional file 1: Fig. S9), our data

strengthens the notion of geographic stratification in E. rectale and provides a first

approximation of the population structure of E. rectale on a global scale.

Genetic divergence between subspecies confirmed that they should be considered

part of the same species as their pairwise genetic dissimilarities are well below 5%,

which is the threshold typically used to define bacterial species [2, 22]. Indeed, the

two most divergent subspecies are ErAsia and ErEurope which are at ~ 2.5% me-

dian genetic distance and no pair of strains ever exceeds 3% genetic distance

(Fig. 2c, Additional file 1: Fig. S10). Nonetheless, the four subspecies have different

intra- and inter-clade genetic variability. Strains belonging to ErEurope and ErEura-

sia have smaller intra-subspecies genetic variability (1.38% and 1.4% median vari-

ability, respectively) compared to ErAsia and ErAfrica (median 1.9% and 1.95%,

respectively, Fig. 2c). ErEurope and ErEurasia are both the individually least genet-

ically diverse and most closely related pair of subspecies.

E. rectale consists of at least four geographically stratified subspecies, exhibits dif-

ferential within- and between-subspecies genetic variability (Fig. 2c), and is found

in almost all adult control samples regardless of origin and lifestyle conditions

(comprising differential levels of urbanization and sanitation as well as different

Fig. 3 Eubacterium rectale subspecies distribution suggests subspecies are isolated by distance. a Relative
prevalence of E. rectale subspecies per country (European countries are aggregated). The size of the pie
charts is proportional to the total number of genomes obtained per region/country. For a map of Europe,
see Additional file 1: Fig. S13. b Pairwise approximated geographic distances between subspecies
(considering representative locations) correlate with their median genetic distances (“Materials and
methods” for details). A Mantel test between pairwise genetic and geographic distances using the Pearson
correlation coefficient yielded a correlation of 0.73 and a p value of 0.041

Karcher et al. Genome Biology          (2020) 21:138 Page 6 of 27



diets) (Additional file 1: Fig. S11, “Materials and methods”). Altogether, this

showed that Eubacterium rectale is a globally spread human gut commensal and

that the population genetics of E. rectale should be studied in light of the evolu-

tionary relationship to its host.

Correlation between subspecies’ geographic and genetic distances suggests isolation by

distance

An important aspect in investigating the evolutionary relationship between a microbe and

its host is the level of host specificity and its transmission patterns. We screened for the

presence of E. rectale in 146 publicly available metagenomes from wild non-hominid pri-

mates as well as 29 metagenomes from wild non-human hominids (“Materials and

methods”). We found no evidence for the presence of E. rectale in any of these metagen-

omes using MetaPhlAn2 (“Materials and methods”). Similarly, none of the genomes as-

sembled from non-human metagenomes is closely related (i.e., within 5% genetic

distance) to any of the available E. rectale genomes. To assess the possibility of inter-

individual E. rectale strain transmission in human populations, we further analyzed meta-

genomic data from mother-infant pairs in multiple cohorts (N = 532 samples; “Materials

and methods”) and found evidence of vertical transmission (25% transmission rate within

the first year of the infant’s life, Additional file 1: Fig. S12). Overall, these analyses suggest

that E. rectale is specific to humans and that it can be transmitted within populations.

Considering the reported specificity of E. rectale to humans, the differential degree of

relatedness of E. rectale subspecies might be due to the effects of isolation by distance

[23] and we thus tested whether E. rectale genetics supports this hypothesis. To this

end, we compared median pairwise genetic distances with geographic distances be-

tween pairs of subspecies [24]. Owing to sparse sampling outside Europe and the oc-

currence of ErEurasia and ErAfrica strains outside their ascribed geographic areas, we

assigned representative point locations to each subspecies that do not take these outly-

ing strains into account (“Discussion”) (“Materials and methods”, Additional file 1: Fig.

S14). Under these approximations, we found a statistically significant correlation (p

value 0.041) between pairwise geographic and median genetic distances of subspecies

(Fig. 3b) that is confirmed when directly considering pairwise distances between sam-

ples (p value <1e−16), suggesting that E. rectale genetic stratification could have been

to some extent shaped by physical isolation of strains over time.

ErEurope strains are immotile due to loss of motility operons

To analyze the functional repertoires of the E. rectale subspecies, we compared the

presence and absence of functionally annotated gene clusters across all E. rectale ge-

nomes. ErEurope was found to be much more functionally divergent from the other

subspecies than what genetic data would suggest (Additional file 1: Fig. S15). We com-

puted differentially prevalent gene families (KEGG Orthology gene families, KOs) and

found that the most distinguishing feature of ErEurope genomes is the absence of a

large number of motility-related genes, some of which are part of an operon previously

reported to be absent in a group of E. rectale strains corresponding to what we called

ErEurope [11, 25]. Our analysis confirmed that many motility-related genes in E. rectale

and in closely related species are organized in four operons [25] and showed that
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ErEurope strains consistently and specifically lack all genes of these four motility op-

erons (Fig. 4a), whereas the remaining E. rectale subspecies largely possess these

operons.

To support the hypothesis that these operons are necessary for motility, we per-

formed in vitro motility characterization tests in anaerobic conditions on six cultured

E. rectale strains, two of which were not described before (two ErEurope and four

ErEurasia isolates, Additional file 3: Table S2) and showed that the absence of these

motility operons renders E. rectale strains immotile in vitro with a microscopy-based

assay of motility (Fig. 4d, “Materials and methods”). The vast majority of non-ErEurope

strains possess the motility operons, although there are a few exceptions (verified with

contig-based analysis, Additional file 1: Fig. S16, “Materials and methods”) with 41

non-ErEurope genomes (3.1% of all non-ErEurope strains) lacking > 20% of these motil-

ity genes (Fig. 4a, Additional file 1: Fig. S17) and 16 non-ErEurope genomes (1.2%,

Additional file 1: Fig. S18) specifically missing the largest of the four operons (flgB/fliA,

Fig. 4a). Within non-ErEurope strains, the genetic distances inferred from the flgB/fliA

operon are highly correlated with those from the core genome (Pearson correlation of

0.8, Mantel test p value < 0.001, Fig. 4c, Additional file 1: Fig. S19). This suggests past

operon/core genome co-diversification and thus that the common ancestor of all E.

Fig. 4 ErEurope is consistently immotile due to loss of motility operons. a No genes from the four motility
operons of E. rectale [25] are detected in ErEurope strains, and only a very small fraction of non-ErEurope
genomes are lacking some or all of these genes (Additional file 1: Fig. S18). Asterisks denote cultured isolate
genomes. b Differentially abundant, non-operon potentially motility-associated KOs between ErEurope and
the remaining subspecies. csrA was added despite being present in the flgM/csrA operon because it can be
found elsewhere in some E. rectale genomes as well. We annotated genes using eggNOG-mapper [26] and
only KOs of the E. rectale reference genome annotated by KEGG [27] are considered. Potentially motility-
associated KOs were defined as being part of at least one of the following KEGG pathways: quorum
sensing, bacterial chemotaxis, flagellar assembly, and two-component system. p values were calculated
using a two-sided Wilcoxon test and corrected for multiple testing at 5% FDR using the Benjamini-
Hochberg method. c Core gene sequence and flgB/fliA operon sequence genetic clustering for all motile
strains (those belonging to either ErAfrica, ErEurasia or ErAsia). d In vitro motility characterization via phase-
contrast microscopy of six E. rectale isolates (“Materials and methods”). Asterisk marks strain L2–21, which is
the only immotile ErEurasia strain, presumably as a consequence of the specific lack of the flgB/fliA motility
operon we found in its genomes

Karcher et al. Genome Biology          (2020) 21:138 Page 8 of 27



rectale strains possessed these operons. Motility operons show high structural

consistency among E. rectale and closely related species, providing additional support

for their homologous nature [25]. Together, we take this as evidence that operon motil-

ity loss in E. rectale is a stochastic event that can lead to viable, immotile E. rectale

strains and that the subspeciation of ErEurope might be connected to one of such sto-

chastic operon losses in the common ancestor of ErEurope strains largest subspecies is

falling in divergent paraphyletic subtrees (Fig. 2a).

Reduced genome size and increased functional divergence is associated with the loss of

motility

Comparison of genome sizes between subspecies suggested that ErEurope strains have

lost a considerable amount of genetic material since their split with ErEurasia, its most

closely related subspecies. The median genome size of ErEurope is smaller than the

median genome size of all other subspecies and 353 k bases smaller than that of ErEur-

asia (Additional file 1: Fig. S20). This difference far exceeds the cumulative length of

the lost motility operons (mean cumulative size 54.5 kbps, sd 13 kbps., Additional file 1:

Fig. S21), suggesting a gradual loss of genetic material.

We further investigated the evolutionary trajectories of subspecies by studying the dif-

ferentiation of their gene repertoire in light of their genetic divergence. The gene distances

between ErEurope and ErEurasia were similar to those between other pairs of subspecies

(excluding motility operon genes) (Additional file 1: Fig. S22), but when normalized by

their respective genetic distances, the resulting measure of the rate of functional diver-

gence between ErEurope and ErEurasia strains clearly exceeded that of other pairs of sub-

species (Additional file 1: Fig. S23), indicating that ErEurope and ErEurasia diverged

functionally at an accelerated rate compared to other pairs of subspecies. This could rep-

resent adaptive processes triggered by the loss of motility in ErEurope strains.

ErEurope genomes have reduced copy numbers of motility-associated genes that are not

part of the four motility operons

We investigated the specific functions that are differentiating ErEurope and ErEurasia

strains and found a total of 170 differentially abundant KEGG orthologous families

(KOs) (Additional file 6: Table S5). Among them, we identified 13 KOs that were po-

tentially motility-associated but were not found on any of the four motility operons (ex-

cept for csrA, which can be found on a motility operon but also elsewhere in some

genomes). Twelve of these 13 KOs are underrepresented in ErEurope strains (Fig. 4b).

The 12 out-of-operon, potentially motility-associated genes with reduced copy numbers

in ErEurope comprised genes coding for proteins such as methyl-accepting chemotaxis

protein (Mcp), flagellin (FliC), and the chemotaxis proteins CheR, CheY, and CheV (sev-

eral other chemotaxis genes can be found on the flgb/fliA operon), which are directly in-

volved in motility. This group also contained genes coding for proteins involved in

cellular mechanisms that are indirectly related to motility, such as the accessory gene

regulator B (agrB) that was shown to be involved in quorum sensing in Staphylococcus

aureus [28], and the carbon storage regulator A (csrA) that is involved in biofilm forma-

tion in E. coli [29, 30] as well as quorum sensing in Pseudomonas aeruginosa [31]. The sig-

nal peptidase I (lepB) gene and the protein translocase subunit secA gene are both coding
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for proteins required for protein export, a process crucial for flagellum assembly. We

therefore speculate that the underrepresentation of these genes is the consequence of a

gradual loss of these functionally redundant genes in early ErEurope strains.

ErEurope strains have a distinct carbohydrate metabolism gene repertoire

To investigate whether carbohydrate metabolism gene repertoires differ between sub-

species, we annotated all genomes using the CAZy database [32] (“Materials and

methods”). We found that strains belonging to ErEurope harbor significantly more

carbohydrate-active enzymes (all p values < 1e−9, Fig. 5a) compared to the three

remaining subspecies despite their smaller genome size. Consequently, ErEurope ex-

hibits a much larger density of carbohydrate-active genes (p value < 2.2e−16, Fig. 5b),

and it clusters separately and distantly from the remaining subspecies also based on

genome-wide CAZy gene content differences (Fig. 5c).

To understand in what way the carbohydrate metabolism of ErEurope strains has di-

verged from the other subspecies, we computed differentially abundant CAZy families

between ErEurope and ErEurasia: in total, there were 43 differentially abundant CAZy

families separating the two subspecies (Fig. 5d). ErEurope is enriched in putatively cata-

bolic CAZy families (glycoside hydrolases, carbohydrate esterases, carbohydrate-binding

module) targeting either hemicelluloses (xylans, arabinans, arabinoxylans) or pectins

(galactans, arabinogalactans) (Fig. 5d). We performed in vitro carbohydrate utilization

tests using six cultured E. rectale isolates (two of them belonging to ErEurope and four

to ErEurasia) to understand on which carbohydrate substrates ErEurope strains grew

better (optical density measured after 48 h of growth, Additional file 2: Table 1, “Mate-

rials and methods”). We found that, compared to ErEurasia strains, ErEurope strains

grew better on xylan and inulin (both representing complex, plant-associated carbohy-

drates) and worse on sucrose. Furthermore, one of the two ErEurope strains was specif-

ically able to grow on arabinan (Additional file 2: Table 1, “Materials and methods”).

Together, these results indicate that ErEurope strains tend to be better at utilizing cer-

tain classes of complex, plant-associated carbohydrates compared to ErEurasia strains.

These genomic differences might represent adaptive changes due to the loss of motility.

A novel genomic island specific to ErEurope contains a battery of glycosyltransferase

genes

Profiling the carbohydrate-related gene repertoire of E. rectale revealed another defin-

ing feature of ErEurope genomes. This subspecies is strongly enriched in genes coding

for some glycosyltransferase (GT) gene families (Fig. 5d). Specifically, ErEurope strains

possess more GT genes (from the families GT2, GT4 and GT32) compared to other

subspecies, with GT2 being particularly strongly overrepresented (p value < 1e−12,

Fig. 6a). We found that the cultured E. rectale isolate genome T1–815 and several other

ErEurope genomes derived from metagenomes contain a genomic region enriched in

GT2, GT4, and GT32 genes (Fig. 6b) that is part of a genomic island (GI). This GI

(when present) is consistently located in the same genomic position (Fig. 6c), and its

GC content is clearly distinct from the remaining part of the genome (average GC con-

tent 37.7% vs 42.3%, Fig. 6d). The GI has a length of ~ 50 k bps (average 49,668 bps, s.d.

2176 bps) and is found in its entirety on the same contig in 56 ErEurope strains
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(corresponding to ~ 21% of all ErEurope genomes) with prevalence rates of up to 50% in

ErEurope when partial detection of the GT-enriched region is considered sufficient to call

the GI present (Additional file 1: Fig. S24). No traces of this GI were detected in any other

subspecies.

The GT-enriched region of the GI is responsible for most of the enrichment of GT2,

GT4, and GT32 gene families in ErEurope strains (Additional file 1: Fig. S25). While the

non GT-enriched part of the GI remains largely functionally unannotated (Additional file 1:

Table S6), many of the GT genes are associated with synthesizing exopolysaccharides in

the context of biofilm formation, protein glycosylation, or cell wall polysaccharide synthe-

sis. This may represent an adaptation of ErEurope strains to synthesize exopolysacchar-

ides or other structural carbohydrates, a change that might prove advantageous for an

immotile gut commensal.

Fig. 5 The immotile subspecies ErEurope exhibits a comparatively strong shift in carbohydrate-active
enzyme (CAZy) gene repertoire. a ErEurope exhibits higher carbohydrate-active enzyme (CAZy) family
counts than the other subspecies. b Density estimates of the number of CAZy genes per 106 nucleotides in
the genome for each subspecies. c Non-metric multidimensional scaling plot based on pairwise Manhattan
distances between CAZy gene family abundances. d Left: Differentially abundant carbohydrate-active gene
families between genomes of ErEurope and ErEurasia. p values were corrected at 5% family-wise error rate
using the Bonferroni method. Color-scale is logarithmic. Middle: Effect size and direction of association
(difference in mean copy number between ErEurope and ErEurasia). Right: Putative links between catabolic
carbohydrate-active enzyme families (CBM, CE, GH) and their substrates. CBM = carbohydrate-binding
module, CE = carbohydrate esterase, GH = glycoside hydrolase, GT = glycosyltransferase
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In order to investigate the origin of the GI, we checked for signals of co-

diversification between the core genome and operon sequences. The sequence of the

GI is more conserved (< 1% pairwise genetic distance) than the rest of the core genome

(Fig. 6e) and core gene distances and genomic island gene distances are significantly

but very weakly correlated (Mantel test Pearson correlation 0.16, p value: 0.015). We

screened the metagenomic assemblies of the human microbiome in search of homolo-

gous sequences of the GI, but found no evidence of any other human-associated mi-

crobe with the sequence of this GI (“Materials and methods”). This suggests that the

Fig. 6 A newly discovered genomic island enriched for glycosyltransferase genes in ErEurope. a Genome-
wide counts of the GT2, GT4, and GT32 families by subspecies. b Annotated open reading frames of the
GT-enriched part of a representative example of the genomic island specific to ErEurope. c Comparative
genomic analysis of the genomic island (“Materials and methods”). The top five ErEurope strains contain the
genomic island, whereas the bottom five do not. Colored segments connecting pairs of genes indicate
orthologous genes inferred using progressiveMauve [33]. d GC content along the four contigs from
ErEurope strains containing the ErEurope genomic island (“Materials and methods”). YSZC12003_37103 is
not shown here because another genomic insertion would misalign the sequences. e Pairwise genetic
distances between strains using orthologous genes from the genomic island are lower than those based
on core genes. All 56 ErEurope strains with fully extracted genomic island are considered here
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GI originated from a microbe which is not a common current member of the human

gut microbiota.

Discussion
New technologies and computational tools are generating an unprecedented amount of

strain-specific genomic information that can be the foundation of a new generation of

microbiome studies [2, 12, 13, 34, 35]. Large-scale species-specific whole-genome inves-

tigations can now be performed without cultivation [14] and—using metagenomic as-

sembly combined with a reference-dependent binning approach—can be applied on

many thousands of single metagenomes. We demonstrated this with Eubacterium rec-

tale, one of the most prevalent human gut species.

Our analysis of E. rectale population structure revealed an extreme degree of biogeo-

graphic stratification and specificity to the human host. Our data largely supports the

hypothesis that the observed stratification (Figs. 2b and 3a) is at least in part the conse-

quence of isolation by distance (Fig. 3b) brought about by host-microbe co-dispersal,

possibly due to migration movements of early humans. While population structure

shaped by isolation by distance has previously been described for the (opportunistic)

human pathogen H. pylori [36–38], here we report for the first time similar evolution-

ary signatures in a human gut commensal. Interestingly, vertical transmission rates

were found to be low in both H. pylori [39, 40] and E. rectale. The estimated transmis-

sion rate of 25% observed between mother-infant pairs for E. rectale (Additional file 1:

Fig. S12) suggests that strain seeding from the local (social) environment contributes to

the observed biogeographic stratification.

However, isolation by distance is likely not the only force acting on the genetics of E.

rectale. Most ErAfrica strains happen to originate from individuals living a traditional

lifestyle. It is possible that selection effects by host lifestyle as is the case for Prevotella

copri [14] influence the genetic structure of E. rectale strains as well. Since there are no

large datasets that contrast individuals from the same population living different life-

styles, it is difficult to quantify the effect of host lifestyle on the population structure E.

rectale. Nonetheless, we have tested for subspecies association with age (Additional file 1:

Fig. S26) and BMI (Additional file 1: Fig. S27) as well as diet (Additional file 1: Fig.

S28) and found no significant differences. Furthermore, ErAfrica strains are sometimes

found in countries outside of Africa, and ErEurasia strains—despite being genetically

distinct—are unexpectedly found in Fiji, observations that are not easily explained by

isolation by distance. More comprehensive and better georeferenced metagenomic sam-

pling of currently undersampled populations in South America, Africa, and Oceania

that explicitly contrasts modern and traditional lifestyles will provide more conclusive

answers. Powered by such data, our approach of large-scale genome reconstruction

from metagenomes will open up new avenues to more broadly study the patterns of

host-microbe co-evolution and co-differentiation.

E. rectale is consistently found in all cohorts used in this study and never found in wild

non-human primates. This can suggest that the common ancestor of E. rectale was part

of the gut microbiome of early humans prior to their expansion out of Africa. Bayesian

phylogeny rooting did not support this hypothesis (Additional file 1: Fig. S29), but future

studies exploring ancient DNA pools retrieved from prehistoric human gut content and

sampling of undersampled populations (especially those from Africa) could shed further
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light on the issue. Even without clocked phylogenies, key aspects in the genetic events that

shaped the current dispersion of E. rectale strains could be found. Perhaps the most intri-

guing case is the evolutionary history of ErEurope that can be parsimoniously explained

assuming a single operon loss event prior to its separation from early ErEurasia strains.

This event must have occurred relatively recently compared to the other E. rectale subspe-

ciation events as ErEurope has a comparatively low genetic diversity, is closely related to

ErEurasia, and is geographically extremely well confined.

Studying the loss of major motility operons in ErEurope provided a detailed example

of how large-scale strain-level metagenomics combined with experimental testing can

reveal evolutionary and ecological patterns. ErEurope and its closest sister subspecies

ErEurasia have functionally diverged at an accelerated pace after the loss of motility,

and this is exemplified by the reduced number of extra-operon motility genes and the

divergent carbohydrate metabolism gene repertoire in ErEurope. We speculate that, with

the lack of motility, ErEurope strains might have been forced to change and extend their

repertoire of catabolic carbohydrate-active enzymes to be able to metabolize a wider range

of energetically unfavorable carbohydrates such as Inulin and Xylan (Additional file 2:

Table 1) due to the inability to scavenge for energetically more favorable carbohydrates. A

large genomic island specific to ErEurope was also identified that harbors many genes im-

plied in exopolysaccharide synthesis in the context of biofilm synthesis. The loss of motility

operons might have triggered a change in ecological niche in ErEurope strain, which in turn

lead to adaptive processes in ErEurope with a combination of genome reduction and hori-

zontal gene transfer events.

We provide an accurate, targeted approach to reconstruct genomes from metagen-

omes—based on a high-quality set of species-specific genomes (Additional file 1: Fig.

S1)—which in our evaluation on E. rectale (Fig. 1d, Fig. 1e) compares favorably to a

state-of-the-art reference-independent tool. The merit of such an approach needs to be

further validated on other species and could then be useful for exploring diverse micro-

biomes including those from non-human environments. In the future, such efforts

could be improved by technological advances including long-read technologies [41, 42]

and single-cell sequencing [43], by even larger meta-analyses, and by in-depth pheno-

typic characterization that could pave the way to a deeper understanding of the com-

plexity of the human microbiome on a subspecies level.

Materials and methods
Description of public and newly sequenced metagenomic datasets

We considered a total of 6775 human gut shotgun metagenomes from 38 datasets

spanning 30 countries (Additional file 4: Table S3, Additional file 5: Table S4). Most

samples were obtained from publically available datasets; a total of 163 samples came

from new cohorts we recently sequenced: We included 113 samples from Madagasy in-

dividuals [2] and 50 samples from Ethiopian individuals [19]. The datasets we used are

composed of individuals with different diets, exposure to environmental stressors (in-

cluding antibiotics), and sanitary conditions. As such, some of those individuals can be

described as “westernized” and others as “non-westernized” [44].

Furthermore, in this study we used four publically available datasets containing a

total of 175 shotgun metagenomes coming from wild, non-human primates [45–48]

(Additional file 8: Table S7).
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Prevalence testing of E. rectale in human and great ape metagenomes

Based on taxonomic profiling using MetaPhlAn2

All human- and non-human great ape samples were profiled using MetaPhlAn2 (ver-

sion 2.7) [49] with default parameters. Reads were mapped to markers using Bowtie2

(version 2.3.4, parameters --very-sensitive, --no_unal) [50]. E. rectale was determined to

be present in a sample if its relative abundance exceeded 0.1% and at least 20% of all E.

rectale marker genes were hit.

Based on metagenomic assembly and binning

In order to find E. rectale genomes assembled from wild non-human primate metagen-

omes, we assembled and binned as described elsewhere [2, 51] a total of 2895 metagenomic

high-quality genomes obtained from 175 publicly available metagenomes from wild, non-

human primates (Additional file 8: Table S7). These 175 metagenomes come from four dif-

ferent datasets spanning 22 non-human primate species including chimpanzees and gorillas

from 14 different countries on five continents [45–48]. We then estimated genetic dis-

tances between each of the reconstructed genomes and the set of E. rectale isolate genomes

using MASH [52], and found that not a single bin generated from the non-human primates

was within 23% genetic distance of any E. rectale isolate. To confirm that this result is not

dependent on the binning method, we also applied the reference-based binning procedure

we proposed in this work to these assemblies. We found that not a single bin was more

than 5% complete, confirming our previous result that the metagenomic assemblies of wild

non-human primates used in this study do not contain E. rectale genomes.

Determining vertical transmission rates of E. rectale

Vertical transmission of E. rectale was assessed in three publicly available longitudinally

sampled mother-infant datasets: Bäckhed et al. (N = 398 samples; 96 mothers-infant

pairs) [53], Asnicar et al. (N = 18, 5 mother-infant pairs) [54], and Ferretti et al.

(N = 116 samples, 21 mothers and 25 infants) [55]. Strain-level single-nucleotide

variant profiling was performed with StrainPhlAn2 [9] with database version mpa_

v294_CHOCOPhlAn_201901 and options sample_with_n_markers = 10 and marker_

in_n_samples = 10. Pairwise genetic distances normalized by median branch length

(nGD) were created using PyPhlAn (https://bitbucket.org/nsegata/pyphlan).

Strain transmission was assumed when two individuals harbored identical strains, with

strain identity inferred when the pairwise normalize genetic distances are below the first

percentile of the nGD distribution of samples of unrelated individuals, thus allowing a 1%

false discovery rate. E. rectale transmission rates were defined as the proportion of

mother-infant pairs harboring E. rectale that carried the same strain at ≥ 1 time point.

The assembly and reference-based binning of E. rectale genomes from 6775 gut

metagenomes

The reference-based binning approach employed here consists of three principal steps

(Fig. 1a): Individual assembly of all 6775 gut metagenomes, compilation of a high-quality

E. rectale genome set consisting of both isolate genomes and manually curated reference

genomes from metagenomes and reference-based binning of all 6775 gut metagenomic

assemblies using the high-quality E. rectale genome set as a reference for binning contigs.
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First, we assembled each gut metagenome individually using metaSPAdes (version 3.10.1)

with standard parameter settings [15] as described by Pasolli et al. [2]. We used MEGAHIT

(version 1.1.1) [16] instead of metaSPAdes for those metagenomes with only unpaired reads.

Next, we compiled a set of E. rectale reference genomes consisting of manually cu-

rated metagenomic bins obtained using anvi’o (version 2.3.2) [56] as well as genomes

from isolate sequencing. Anvi’o visually integrates information about depth, tetranu-

cleotide frequency, and taxonomy of metagenomic assemblies on a contig-by-contig

level, facilitating human-aided binning. We followed the author’s recommended work-

flow for preparation of metagenomic assemblies for manual inspection (http://meren-

lab.org/2016/06/22/anvio-tutorial-v2/). We complemented the taxonomic assignment

provided by centrifuge (version 1.0.4) [57] with an ad hoc approach, mapping the as-

sembled contigs against the bacterial RefSeq database using BLAST (version 2.6.0) [58].

Based on the results of this mapping, we assigned taxonomic labels to each contig of

that species against which the largest fraction of the contig mapped with a mean iden-

tity score of at least 75%. Manually curated bins were used only when hierarchical clus-

tering of tetranucleotide frequency and coverage as well as taxonomic assignments

indicated an E. rectale bin of high quality. We maximized precision of manually curated

reference genomes by excluding contigs that were not clearly belonging to E. rectale. A

total of 170 metagenomes with high depth and coverage over E. rectale isolate genomes

were queried in this manual binning process. From these 170 metagenomic assemblies,

we reconstructed 47 manually curated reference genomes (MCR) with an average

length of 2.61 Mbps (s.d. 0.20 Mbps), an average number of contigs of 41.1 (s.d. 11.14),

an average N50 of 102,000 bps (s.d. 36,000 bps), and average CheckM [17] complete-

ness and contamination estimates of 96.6% (s.d. 3.5%) and 0.2% (s.d. 0.3%), respectively

(Additional file 2: Table S1). These MCR genomes have very good assembly character-

istics (N50, nr. of contigs) but are shorter due to the maximization of precision during

the manual curation step, which we expected to improve reference-based binning per-

formance since the chance of faulty binning of small contigs from closely related spe-

cies due to propagation of contamination in the reference is reduced.

The final step consisted of mapping all 6775 assembled metagenomes against the set of ge-

nomes consisting of the 47 manually curated reference E. rectale genomes (Additional file 2:

Table S1) as well as seven isolate genomes from NCBI (Additional file 3: Table S2). We con-

sidered a contig to come from E. rectale if it mapped with a mean identity score of at least

95% over at least 50% of its length against the set of reference genomes. We determined opti-

mal thresholds for minimum mean identity score/fraction mapping based on simulations with

semi-synthetic data (see the section below).

The E. rectale metagenomic assemblies resulting from the procedure in this section

were quality controlled and compared favorably against reference-free binning (see

below).

Parameter selection for the reference-based binning using semi-synthetic metagenomes

We used semi-synthetic data to select optimal parameter values in the reference-based

binning approach. We spiked in sequences originating from E. rectale isolate genomes

into metagenomic assemblies where E. rectale was undetectable using MetaPhlAn2

(version 2.7) [49]. We applied reference-based binning as outlined above and evaluated
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performance over a grid of parameter values. The parameter values are (1) the mean

identity score of the query contig against the reference database and (2) the fraction of

the query contig mapping against the database. False positives are defined as those nu-

cleotides binned that originated from the originally E. rectale-free metagenomic assem-

bly; false negatives are defined as those spiked-in nucleotides that were not binned. The

reference genomes which were not completely scaffolded were spiked in as they are,

whereas the completely scaffolded reference genomes were sliced into uniformly dis-

tributed pieces between 1000 and 50,000 in length. We tested performance using all

combinations of isolate genomes and 50 metagenomes without detectable levels of E.

rectale (MetaPhlAn2) randomly chosen among all 6775 metagenomes.

Comparison of reference-based against reference-free binning

We compared genomes extracted by the reference-based binning method described

above with those from a large-scale, reference-free binning effort [2]. Briefly, the study

by Pasolli et al. used metaBAT2 [59], a state-of-the-art reference-free binning software,

on single-sample metagenomic assemblies to produce more than 150,000 genomes

from metagenomes. The extracted genomes along with 80,990 reference genomes were

clustered into species-level groups using pairwise genetic distances using MASH [52].

These groups were taxonomically labeled with the species associated with the reference

genome(s) present in the group, considering the most common species label if multiple

reference genomes with different assigned species were present. We selected the

species-level group corresponding to E. rectale and compared those genomes that were

more than 90% complete and less than 5% contaminated in both approaches. Very

rarely, the reference-free binning by Pasolli et al. produced more than one bin assigned

to E. rectale in a given metagenome. In these cases, only the more complete bin was

evaluated. No longitudinal samples were considered.

Quality control of the genomes

Filtering of genomes for downstream analysis consisted of removing lowly covered con-

tigs in bins (those that are below 20% of the median genome-wide coverage) followed

by further quality checks. High-quality (HQ) E. rectale genomes were defined as those

with CheckM (version 1.0.12) [18] completeness > 90% and contamination < 5%, a total

size larger than 2.9 Mbps and smaller than 3.89 Mbps (calculated as the 95% and 105%

of the size of the smallest/largest E. rectale isolate genome), less than 400 contigs, and

an estimate of within-sample strain heterogeneity of less than 0.3% (see below). As ex-

pected, the HQ genomes generally miss rRNA genes, containing on average 0.56 of

them (sd 0.75). In total, we reconstructed 1321 HQ genomes that passed all these qual-

ity criteria and were used for further analysis.

Polymorphism-based strain heterogeneity assessment for additional quality control

We developed a method for ad hoc estimation of within-metagenome strain heterogen-

eity for each genome based on the number of polymorphic sites over E. rectale protein-

coding genes. After gene calling performed using Prodigal (version 2.6.3) [60], we

mapped reads back to protein-coding genes using Bowtie2 (version 2.3.4, parameters

--very-sensitive-local and -a) [50] and determined dominant and second-dominant
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alleles over all protein coding nucleotides. For this, we only considered base calls with a

PHRED quality score of at least 30 and only those positions with a coverage of at least

10. We considered a position non-variant if the dominant allele constituted more than

80% of the total number of nucleotides mapped to that given position. In order to cal-

culate the polymorphism rate, we translated dominant and second-dominant nucleotide

sequences into protein sequences and divided the total number of non-synonymous

mutations between the two by the total number of positions.

E. rectale genome annotation

We used Prokka (version 1.12) [61] for gene calling and functional annotation of bac-

terial genomes. Roary (version 3.8.2) [62] with settings “-i 95 -cd 95 -e -z --mafft” was

used for core and pan-genome clustering as well as for generating core gene alignments

[63]. Core genes were defined as those genes present in at least 95% of genomes. All

gene clusters were annotated with KO information using eggNOG-mapper [26]) using

representative gene sequences obtained from Roary. CAZy annotations [32] were ob-

tained using a local dbcan distribution (release 6.0) [64], which uses HMMER (version

3.1b2) [65] to identify carbohydrate-active enzyme families in protein sequences. We

used dbcan on translated protein-coding genes (Prodigal) and filtered hits for E-value

< 1e−18 and coverage > 0.3 as suggested by the authors. Only one randomly selected

sample per individual was considered for this analysis. Assignment of substrates to

carbohydrate-active enzymes was based on the information provided in the CAZy data-

base (www.cazy.org, [66]), CAZypedia (www.cazypedia.org, [67]), and dbCAN [64].

Functional divergence rate

Genomic distances were calculated based on the Roary gene presence/absence matrix.

Motility operon genes were identified by blasting representative operon gene sequences

against representative gene sequences from roary and subsequently removed from the

gene presence/absence matrix. Pairwise Jaccard distances between genomes were then

computed using the “vegdist” function in the “vegan” R package. The genetic distances

were defined as the hamming distance on a core gene alignment produced by roary.

The rate of functional divergence was calculated by dividing pairwise inter-subspecies

genomic distances by their corresponding genetic distance.

Phylogenetic analyses

If not stated otherwise, the phylogenetic analyses were performed with PhyloPhlAn 3.0

[68] (https://github.com/biobakery/PhyloPhlAn).

The phylogeny in Fig. 2 was built using the 1071 core genes extracted as described

above. PhyloPhlAn was run with the following options: “--diversity low --fast”. For the

internal steps, the following tools with their set of parameters were used:

� blastn (version 2.6.0+), [58] with parameters: “-outfmt 6 -max_target_seqs

1000000”;

� mafft (version 7.310), [63] with the “--anysymbol” option;

� trimal (version 1.2rev59), [69] with the “-gappyout” option;

� RAxML (version 8.1.15), [70] with parameters: “-p 1989 -m GTRCAT”.
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To infer the Bayesian phylogeny, we built a core gene alignment (using an in-house

script (https://bitbucket.org/CibioCM/genomealnbuilder)) from 46 metagenomes ran-

domly selected to represent the four subspecies with the following parameters: “con-

tigs_based -minqual 30 -minlen 50 -maxsnps 0.03 -mincov 5 -aln_len 500 -pid 95.0”.

We used trimAI to remove gappy columns from the alignment [69]. After filtering, the

alignment included 1,356,039 nucleotide positions. BEAST v2.5.1 [71] was used to infer

a phylogeny, using a GTR model of nucleotide substitution (with 4 gamma categories).

To choose the best clock and demographic models we performed a model selection

comparing coalescent constant, coalescent exponential, coalescent Bayesian skyline,

and coalescent extended Bayesian skyline models (for the demographic priors) and a

strict molecular clock. Convergence of the posterior probability distribution was

assessed by visualizing log files with Tracer v1.7 [72]. The most fitting combination of

models was a coalescent constant population with a strict molecular clock: this analysis

was run longer for > 12,000,000 iterations with an effective sample size (ESS) of key pa-

rameters of over 200.

E. rectale subspecies definition

To define subspecies, we used the partitioning around medoids algorithm [21] on the

hamming distances (not considering gaps) computed on the concatenated nucleotide

core gene alignment (produced by Roary, see above). In order to determine the optimal

number of clusters, we used the prediction strength metric [73]. The PAM clustering

algorithm is minimizing the sum of distances of each sample to the closest centroid,

which is why it is prone to over-separate dense clouds of points. In order to produce

more even sample densities, we subsampled all Eurasian/North American datasets to

50% and applied the PAM algorithm on this subset. We calculated prediction strength

values on 50 random subsamples in order to obtain information regarding the variation

of prediction strength values with respect to the subsamples. After having determined

the optimal number of clusters (k = 4) following the standard procedure [73], we

assigned cluster membership to all genomes based on the distance of each genome to

the cluster corresponding to the closest centroid. We chose random cluster centroids

from the 50 iterations, as the cluster assignment was very stable over subsamples for

k = 4. We used the “pam” function in the “cluster” package and the “prediction.-

strength” function of the “fpc” package in R with 20 internal divisions.

E. rectale subspecies abundance estimation

We have used subspecies-specific single-nucleotide variants (SNVs) (defined using the

core gene alignment as those nucleotides that are present in more than 90% of a sub-

species but absent in more than 90% of the remaining ones) to estimate subspecies

abundances in the samples. We mapped reads to consensus core gene sequences and—

for each subspecies—calculated the median of the coverage ratios between the

subspecies-specific alleles and the respective total coverages. We have restricted this

analysis to only those metagenomes where the mean depth over all subspecies-specific

positions was at least 5 and where at least 75% of the set of subspecies-specific posi-

tions was covered at least 3 times. We have removed samples where the sum of
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estimated relative abundances is bigger than 1.25 or smaller than 0.75. For metagen-

omes passing these filters, we have scaled the estimated relative abundances to sum up

to 1.

Analysis of the E. rectale motility operons

The identification of the motility operons of E. rectale used in our analysis is based on

the work by Neville et al. [25]. Briefly, Neville et al. determined and characterized mo-

tility operons in E. rectale and closely related species using isolate genomes. We anno-

tated the operons in our genomes based on the E. rectale strain A1–86 used as a

reference for the annotation by Neville et al. (Additional file 9: Table S8). Differently

from the original analysis reporting the presence of three motility operons for E. rec-

tale, we separated the flgM/csrA and flaG/flgN operons since we did not find them to

be in close vicinity in both the genome of E. rectale strain A1–86 as well as in the ge-

nomes we reconstructed from metagenomes. In E. rectale strain A1–86, the largest op-

eron (termed “flgB/fliA”) has a total length of 30,520 nucleotides and 34 coding

sequences. The three remaining operons have a length of 1984, 6764, and 4152 nucleo-

tides and contain three, seven, and four coding sequences, respectively [25].

We determined the presence and absence of motility operon sequences using two different

strategies. In the first, we extracted operon gene sequences from E. rectale strain A1–86 and

blasted them against our genomes. We removed all hits that were shorter than 75% of query

gene as well as redundant blast hits. After this, all hits had an identity score of at least 95% and

all E-values were smaller than 1E−44 and were thus used to determine operon gene presence/

absence. The second strategy involved extracting the genes immediately upstream and down-

stream of all motility operons (bordering gene sequences were taken from E. rectale strain A1–

86), blasting them against all genomes and finding contigs on which both bordering genes of an

operon could be found. We considered only those cases in which an operon could be identified

well (exactly two blast hits per contig with an E-value < E−30). When a motility operon could

be identified on a contig, we extracted all protein-coding genes between bordering genes and

annotated them by mapping against the motility gene sequences of E. rectale strain A1–86.

Analysis of exopolysaccharide genomic island

Detection of GT-enriched genetic element

We noticed a pronounced physical enrichment of genes annotated with glycosyltrans-

ferase activity in E. rectale isolate genome T1–815. We blasted this genetic stretch

against all E. rectale genomes and extracted and aligned sequences (using mafft (version

v7.310) [63] and standard parameter settings) in case there was a single blast hit with a

length of at least 95% of the length of the genetic element of T1–815 (E-value cutoff of

E−30), which was the case in a total of 56 ErEurope genomes. We further annotated

the fully extracted sequences with Uniprot information [74] as provided by prokka (ver-

sion 1.12).

Determining total size of genetic island

In order to determine the boundaries of this genetic island, we first blasted the GT-

enriched sequence discovered in T1–815 against all E. rectale genomes and extracted

exceptionally long contigs (contigs at least 100 k nucleotides long) with a single blast

Karcher et al. Genome Biology          (2020) 21:138 Page 21 of 27



hit of at least 30 k in size and an E-value of less than 1E−30. We then blasted these

contigs back against all HQ E. rectale genomes, targeting strains of ErEurope with long

contigs not enriched for GT genes since those represented strains without the genetic

element. This two-step approach is necessary since the contig containing the genetic

element from T1–815 is comparatively short (around 50 k bps) and was unable to attract

contigs from ErEurope strains where the genetic element is absent. We aligned contigs

with progressiveMauve [33] (build date Feb 132,015) and used only contigs that spanned

the operon completely. When the genetic element borders were visualized, we used the

first gene upstream/downstream of the genetic element that was inferred to be ortholo-

gous among all ten ErEurope genomes as the bordering genes. We calculated GC content

along the contigs using a rolling window with window size of 20,000 and a step size of 10.

Using this approach, each contig’s 10 k positions to either end were not queried.

Search for possible donor organism in gut metagenomic assemblies

In order to find a possible source microbe for the GT-enriched genomic island, we

screened > 9500 human gut metagenomic assemblies [2] for a similar sequence. We

blasted (blastn with parameters “-word_size 7”) a representative sequence of the gen-

omic island against all bins as well as all unbinned fractions of the metagenomic assem-

blies. Among the bins, we found several hits with a mean identity score > 98% across

the entire length of genomic island in non-E. rectale bins. Yet, we noticed that in all

those samples, a complete quality E. rectale genome was binned as well, which suggests

that these contigs truly belong to E. rectale. We observed the same pattern in the

unbinned fraction of contigs and concluded that this sequence might be unique among

contemporary human gut commensals.

Physical distances between subspecies

We estimated geographic distances between subspecies in order to look for a correlation

between pairwise geographic and genetic distances of subspecies. We associated ErAfrica

with Tanzania, ErEurope with Germany and ErAsia with Eastern China based on evident

geographic enrichment (Fig. 3a). The geographic association of ErEurasia is less clear, with

strains being found in Europe and central/northern Asia, but also in Fiji and Ethiopia, al-

though strains from these two countries are genetically distinct from ErEurasia strains

found in Eurasian countries (Fig. 3b, Additional file 1: Fig. S4, Additional file 1: Fig. S5).

We associated ErEurasia with Kazakhstan because individuals from central/northern

Asian countries (Kazakhstan, Mongolia, Russia) almost exclusively harbored genetically

representative ErEurasia strains (Additional file 1: Fig. S30, Additional file 1: Fig. S31). Dis-

tances were approximated with the distm function of the geosphere package in R [75].

Physical distances between subspecies were defined as the shortest path between geo-

graphic locations associated with subspecies with the exception of the distance between

ErAfrica and ErAsia, which was determined as the shortest path across the Arabian

peninsula.

Bacterial strains, isolation, and growth media

The bacterial strains L2–21 and T3WBe13 were isolated from human fecal samples

from a healthy adult male consuming a vegetarian diet who had not taken any
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antibiotics or other medication known to influence the human colonic microbiota for a

period of more than 3 months prior to providing the samples. Strain L2–21 was iso-

lated in 1995 as described previously [76]. T3WBe13 was isolated from another fecal

sample from the same donor 22 years later. It was grown on clarified rumen fluid-based

M2 medium [77] containing a range of soluble sugars (M2GSC containing glucose, cel-

lobiose, and soluble starch, 0.2% final concentration of each) following a 10-fold serial

dilution in basal M2 medium (containing 10% clarified rumen fluid) with 100 μl of

slurry inoculated into 10-ml volumes of either M2 medium containing 0.2% wheat ara-

binoxylan (Megazyme) or 0.2% pre-treated bran as described previously [78]. Following

48 h incubation at 37 °C, the samples were enriched for a total of three times on the

same medium prior to preparing a 10-fold serial dilution and inoculating roll tubes

(M2GSC medium). Single colonies were picked into M2GSC broth. Strains A1–86,

T1–815, ATCC 33656, and M104/1 have been described previously.

Genome sequencing

The two genomes isolated and sequenced in this work (L2–21 and T3WBe13) were

grown on M2GSC broths. Genomic DNA was extracted using the FastDNA SPIN Kit for

Soil (MP Biomedicals). The sequencing libraries were prepared using the NexteraXT

DNA Library Preparation Kit (Illumina, California, USA), following the manufacturer’s

guidelines. Library quality was assessed using the Caliper LabChip GX (high-throughput

bioanalyzer) according to the manufacturer’s instructions. The sequencing was performed

on a HiSeq2500 machine (Illumina, California, USA).

Experimental assessment of carbohydrate metabolism

The E. rectale strains were pre-grown overnight on M2GSC medium and inoculated

into basal YCFA medium [79] containing individual carbohydrate substrates added at

0.2% w/v concentration. The carbohydrate sources tested were glucose (Sigma-Aldrich),

Raffinose (Sigma-Aldrich), arabinan—sugar beet (Megazyme), soluble potato starch

(Sigma-Aldrich), D-arabinose (Sigma-Aldrich), L-arabinose (Sigma-Aldrich), beta-glucan

(Megazyme), inulin—chicory (Sigma-Aldrich), xylan—oat spelt (Sigma Aldrich), inu-

lin—dahlia (Sigma-Aldrich), and sucrose (Fisher Scientific). As negative controls, cells

were grown in basal YCFA with no added carbon sources. In total, 100 μL of each cul-

ture was then inoculated from its M2GSC growth medium into single carbohydrate or

basal YCFA medium in triplicate under anaerobic conditions using oxygen-free CO2

and incubated at 37 °C. Optical density measurements were taken spectrophotometric-

ally after 48 h at a wavelength of 650 nm (Amersham Pharmacia Biotech, UK).

Experimental validation of motility

In vitro screening for motility was tested using cultures grown to exponential phase

(optical density 0.35–0.55) in M2GSC medium, then one drop was added to a dimpled

glass slide anaerobically and covered with a glass coverslip. The wet mount was exam-

ined using phase-contrast to screen for motility. If individual cells were seen to be mov-

ing across the field of view, they were classified as motile.
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