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Endosome maturation refers to the conversion of early endosomes (EEs) to late
endosomes (LEs) for subsequent fusion with lysosomes. It is an incremental process
that involves a combination of endosome fusion and fission and which occurs at contact
sites between endosomes and the endoplasmic reticulum (ER), with knowledge of the
underlying mechanisms having increased greatly in recent years. Protrudin is an ER-
resident protein that was originally shown to regulate neurite formation by promoting
endosome trafficking, whereas PDZD8 is a mammalian paralog of a subunit of the yeast
ERMES (ER-mitochondrial encounter structure) complex that possesses lipid transfer
activity. A complex of protrudin and PDZD8 was recently found to promote endosome
maturation by mediating lipid transfer at ER-endosome membrane contact sites. This
review focuses on the roles of the protrudin-PDZD8 complex in tethering of endosomes
to the ER, in mediating lipid transfer at such contact sites, and in regulating endosome
dynamics, especially in neuronal cells. It also addresses the physiological contribution
of endosome maturation mediated by this complex to neuronal polarity and integrity.

Keywords: organelle, endoplasmic reticulum, endosome, membrane contact site, neuron, PDZD8, protrudin, lipid
transfer

INTRODUCTION

Most intracellular organelles of eukaryotic cells communicate with the endoplasmic reticulum (ER)
network through membrane contact sites (MCSs), at which the membranes of the ER and the
interacting organelle come into close proximity and are tethered. MCSs are thus thought to function
as intracellular synapses, where molecular information is exchanged.

Neurons are polarized cells that consist of two distinct portions, the somatodendritic
compartment and the axon. Trafficking of endosomes along the axon toward its terminus plays
an important role in axonal outgrowth directed toward target cells as well as in neurotransmitter
release. Protrudin was first identified as a protein that promotes neurite outgrowth through
regulation of directional endosome trafficking (Shirane and Nakayama, 2006; Shirane, 2019).
The protrudin binding proteins VAP [vesicle-associated membrane protein (VAMP)–associated
protein] and KIF5 (kinesin heavy chain 5) also contribute to endosome trafficking (Saita et al.,
2009; Matsuzaki et al., 2011), and protrudin-dependent regulation of such trafficking is mediated at
MCSs between the ER and late endosomes (LEs) (Raiborg et al., 2015).
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Axonopathy, a type of neurodegeneration, is caused by
damage to the axon of neurons. The longest axons in the central
nervous system of mammals are located in the corticospinal
tract, which is the neural circuit responsible for voluntary
movement. Hereditary spastic paraplegia (HSP) is an axonopathy
in which upper motor neurons in the corticospinal tract
undergo degeneration (Blackstone, 2012; Hubner and Kurth,
2014). Many HSP-related proteins—including spastin, REEPs
(receptor expression–enhancing proteins), reticulons, atlastins,
as well as protrudin—have been identified (Mannan et al.,
2006; Hashimoto et al., 2014; Pyle et al., 2015; Connell et al.,
2020). Most such proteins contain a hairpin domain, which
is a key determinant of membrane structure and function in
the ER. HSP-related proteins have recently been implicated
in the regulation of endosome maturation at ER-endosome
MCSs (Allison et al., 2017), although the physiological role
and regulatory mechanisms of such maturation remain to be
fully elucidated. A new study has now revealed that protrudin-
dependent lipid transfer from the ER to endosomes promotes
endosome maturation at ER-endosome MCSs (Shirane et al.,
2020b). Protrudin-deficient mice show no signs of axonopathy,
however, but instead manifest an abnormal behavioral phenotype
(Shirane et al., 2020a), suggesting that protrudin might play an
important role in normal neuronal development and behavior.

In this review, I summarize what is known of the
mechanism responsible for regulation of endosome maturation
by protrudin and its relation to the pathogenesis of neurological
disease. We also address the role of PDZD8 (PDZ domain–
containing protein 8), a protrudin-interacting protein, in the
lipid transfer process underlying endosome maturation. Finally,
we discuss the contribution of the protrudin-PDZD8 complex
and its lipid transfer function to the maintenance of neuronal
polarity and integrity.

PROTRUDIN REGULATES DIRECTIONAL
ENDOSOME TRAFFICKING

Protrudin was originally discovered as a protein of unknown
function that interacts with FK506 binding protein 38 (FKBP38)
(Shirane and Nakayama, 2003; Shirane et al., 2008; Saita et al.,
2013). Forced expression of protrudin in cultured cells resulted in
pronounced membrane deformation followed by the formation
of long protrusions, hence the designation “protrudin” (Shirane
and Nakayama, 2006). Protrudin is an ER-resident protein
that harbors various functional domains including a Rab11
binding domain (RBD11), two transmembrane (TM) domains,
a hairpin (HP) domain, a low complexity region (LCR), a two
phenylalanine in an acidic tract (FFAT) motif, a coiled-coil (CC)
domain, and a Fab1, YOTB, Vac1, and EEA1 (FYVE) domain.
These structural characteristics underlie the multiple functions
of protrudin in the regulation of organelle dynamics including
directional endosome trafficking and ER morphogenesis.

Rab GTPases are master regulators and markers of organelle
identity in the endocytic pathway (Zerial and McBride, 2001;
Stenmark, 2009; Wandinger-Ness and Zerial, 2014). The
transformation of early endosomes (EEs) to LEs is accompanied

FIGURE 1 | Protrudin regulates endosome dynamics underlying directional
endosome trafficking in neuronal cells through interaction with Rab GTPases
and KIF5. Protrudin interacts with the GDP-bound (inactive) form of Rab11
and thereby inhibits RE trafficking toward dendritic spines. It also interacts
with the GTP-bound (active) form of Rab7 and thereby promotes LE trafficking
toward the axon terminal (upper insert). In addition, protrudin tethers LEs to
the ER at MCSs, where it loads LEs with the microtubule-dependent motor
protein KIF5. The subsequent release of the KIF5-loaded LEs to microtubules
results in their transport from the minus end to the plus end of the
microtubules in the direction of the axon terminal (lower insert).

by a switch in associated Rab protein from Rab5 to Rab7, whereas
recycling endosomes (REs) are associated with Rab11. The GTP-
bound (active) form of Rab11 promotes directional trafficking
of REs from the apical to the basolateral domain of epithelial
cells as well as from the axonal to the somatodendritic domain
of neurons. In contrast, the GTP-bound form of Rab7 promotes
LE trafficking toward the axon terminal in neuronal cells.
Protrudin interacts with both the GDP-bound (inactive) form
of Rab11 (Shirane and Nakayama, 2006) and the GTP-bound
form of Rab7 (Raiborg et al., 2015) and appears to function as
a hub for endosomal trafficking by inhibiting Rab11-dependent
RE trafficking and promoting Rab7-dependent LE trafficking
(Figure 1). Protrudin thus increases the supply of membrane to
the tip of neurites by facilitating axonal transport of membrane-
containing endosomes, resulting in polarized neurite outgrowth.

Protrudin also interacts with the microtubule-dependent
motor protein KIF5, which mediates anterograde cargo
trafficking along microtubules of axons in the plus-end direction
(Saita et al., 2009; Matsuzaki et al., 2011; Ohnishi et al., 2014).
Indeed, protrudin was recently shown to facilitate loading of
the endosome membrane with KIF5 at ER-LE MCSs, with the
KIF5-loaded endosomes then being released for interaction with
microtubules (Raiborg et al., 2015; Figure 1).
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VAP has also been identified as a protrudin binding protein
(Saita et al., 2009), with the major sperm protein (MSP) domain
of VAP mediating interaction with the FFAT motif of protrudin.
VAP resides at MCSs and is implicated in lipid transfer processes
(Helle et al., 2013; Phillips and Voeltz, 2016; Salvador-Gallego
et al., 2017; Wu et al., 2018). Both the interaction of protrudin
with VAP and the induction of process formation by protrudin
were found to be attenuated by mutation of the FFAT motif of
protrudin. Knockdown of VAP also resulted in mislocalization
of protrudin and in inhibition of neurite outgrowth induced by
nerve growth factor in PC12 pheochromocytoma cells, suggesting
that binding to VAP is indispensable for the regulation of
endosome trafficking by protrudin (Saita et al., 2009).

The precursor mRNA for protrudin is alternatively spliced,
resulting in the generation of mature transcripts for two different
isoforms of protrudin, designated L (long) and S (short) (Ohnishi
et al., 2014). Protrudin-S appears to be ubiquitously expressed in
mammalian tissues, whereas protrudin-L is expressed specifically
in neuronal cells. Relative to protrudin-S, protrudin-L contains
an additional seven amino acids encoded by exon L. These
additional residues are located adjacent to the FFAT motif,
which mediates binding to VAP, with the result that the binding
affinity of protrudin-L for VAP is greater than that of protrudin-
S. Protrudin-L is thus more effective at promoting neurite
outgrowth than is protrudin-S. The neural-specific splicing
regulator SRRM4 was found to promote the splicing of protrudin
pre-mRNA to yield protrudin-L mRNA (Ohnishi et al., 2017).

ENDOSOME MATURATION AT
ER-ENDOSOME MCSs

Endosomes play an important role in fundamental cellular
activities. A subset of EEs formed by endocytosis through
invagination of the plasma membrane undergoes conversion to
LEs. LEs contain multiple intraluminal vesicles (ILVs) that are
derived from luminal invaginations of the LE membrane, and so
they are also known as multivesicular bodies (MVBs) (Huotari
and Helenius, 2011). Endosome maturation is the process by
which EEs are converted to LEs for fusion with lysosomes,
which degrade endocytosed material for reutilization. It is an
incremental process, with the vesicles on this continuum being
collectively referred to as endolysosomes (LyLEs) (Hong et al.,
2017). In addition to this degradation pathway dependent on
the endocytic machinery, another subset of EEs is delivered to
a recycling pathway, in which the EEs are converted to REs for
recycling of material back to the plasma membrane. Some LEs
also undergo exocytosis, resulting in the release of their ILVs as
extracellular vesicles known as exosomes, which play a key role in
intercellular communication (Colombo et al., 2014).

The membrane dynamics of endosome maturation are largely
attributable to a combination of endosome fission and fusion
(Rowland et al., 2014; Allison et al., 2017; Hoyer et al.,
2018). Such fission and fusion as well as the transport of
LEs are thought to depend on lipid transfer at ER-endosome
MCSs (Johansson et al., 2005, 2007). However, the factors that
tether endosomes to the ER at MCSs and the mechanism

underlying such lipid transfer from the ER to endosomes had
been mostly unknown until recently (Kobuna et al., 2010;
Huotari and Helenius, 2011; van der Kant and Neefjes, 2014;
Dong et al., 2016; Wong et al., 2018).

RELATION OF ER-ENDOSOME MCSs TO
THE MECHANISM OF AXONOPATHY

Mutations of the protrudin gene (ZFYVE27) are responsible
for a subset of cases of HSP (Mannan et al., 2006; Zhang
et al., 2012; Hashimoto et al., 2014; Hubner and Kurth, 2014;
Powers et al., 2017; Fowler et al., 2019). The genes mutated in
different subsets of individuals with HSP are referred to as
spastic paraplegia genes (SPGs), and protrudin is therefore also
referred to as SPG33. The predominant clinical features of
HSP are progressive spasticity and weakness of the lower limbs
caused by degeneration of the long axons of motor neurons
in the corticospinal tract. Proteomics analysis of the brain of
neuron-specific protrudin transgenic mice showed that protrudin
associates with multiple HSP-related proteins including myelin
proteolipid protein 1 (SPG2), atlastin 1 (SPG3A), REEP1
(SPG31), REEP5, KIF5A (SPG10), KIF5B, KIF5C, and reticulons
1, 3, and 4 (which are similar to reticulon 2, or SPG12)
(Hashimoto et al., 2014). Protrudin was also found to bind
to spastin (SPG4) (Mannan et al., 2006). These various HSP-
related proteins contain an HP domain, a hydrophobic wedge-
shaped structure whose insertion into the cytosolic side of the
ER membrane results in bending of the membrane bilayer and
the formation of high-curvature tubules (Shibata et al., 2006;
Voeltz et al., 2006; Hu et al., 2008, 2009). The axonopathy
associated with HSP has therefore been suggested to result from
an abnormal ER morphology that affects the smooth ER network
and increases susceptibility to ER stress (Hashimoto et al., 2014;
Figure 2). HSP caused by mutation of the protrudin gene may
thus be attributable to a dominant negative effect resulting from
accumulation of the mutant protein in the ER membrane and
consequent ER stress.

Neurons with HSP-associated mutations of the genes for
spastin or REEP1 were recently found to manifest abnormal
enlargement of LEs and lysosomal dysfunction as a result
of defects in ER-endosome MCSs and impaired endosomal
homeostasis (Allison et al., 2017; Lee et al., 2020). As described in
more detail below, disruption of the protrudin-PDZD8 complex
has also been shown to result in the formation of abnormal
LEs as well as in disturbance of neuronal polarity and axonal
degeneration (Shirane et al., 2020b). These findings implicate
the protrudin-PDZD8 complex in regulation of endosome
maturation at ER-endosome MCSs.

A recent study has shed light on the physiological role
of protrudin by subjecting protrudin-deficient mice to a
comprehensive battery of behavioral tests (Shirane et al., 2020a).
The protrudin-deficient mice showed no signs reminiscent
of HSP, but instead manifested depression-like behavior with
abnormalities in activity, attention, and cued fear-conditioning.
Mutations of the protrudin gene therefore likely give rise to
axonopathy as a result of a gain of toxic function, whereas
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FIGURE 2 | HSP-related proteins regulate ER morphology through HP domains. HSP is an axonopathy that is caused by mutation of various genes and which is
characterized by the degeneration of motor neurons in the corticospinal tract and consequent progressive spasticity and weakness of the lower limbs. The proteins
encoded by such HSP-related genes—including spastin, REEPs, atlastins, and reticulons as well as protrudin—contain an HP domain. This hydrophobic
wedge-shaped domain inserts into the cytosolic side of the ER membrane, resulting in bending of the membrane bilayer and the formation of high-curvature tubules.
The HSP-associated mutant forms of these proteins give rise to structural defects in the smooth ER and an abnormal ER network.

protrudin nullizygosity gives rise to psychiatric-like disorders
as a result of a loss of function. These findings suggest that
protrudin might play an indispensable role in normal neuronal
development and behavior (Figure 3).

THE PROTRUDIN-PDZD8 COMPLEX AT
ER-ENDOSOME MCSs

A differential proteomics analysis of brain extracts from wild-
type and protrudin-deficient mice was performed to identify
proteins that might function cooperatively with protrudin
at ER-endosome MCSs. This analysis uncovered PDZD8, in
addition to VAP-A and VAP-B, as a key binding partner
of protrudin (Elbaz-Alon et al., 2020; Shirane et al., 2020b).
An independent study also identified protrudin as a binding
partner of PDZD8 (Elbaz-Alon et al., 2020). PDZD8 is a
mammalian paralog of yeast Mmm1, a subunit of the ER-
mitochondrial encounter structure (ERMES) complex. This
complex mediates interaction between the ER and mitochondria
and contributes to the biosynthesis of phospholipids by
mediating lipid transfer in a manner dependent on the
synaptotagmin-like mitochondrial lipid–binding protein (SMP)
domain of Mmm1 (Figure 4; Kornmann et al., 2009). Although
PDZD8 was also known to tether the ER and mitochondria
and to regulate Ca2+ dynamics in neurons (Hirabayashi et al.,
2017), it was only shown to possess lipid transfer activity
after its identification as a binding partner of protrudin
(Shirane et al., 2020b). Protrudin and PDZD8 form a stable
complex at the ER membrane, with the abundance of protrudin
being greatly diminished in the brain of PDZD8-deficient
mice. Knockdown of PDZD8 in PC12 cells also resulted in

a loss of protrudin that was dependent on the proteasome
(Shirane et al., 2020b).

Immunofluorescence analysis by super-resolution microscopy
revealed that, like protrudin, PDZD8 is located at MCSs between
the ER and endosomes (Shirane et al., 2020b). PDZD8 colocalized
to a markedly greater extent with the ER than with endosomes at
these MCSs, consistent with the notion that it is an ER-resident
protein that makes contact with endosomes. The number of
ER-endosome contacts was also found to be reduced in cells
depleted of protrudin or PDZD8 by RNA interference. Although
such depletion of protrudin or PDZD8 also attenuated MCS
formation between the ER and mitochondria, this effect was less
pronounced than that on ER-endosome contacts. Furthermore,
protrudin and PDZD8 showed a synergistic effect on formation
of ER-endosome contacts (Shirane et al., 2020b).

PDZD8 also contains a CC domain that interacts with the
GTP-bound form of Rab7, which localizes to LEs (Chavrier et al.,
1990; Raiborg et al., 2015; Guillen-Samander et al., 2019). In
addition, a recent study suggested that the protrudin-PDZD8
complex resides at a microdomain at which three organelles—
the ER, endosomes, and mitochondria—come into contact
with each other (Elbaz-Alon et al., 2020). However, further
studies are needed to reveal the physiological function of
such ER-endosome-mitochondrion contacts mediated by the
protrudin-PDZD8 complex.

PDZD8 POSSESSES LIPID TRANSFER
ACTIVITY

MCSs mediate lipid transfer, Ca2+ homeostasis, and organelle
dynamics. PDZD8 regulates Ca2+ dynamics in neurons, and it
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FIGURE 3 | Phenotypes associated with point mutation or deletion of the protrudin gene. Mutations of the protrudin gene (ZFYVE27) in humans give rise to
axonopathy as a result of degeneration of motor neurons caused by a gain of toxic function (left). In contrast, deletion of the protrudin gene in mice gives rise to
psychiatric-like disorders including depression-like behavior with abnormalities in activity, attention, and cued fear-conditioning as a result of a loss of function (right).
The pathophysiologic mechanism, including the identity of the affected brain regions and neuronal circuits, underlying such behavioral defects in protrudin-deficient
mice remains to be determined, but these deficits suggest that protrudin might play an indispensable role in the nervous system.

FIGURE 4 | PDZD8 mediates lipid transfer from the ER to endosomes. The yeast ERMES complex—which contains Mmm1, Mdm12, Mdm10, and
Mdm34—mediates the transfer of phospholipids between the ER and mitochondria in both directions (left). On the other hand, PDZD8, a mammalian paralog of
Mmm1, mediates the transfer of several types of lipid from the ER to endosomes in a manner dependent on its SMP domain (right). The C1 domain of PDZD8
contributes to tethering of endosomes to the ER through its interaction with PS or PI4P in the endosome membrane. The CC domain of PDZD8 also supports such
tethering through its interaction with the GTP-bound form of Rab7.

contains a SMP domain characteristic of the TULIP (tubular
lipid-binding protein) superfamily of proteins that possess lipid
transfer activity (Kopec et al., 2010; Watanabe et al., 2015;
Alva and Lupas, 2016). Furthermore, as mentioned above, the
yeast PDZD8 paralog Mmm1 mediates lipid transfer by the
ERMES complex (Kornmann et al., 2009). A liposome–FRET
(fluorescence resonance energy transfer) assay was therefore
applied to determine whether PDZD8 also possesses lipid transfer
activity. For this assay, donor liposomes were prepared by mixing
rhodamine-labeled lipid and nitrobenzoxadiazole (NBD)–labeled
lipid, with the result that NBD fluorescence was quenched by
FRET. Extraction of lipids from the donor liposomes and their
dispersal by PDZD8 would abolish such quenching and thereby
allow the detection of NBD fluorescence. This assay revealed that

phospholipids—including phosphatidic acid, phosphatidylserine
(PS), phosphatidylethanolamine, and phosphatidylcholine—as
well as ceramide and cholesterol were extracted from the donor
liposomes by PDZD8 (Shirane et al., 2020b).

Lipid transfer between membranes comprises two steps,
lipid extraction from the donor membrane and lipid insertion
into the acceptor membrane. These steps are distinguishable
by performance of the liposome-FRET assay in the absence
or presence of acceptor liposomes. Such analysis showed that
PDZD8 possesses only lipid extraction activity, with this activity
presumably being unidirectional from the ER to other organelles
in vivo. In addition, both the SMP and PDZ domains of
PDZD8 were found to contribute to this lipid extraction activity.
As a result of the insolubility of full-length PDZD8, the
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liposome-FRET assay was performed with a recombinant protein
consisting of glutathione S-transferase (GST) fused to a form of
PDZD8 lacking the TM domain [PDZD8(1TM)]. The mutant
protein was thus unable to dock in the liposome membrane.
This drawback was subsequently addressed by the addition
of DGS-NTA(Ni), a conjugated phospholipid that binds the
hexahistidine epitope tag, to the donor liposomes. Performance
of the assay with His6-PDZD8(1TM) thus allowed association of
the tagged PDZD8 protein with the liposome membrane. Under
these conditions, PDZD8 also showed lipid extraction activity
(Shirane et al., 2020b).

Although the typical C1 domain binds to diacylglycerol,
PDZD8 possesses a C1 domain that was found to preferentially
interact with PS and phosphatidylinositol 4-phosphate (PI4P)
but not with diacylglycerol (Shirane et al., 2020b). By analogy
to extended synaptotagmin (E-Syt) proteins (Giordano et al.,
2013; Schauder et al., 2014; Saheki et al., 2016; Bian et al.,
2018), the C1 domain of PDZD8 might tether the ER and
endosomes by interaction with PS and PI4P enriched in the

endosome membrane. Such ER-endosome tethering might be
regulated by an intracellular signal that induces a conformational
change of PDZD8, resulting in an increase in lipid extraction
activity mediated by its SMP domain. The tethering is also
promoted by interaction between the CC domain of PDZD8 and
the GTP-bound form of Rab7 (Raiborg et al., 2015; Guillen-
Samander et al., 2019). PDZD8 likely promotes lipid transfer
in vivo (Figure 4), given that depletion of PDZD8 results in
a decrease in the abundance of PS in endosomes of neurons
(Shirane et al., 2020b). However, further experiments will be
required to demonstrate definitively the physiological lipid
transfer activity of PDZD8.

LIPID TRANSFER PROTEINS AT
ER-ENDOSOME MCSs

The mechanism underlying lipid transfer at MCSs has been
extensively studied, with multiple tethering factors and lipid

FIGURE 5 | Lipid transfer proteins at ER-endosome MCSs. Many intracellular compartments—including endosomes, lysosomes, the plasma membrane (PM),
mitochondria, the Golgi apparatus, and lipid droplets (LD)—are tethered to the ER at MCSs (upper). Representative protein complexes that tether the ER and
endosomes are shown (upper insert). ORP1L, which is recruited to endosomes through PI4P and Rab7, interacts with the ER-resident protein VAP and transfers
cholesterol (Chol) from endosomes to the ER. The endosome-resident protein STARD3 binds to VAP and transports cholesterol from the ER to endosomes. The
protrudin-PDZD8-VAP complex, which is localized at the ER and tethers endosomes through interaction with Rab7 and phosphoinositides (PIPs), transfers lipids
from the ER to endosomes. The domain structure and subcellular localization of these various proteins are also shown (lower). The MSP domain of VAP interacts
with the FFAT motifs of lipid transfer proteins such as ORP1L and STARD3. Both ORP1 and STARD3 possess lipid transfer domains: ORD and START, respectively.
Protrudin also has an FFAT motif, and PDZD8 harbors a lipid transfer–related SMP domain. Both protrudin and PDZD8 interact with Rab7 and PIPs associated with
the endosome membrane.
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transfer proteins having been identified, including those that
function at MCSs between the ER and endosomes (Figure 5).
VAP (VAP-A and VAP-B) is an ER-resident protein that
tethers other organelles to the ER and plays a key role in
lipid transfer. VAP interacts via its MSP domain with multiple
proteins that contain an FFAT motif (Kaiser et al., 2005;
Loewen and Levine, 2005; Saita et al., 2009; Huttlin et al.,
2015). Mutations in the MSP domain of VAP-B (also known
as ALS8) are responsible for a dominant form of amyotrophic
lateral sclerosis (ALS) (Nishimura et al., 2004). FFAT motif–
containing proteins that contribute to tethering and lipid transfer
at MCSs include oxysterol binding protein (OSBP)–related
proteins (ORPs), steroidogenic acute regulatory protein (StAR)–
related lipid transfer (START) domain–containing proteins,
phosphatidylinositol transporter protein (PITP) domain–
containing proteins, and Sec14-like proteins. With regard to
lipid transfer at ER-endosome MCSs, OSBP and ORPs transport
lipids such as sterol and phosphoinositides at MCSs (Olkkonen
and Li, 2013); OSBP together with SNX2 and VAP regulates
endosome budding through control of actin nucleation and
retromer function at ER-endosome MCSs (Dong et al., 2016);
ORP1L transports cholesterol from endosomes to the ER in
cooperation with VAP and Rab7 (Zhao and Ridgway, 2017;
Ma et al., 2018); and ORP5 together with NPC1 mediates the
exit of cholesterol from LyLEs at MCSs (Du et al., 2011). The
START domain–containing protein STARD3 is anchored to

the membrane of LEs and mediates cholesterol transport from
the ER to endosomes in concert with VAP (Alpy et al., 2013;
Wilhelm et al., 2017). VPS13C, which is associated with early-
onset Parkinson’s disease, also tethers the ER and endosomes
and transfers lipids at MCSs in cooperation with VAP and Rab7
(Lesage et al., 2016; Kumar et al., 2018; Gillingham et al., 2019).

It has also now been revealed that PDZD8, which harbors
a lipid transfer–related SMP domain, interacts with the FFAT
motif–containing protein protrudin as well as with Rab7. The
protrudin-PDZD8 complex tethers the LyLE membrane to the
ER and promotes lipid transfer from the ER to endosomes
(Figure 5). The FYVE domain of protrudin is atypical in
that the amino acid sequences responsible for binding to
PI3P are not conserved and that it binds to several lipids
such as PI(4,5)P2, PI(3,4)P2, and PI(3,4,5)P3 (Gil et al., 2012).
Furthermore, Rab7 interacts with both protrudin and PDZD8
(Raiborg et al., 2015; Guillen-Samander et al., 2019). However,
it remains an open question and warrants further investigation
whether both protrudin and PDZD8 are bound to the endosomal
membrane simultaneously. Protrudin, PDZD8, and Rab7 are all
related to neurological disorders, with mutations in the protrudin
gene giving rise to the axonopathy HSP (Mannan et al., 2006;
Hashimoto et al., 2014), protrudin-deficient mice manifesting
psychiatric-like disorders (Shirane et al., 2020a), mutations in the
PDZD8 gene being a risk factor for posttraumatic stress disorder
(PTSD) (Bharadwaj et al., 2018), and mutations in the Rab7

FIGURE 6 | Protrudin regulates endosome maturation at ER-endosome MCSs in neurons and thereby maintains neuronal integrity. Protrudin interacts with VAP,
PDZD8, and Rab7 at ER-endosome MCSs, at which lipids are transferred from the ER to endosomes in a manner dependent on the SMP domain of PDZD8,
resulting in endosome maturation. Mutations of protrudin, VAP, PDZD8, or Rab7 gene are related to neurological disorders.
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gene causing another axonopathy, Charcot-Marie-Tooth disease
(CMT) (Verhoeven et al., 2003; McCray et al., 2010).

ENDOSOME MATURATION INFLUENCES
NEURONAL POLARITY AND INTEGRITY

The amounts of endogenous protrudin and PDZD8 are
higher in the brain than in other tissues, suggesting that
the protrudin-PDZD8 complex may function selectively in the
nervous system. Depletion of protrudin or PDZD8 with the
use of small interfering RNAs (siRNAs) in mouse primary
neurons induced abnormal enlargement of LEs, with the
resulting vesicles thus being designated abnormal large vacuoles
(ALVs) (Shirane et al., 2020b). This phenotype caused by
PDZD8 depletion was rescued by additional expression of
an siRNA-resistant form of PDZD8 but not by that of a
lipid extraction–deficient mutant [PDZD8(1SMP)]. The ALVs
were also observed in neurons expressing PDZD8(1SMP) in
the presence of endogenous PDZD8, likely as a result of a
dominant negative effect of the mutant protein on the normal
fission of LyLEs. The ALVs showed an aberrant multilamellar
ultrastructure without ILVs. This phenotype was also highly
reminiscent of that of neurons of spastin or REEP1 mutant mice
(Allison et al., 2017).

Neurons depleted of PDZD8 showed a reduced axon length
and increased somatodendritic area (Shirane et al., 2020b),
reflecting impairment of cell polarity, and these abnormalities
were similar to those of neurons derived from protrudin-
deficient mice (Ohnishi et al., 2014; Shirane et al., 2020b). These
observations thus suggested that the protrudin-PDZD8 complex
is essential for the establishment of cell polarity in neurons.

Defects in ER-endosome contacts induced by HSP-associated
mutations of spastin or REEP1 result in lysosomal abnormalities
in neurons (Allison et al., 2017). The fact that mutations of the
protrudin gene also cause HSP suggested that the protrudin-
PDZD8 system might contribute to maintenance of neuronal
integrity. Neurons depleted of protrudin or PDZD8 indeed
manifested a morphology consistent with axonal degeneration
(Shirane et al., 2020b), including axonal thinning as well as
dissociation of Tau1 from microtubules (Morris et al., 2011).
This phenotype thus suggested that the protrudin-PDZD8 system

protects neurons from axonal degeneration and is essential
for neuronal integrity (Figure 6). Given that mutations of the
PDZD8 gene have been associated with PTSD (Bharadwaj et al.,
2018), further study of the physiological role of PDZD8 by
analysis of PDZD8-deficient mice is warranted.

CONCLUSION

I have here focused on the role of protrudin at ER-endosome
MCSs in endosome maturation in neurons. Protrudin regulates
endosome dynamics as well as ER structure, especially in
neuronal cells. Mutations of the protrudin gene in humans give
rise to the axonopathy HSP as a result of a gain of toxic function.
Ablation of the protrudin gene in mice, however, gives rise
to psychiatric-like disorders as a result of a loss of function,
suggesting that protrudin might play an indispensable role in
normal neuronal development and behavior. Protrudin forms a
complex with PDZD8 as well as interacts with VAP and Rab7 at
ER-endosome contacts. PDZD8 is a mammalian paralog of the
ERMES subunit Mmm1, which mediates lipid transfer between
the ER and mitochondria. PDZD8 in association with protrudin
similarly mediates lipid transfer from the ER to endosomes and
thereby contributes to endosome maturation and maintenance
of neuronal integrity. The types of lipids transferred by the
protrudin-PDZD8 complex in vivo remain to be determined.
In addition, the detailed mechanism underlying lipid transfer
mediated by the protrudin-PDZD8 complex at ER-endosome
MCSs, including the identity of the factor or factors responsible
for lipid insertion, awaits further investigation.
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