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A B S T R A C T

The etiological agents involved in a bovine respiratory disease (BRD) outbreak were investigated in a dairy
heifer calf rearing unit from southern Brazil. A battery of PCR assays was performed to detect the most common
viruses and bacteria associated with BRD, such as bovine viral diarrhea virus (BVDV), bovine respiratory syn-
cytial virus (BRSV), bovine alphaherpesvirus 1 (BoHV-1), bovine coronavirus (BCoV), bovine parainfluenza virus
3 (BPIV-3), Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis.
Bronchoalveolar lavage fluid (BALF) samples were taken from 21 heifer calves (symptomatic n = 15; asymp-
tomatic n = 6) that, during the occurrence of the BDR outbreak, were aged between 6 and 90 days. At least one
microorganism was detected in 85.7 % (18/21) of the BALF samples. Mixed infections were more frequent (72.2
%) than single infections (27.7 %). The interactions between viruses and bacteria were the most common in
coinfections (55.5 %). The frequencies of BRD agents were 38.1 % for BRSV, 28.6 % for BVDV, 33.3 % for BCoV,
42.85 % for P. multocida, 33.3 % for M. bovis, and 19 % for H. somni. BoHV-1, BPIV-3, and M. haemolytica were
not identified in any of the 21 BALF samples. Considering that BALF and not nasal swabs were analyzed, these
results demonstrate the etiological multiplicity that may be involved in BRD outbreaks in dairy calves.

1. Introduction

Bovine respiratory disease (BRD) in calves represents an important
cause of economic losses for the dairy industry worldwide due to costs
associated with reduced weight gain, farm labor, treatment, prophy-
laxis, and high morbidity and mortality rates [1–4]. Bovine viral diar-
rhea virus (BVDV), bovine respiratory syncytial virus (BRSV), bovine
alphaherpesvirus 1 (BoHV-1), bovine coronavirus (BCoV), and bovine
parainfluenza virus 3 (BPIV-3) are the main viral pathogens infecting
the bovine respiratory system [5–7]. Mannheimia haemolytica, Pasteur-
ella multocida, Histophilus somni, and Mycoplasma bovis are the major
bacteria involved in secondary infection of the respiratory tract and are
associated with pneumonia in young dairy calves [6,8,9]. These etio-
logical agents may cause a single infection or act in synergy in coin-
fections, enhancing the severity of the disease [10,11]. Although BRD
may affect cattle of different ages, it is more commonly diagnosed in
calves up to 3 months, and the peak of the disease usually occurs

between 4 and 6 weeks of age [2,12,13].
The calf rearing units have been used for many years in veal calf and

cattle feedlots; however, it is currently also being adapted for calves
from dairy herds. Calves are transported from different herds of origin
shortly after birth [14] or until the second week of age [15,16] to the
dairy calf rearing units or veal calf feedlots, while calves for feedlots are
transported only after weaning [17,18]. In the specialized heifer calf
rearing units, the outbreaks of BRD in calves are commonly reported
[15]. Also, adverse conditions in transportation, nutrition, temperature,
and sanitary and environmental management may lead to im-
munosuppression and increased susceptibility to pathogens of the bo-
vine respiratory system [19,20].

In Brazil, BRD reports are limited to specific pathogens and do not
completely describe the etiology of the disease. Most of the Brazilian
studies are conducted in postmortem examinations of calves, limiting
the knowledge regarding possible simultaneous infections by several
etiological agents [21–23]. Frequently, treatment with antibiotics and
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supportive therapy is performed, and the etiological agents involved are
rarely identified [13,24,25]. However, characterizing the microorgan-
isms associated with BRD is essential to improve health status of the
herd, mainly in the dairy calf rearing units.

The present study reports a molecular diagnostic survey for multiple
etiological agents during an outbreak of BRD in heifer calves in a
Brazilian dairy calf rearing unit.

2. Materials and methods

2.1. Calf rearing unit

The BRD outbreak occurred in a dairy calf rearing unit located in
Parana state, southern Brazil. The region has a humid subtropical cli-
mate with hot, humid summers and mild winters with an average
temperature of 21 °C. The rearing unit maintained approximately 125
mixed-breed heifer calves obtained from 45 small dairy cattle herds for
household milk production that were associated with a dairy co-
operative.

Data on housing, feeding, and management of the calves were col-
lected through an interview with the veterinarian in charge. Calves
arrive at the rearing unit at 2–5 days of age and are housed in 5 group
pens (7 × 3 m). Twenty to 25 calves are grouped in each pen until
approximately 60 days of age. Calves are fed in an automatic feeder
system for each pen with calf milk replacer in a common nipple, and
concentrates on pelleted calf feed containing 23 % crude protein are
provided ad libitum. Thus, heifer calves from diverse origins and with
distinct health and immunological status are grouped together in the
same rearing unit.

Data about the sanitary status of the original herds of the calves
were unknown, except for the compulsory sanitary management prac-
tices against bovine brucellosis, tuberculosis, and foot and mouth dis-
ease, according to the national program for the control and eradication
of these diseases. None of the dairy herds that provided heifer calves for
the rearing unit vaccine cows to improve the colostrum quality and thus
provide passive protection to calves against the major BRD-causing
pathogens. The efficiency of the transfer of passive immunity is also not
monitored. In the rearing unit, the calves also do not receive vaccines
for BRD control.

2.2. Diseased animals

First, asymptomatic and symptomatic heifer calves with BRD were
identified by clinical examination. Typical clinical signs of respiratory
disease were not present in calves classified as asymptomatic. Calves
classified as symptomatic showed clinical signs of coughing and copious
nasal discharge in association with at least two of the following clinical
manifestations: rectal temperature above 39.5 °C, prolonged capillary
refill time, pale mucous membranes, heart rate above 120 beats/min,
respiratory discomfort, and respiratory rate above 40 breaths/min
[6,15]. Symptomatic calves with BRD signs were not separated from
asymptomatic animals, even during clinical treatment. The treatment of
BRD-affected calves was performed with broad-spectrum antibiotics
(spectinomycin and tulathromycin) and anti-inflammatory drugs.

2.3. Bronchoalveolar samples

After clinical examination, 21 bronchoalveolar lavage fluid (BALF)
samples were collected from asymptomatic (n = 6) and symptomatic (n
= 15) untreated calves following the collection procedures previously
described [6]. The calves of the calf rearing unit were divided into 3
groups based on age, between 6–30 days, 31–60 days and over 60 days.
At least four BALF samples per age group were collected at random
including asymptomatic and symptomatic calves. The collection pro-
cedures of BALF samples were conducted by veterinarians at the Uni-
versidade Estadual de Londrina, Paraná, Brazil, including a trained

veterinary surgeon, in a single visit to the rearing unit. The samples
were placed in sterile tubes, shipped on ice baths and stored at −80 °C
until processing.

2.4. Detection of infectious agents associated with BRD

Nucleic acids were extracted from 500-μL aliquots of BALF samples
pretreated with sodium dodecyl sulfate (SDS) and proteinase K in-
cubated at 56 °C for 30 min at a final concentration of 1 % (v/v) and 0.2
mg/mL, respectively. BALF samples were then processed following a
silica/guanidine isothiocyanate protocol [26]. The extracted nucleic
acid was eluted in 50 μL of ultrapure nuclease-free diethylpyr-
ocarbonate-treated sterile water and stored at −80 °C until used for
molecular analysis.

Molecular diagnostic assays (PCR, RT-PCR, and nested PCR) were
performed for the detection of the main infectious agents associated
with BRD. The techniques were performed separately to amplify each of
the infectious agents, a product with 288 bp was amplified of the BVDV
5’ UTR gene [27], 371 bp of the BRSV G gene [28], 251 bp of the BCoV
N gene [29], 647 bp of the BPIV-3 HN gene [30], 425 bp of the BoHV-1
D gene [31], 460 bp of the P. multocida ORF clone KMT1 [32], 408 bp of
the H. somni 16S gene [33], 385 bp of the M. haemolytica lktA-artJ
intergenic region [6], and 488 bp of the M. bovis 16 S–23 S intergenic
region [34].

Aliquots of sterile ultrapure water were included as negative con-
trols in all procedures. Samples previously known as positive for each of
the pathogens investigated in this study were included as positive
controls as follows: prototype Los Angeles, NADL, A51908, SF4/32, and
Mebus strains cell culture (MDBK) adapted for BoHV-1, BVDV, BRSV,
BPIV-3, and BCoV, respectively; nucleic acid from previous reports for
H. somni [35]; and housekeeping samples for P. multocida, M. haemo-
lytica, and M. bovis [36] were also included as positive controls.

Aliquots of 5 μL of the amplified products were analyzed by elec-
trophoresis in 2 % agarose gel in TBE buffer pH 8.4 (89 mM Tris; 89 mM
boric acid; 2 mM EDTA), stained with ethidium bromide (0.5 μg/mL),
and visualized under UV light.

2.5. Nucleotide sequence analysis

One positive amplicon with a better quality of each BRD pathogen
detected was sequenced to confirm the specificity of the amplified
product. The amplicons obtained were purified using PureLink® Quick
Gel Extraction and PCR Purification Combo Kit (Invitrogen® Life
Technologies, Carlsbad, CA, USA), and quantified using Qubit®
Fluorometer (Invitrogen® Life Technologies, Eugene, OR, USA). Direct
sequencing was performed using a BigDye® Terminator v3.1 Cycle
Sequencing Kit (Applied Biosystems®, Foster City, CA, USA) with the
forward and reverse primers, in a 3500 Genetic Analyzer sequencer.
Sequence quality analyses and consensus sequences were obtained
using Phred/CAP3 software (http://asparagin.cenargen.embrapa.br/
phph/). Similarity searches were performed with nucleotide se-
quences deposited in the GenBank database using the BLAST highly
similar tool software (http://blast.ncbi.nlm.nih.gov/Blast.cgi).

3. Results

The BRD outbreak analyzed in this study lasted approximately 20
days, from the first clinical signs were observed until their complete
remission. The morbidity rate of calves with clinical manifestations of
respiratory distress reached 42 %. Calves aged up to 30 days were more
frequently affected than older calves, and in the last week of the BRD
outbreak, seven calves died.

The frequencies of microorganism detection in this study were 28.6
% (6/21) for BVDV, 46.6 % (8/21) for BRSV, 33.3 % (7/21) for BCoV,
42.85 % (9/21) for P. multocida, 19 % (4/21) for H. somni, and 33.3 %
(7/21) for M. bovis. All these respiratory pathogens were detected in
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asymptomatic and symptomatic calves (Table 1). The detection of
viruses and bacteria occurred in calves of all age groups (6–30 days;
31–60 days; and over 60 days). Three respiratory microorganisms
(BPIV-3, BoHV-1, and M. haemolytica) were not identified in any of the
BALF samples analyzed in this study.

Eighteen (85.7 %) of the 21 calves were infected with at least one
infectious agent of BRD. Among the positive animals, mixed infections
were more frequent (13/18; 72.2 %) than single infections (5/18; 27.7
%) (Table 2). Single infections were more frequently associated with
bacteria (4/18; 22.2 %) than with viruses (1/18; 5.5 %). Associations
between viruses and bacteria were the most frequent 10/18 (55.5 %).
Other mixed infections presented a frequency of 3/18 (16.6 %)
(Table 3).

The identities of the respective detected microorganisms were
confirmed by their similarities with other nucleotide sequences de-
posited in a database using BLAST software. All obtained DNA se-
quences were clearly readable and have been deposited in GenBank.
The accession numbers for samples from the outbreak are as follows:
BVDV1d (KM982443), BRSV (KM982441), BCoV (KM982442), P. mul-
tocida (KM982445), H. somni (KM982444), and M. bovis (KM982446).

4. Discussion

To the best of our knowledge, the current study is the first mole-
cular-based investigation of the main pathogens involved in BRD during
an outbreak in a dairy heifer calf rearing unit. This study also represents
the first South American report of molecular detection of BRD mixed
infections in calves with clinical signs respiratory disease. The results
obtained in the current study add to what was described on pathogens
associated with BRD in dairy calves [6], since most studies of BRD in-
fections were conducted in feedlot cattle [2,10,18,37].

In this study, mixed infections of BVDV, BRSV, BCoV, P. multocida,
H. somni, and M. bovis were found in calves aged 6–60 days. The great
diversity of etiological agents found in these animals from the calf
rearing unit is related to a large number of herds of origin, differently of
feedlot cattle, where the diversity of origins is less. Probably, this

etiological diversity of microorganisms potentially pathogenic to the
respiratory tract may have contributed to the high rate of morbidity (42
%) and the difficulty in treating calves in this outbreak of BRD.

BPI-3, BoHV-1, and M. haemolytica were not detected in BALF
samples these calves evaluated. In Brazilian cattle herds, BPI-3 was
detected in few studies, isolated in a single animal in south of the
country [38] and another study using immunohistochemical it was
detected in four animals [39], but in the most BRD studies was not
found [3,18,22,36]. Possibly, BPI-3 circulates with low frequency in
Brazilian cattle herds.

The seroprevalence of BoHV-1 infection in cows of dairy cattle herds
in the geographical region of the calf rearing unit is high [40]. BRD
associated with BoHV-1 usually occurs in older animals. Thus, it is
likely that maternal antibodies acquired by calves against BoHV-1
provided adequate protection in the first months of age [41].

M. haemolytica is a natural inhabitant of the upper respiratory tract
of the bovine species, occasionally it may develop BRD outbreaks [42].
In this study, no BALF sample analyzed was positive for this bacterium.
Our results are consistent with another study also carried out in rearing
unit, with calves from different dairy herds of origin, in which a low
number of animals infected by M. haemolytica was observed (2 %),
however a greater number of positive for bacterial agents, such as
Mycoplasma sp. and P. multocida, and viral agents such as BRSV and
BCoV [15].

Considering that the upper airways of asymptomatic calves may be
colonized by a variety of bacterial pathogens [43], the present study
was performed using BALF as clinical specimens. These samples of the
lower respiratory tract are suitable to achieve a more reliable result of
microorganisms associated with the etiology of BRD [6]. In addition,
the molecular diagnosis adopted in the current study permitted a large
number of species-specific tests for each pathogen after molecular as-
says were standardized.

Diagnostic techniques used in previous investigations of mixed in-
fections in BRD cases in Brazil usually include pathological examina-
tion, serology, bacterial cultures and/or virus isolation [21,23,38,40].
However, these techniques may be appropriate for one agent but not for
the other due to different sensitivity values [44]. Additionally, serology
tests in young cattle may interfere with colostral antibodies and cross-
reactions of pathogens with other commensal microorganisms, making
interpretation of test results difficult [41]. Classical virus and bacterial
isolation methods are laborious and time-consuming [44]. Among the
antemortem diagnostic procedures applicable to BRD-affected calves,
molecular techniques may be considered the most appropriate due to
their fast and reliable results, facilitating actions to define preventive
and therapeutic strategies in Brazilian herds [45].

In comparison to pathogens detected in BALF from diseased and

Table 1
Microorganisms identified by molecular assays in bronchoalveolar lavage fluid
samples from symptomatic and asymptomatic dairy heifer calves in a bovine
respiratory disease outbreak.

Microorganisms Calf group Total

Symptomatic (n = 15) Asymptomatic (n = 6)

Viruses
BVDV 5 1 6
BRSV 7 1 8
BCoV 6 1 7
BPI-3 – – –
BoHV-1 – – –
Bacteria
M. bovis 5 2 7
H. somni 3 1 4
P. multocida 6 3 9
M. haemolytica – – –

Table 2
Type of infection (bacterial and viral) identified in a bovine respiratory disease
outbreak in dairy heifer calves.

Infection type Calf group Total

Symptomatic (n = 15) Asymptomatic (n = 6)

Single (Virus) 3 – 3
Single (Bacteria) 4 3 7
Mix (Virus / Bacteria) 6 2 8
Negative 2 1 3

Table 3
Distribution of microorganisms identified in bronchoalveolar lavage fluid
samples in a severe outbreak of bovine respiratory disease in a dairy calf rearing
unit according to the type of infection and calf age.

Infection Type Microorganisms N° of calves Age
(days)

Single BVDV 1 55
P. multocida 1 74
M. bovis 2 6, 60
H. somni 1 90

Double M. bovis + P. multocida 2 22, 55
M. bovis + H. somni 1 6

Triple BVDV + BRSV + P. multocida 1 60
BVDV + BRSV + BCoV 2 19, 82
BRSV + BCoV + P. multocida 1 66
BRSV + BCoV + H. somni 2 68, 82
BRSV + P. multocida + M. bovis 1 59
BCoV + P. multocida + M. bovis 1 54

Quadruple BVDV + BRSV + BCoV + P. multocida 1 19
Total 18
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healthy calves, a higher frequency of viral detection was observed in
animals with clinical signs of BRD. Calves housed together were the
main reservoir of infectious agents to susceptible young cattle [7]; thus,
possibly asymptomatic and symptomatic calves may have contributed
to pathogen dissemination among the heifer calves. Evaluating bac-
terial pathogens, there was no increase in detection in disease animals
compared to clinically healthy animals in this study. However, a study
conducted with a larger number of samples and herds found a higher
bacterial frequency in diseased animals [15], this difference in our
study may have been due to the small number of samples used.

In Brazil, there are few reports about BRD, and these studies have
focused on efforts to detect the involvement of respiratory tract organs
by gross and microscopic lesions, serological evaluations, and char-
acterization of specific pathogens [3,18,21–23,35,36,40,46,47].

A retrospective study of 12 years was performed by a university in
the south of Brazil, herds with outbreaks of BRD were evaluated and
animals that died, the age of the calves varied from 1 day to 12 months.
A high morbidity rate was observed reaching up to 100 % of the ani-
mals and the mortality rate reached 34 % [22]. However, preventive
and control measures are not usually performed in most Brazilian dairy
cattle herds, and may have contributed to the high rates of morbidity
and mortality [48]. In our study, we found a morbidity rate that
reached 42 %; the high rate of infected animals may be due to the non-
separate disease calves, increasing load of pathogens in the environ-
ment and favoring the infection of susceptible calves [15].

In this study, the findings of 85.7 % positive BALF samples for at
least one of the pathogens associated with BRD highlight the im-
portance of this disease in the calf rearing unit, especially of the mixed
infections that were more frequent (72.2 %) than single infections (27.7
%). The most frequent mixed infections were between viruses and
bacteria (55.5 %), which shows the synergism of these infectious agents
in BRD, similar to severe pneumonia in children and puppies [49,50].
Single viruses associated with BRD are rarely lethal to cattle. Severe
pneumonia usually occurs when commensal bacteria from the naso-
pharynx invade the lower airways of cattle after stressful conditions and
viral infections. These predisposing factors affect the host defense me-
chanisms by altering mucosal surface components and decreasing the
activity of innate immune system cells, such as T lymphocytes, B-lym-
phocytes, monocytes, and macrophages, thereby increasing the ex-
posure to pathogens [9].

BRSV had the highest prevalence of this outbreak (46.6 %). This
result is in keeping with previous studies conducted in Demark and
Finland, which observed that this virus is the most important in BRD of
dairy calves [6,15].

The BCoV described in this BRD outbreak was the second report of
this virus associated with respiratory symptoms in cattle in Brazil. The
first case was detected in a beef cattle feedlot [46]. The role of BCoV in
BRD has been recognized recently with the dual enteric and respiratory
tropism of some strains [51]. BRD related to BCoV is a potential threat
to calves in calf rearing units, especially if the peak of virus shedding is
highly short, occurring up to 4 days after arrival at facilities for rearing
practices [52].

The immunosuppressive effect of BVDV in the host organism is
considered the main factor associated with the development of BRD in
cattle of affected herds due to an increased risk of infections by other
pathogens [53,54]. Multiple strains of BVDV have been reported in
cattle from the same geographic region of the calf rearing unit, such as
BVDV1a, BVDV1b, and BVDV1d, associated with reproductive failure in
cows [55]. Within these subgenotypes, BVDV1b was suggested be
predominantly associated with BRD in calves [56]. However, the phy-
logenetic analysis performed using 5′UTR sequences of BVDV strains in
the BALF samples of the current BRD outbreak clustered with the
BVDV1d subgenotype. Furthermore, susceptible calves do not become
ill until 5 weeks of age after exposure to BVDV virulent strains when
passive immunity is acquired, even supposing that low virus replication
may occur in these animals [57]. However, in the present study, BVDV

was detected in BALF samples of calves in the first weeks of age. This
finding may be due a failure in the transfer passive antibodies to the
newborn calves due to colostrum deprivation, low intake or even the
lack of immunity of the cow with the different strains of BVDV, this can
make the calves susceptible the infection occurs in the first weeks of
life. Also, infection of these calves with different BVDV strains of their
herds of origin, since cross-protection between different BVDV sub-
genotypes is incomplete [54,55].

Among the four bacterial pathogens in BRD cases evaluated in this
study, only M. haemolytica was not detected. P. multocida, M. bovis, and
H. somni were detected in single or in mixed infections with other BRD
pathogens. These results need to be considered with caution, as P.
multocida and M. haemolytica are eventually listed as a primary agent of
BRD, being more often considered opportunistic pathogens, and con-
tributing to the increase of clinical signs in outbreaks [5,15]. Our study
differs from another study that evaluated bacteria present in the lower
respiratory tract of healthy and diseased calves with BRD in Brazil, in
which Enterobacteriaceae were the predominant bacteria in BALF sam-
ples [21]. However, these bacteria are not associated with outbreaks of
BRD. Similar results to this study were obtained by another recent
Brazilian study, nasal swabs from cattle with BRD were analyzed and
found the presence of H. somni, BRSV, BCoV, and M. haemolytica in
single infections or co-infections [18].

The findings of P. multocida as the most prevalent pathogen (42.85
%) in the outbreak are in accordance with other investigations that
revealed this bacteria as the most common isolated in dairy calves with
BRD [6,58]. The presence of H. somni in this study is new evidence of
the disease caused by this underdiagnosed bacterium, which has been
described only recently in diseased cattle in Brazil associated with
systemic disease, reproductive manifestations, thrombotic me-
ningoencephalitis, and respiratory distress [18,35,36]. Diagnoses of M.
bovis are difficult cultivate due to overgrowth of contaminants in nu-
tritionally complex media after a long period of incubation [34,59]. The
current study presents an alternative to detect M. bovis specifically in
BALF samples by nested PCR and differentiate it from other species of
mycoplasmas that are opportunistic and/or commensals of the re-
spiratory tract.

At the time of sampling, the BRD outbreak in the calf rearing unit
was not controlled. Antimicrobial drugs used in calves (spectinomycin
and tulathromycin) are commonly used in Brazil for BRD treatment.
However, these drugs were not used as metaphylaxis and/or therapy in
the early stages of BRD, which increased the success of treated calves
[24,60]. In association with this condition, potential risk factors for
BRD previously described were detected at the rearing unit [12,13,61].
This unit includes automatic milk feeders with a common nipple, large
group pens (> 12 calves), older calves housed with younger calves, and
calves from various sources with unknown sanitary status.

A decrease in bacterial susceptibility to antibiotics and/or lack of
appropriate evaluation of calves under treatment for further therapy are
other important causes of failure in the control of BRD, especially for
mycoplasmal infections. A study with M. bovis isolated from young
cattle in France revealed that 100 % of recent strains are resistant to
common antibiotics used to control BRD [62]. Thus, it may be sug-
gested that when calves are challenged with so many etiological agents
and in the presence of risk factors, simple maternal immunity and
broad-spectrum antimicrobial drugs may not be sufficient to control
BRD in calves. However, an essential tool for prevention is the use of
commercial vaccines against the main pathogens that cause respiratory,
bacterial, and viral diseases. These vaccines should be administered
mainly to cows in the final period of pregnancy, to promote the transfer
of immunoglobulins by colostrum. In addition, it is essential to ensure
the intake of an adequate amount of colostrum soon after the calves are
born. Finally, all preventive measures together can help to reduce the
number of susceptible animals and the excretion of microorganisms, in
addition to reducing the risk of BRD occurring mainly in the critical
phases, which are transport and grouping in the calf rearing unit
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[17,63].

5. Conclusion

In conclusion, the findings of this study revealed the presence of
several microorganisms, viruses and bacteria, associated with BRD in a
dairy heifer calf rearing unit from Brazil that differs from previous re-
ports carried out with lower respiratory tract samples in the country.
The diversity of potentially pathogenic microorganisms for the re-
spiratory tract of calves identified mainly in mixed infections in con-
junction with the risk factors present in this calf rearing unit may ex-
plain the high morbidity rate and the difficulty in the treatment of
calves in this BRD outbreak. The use of a molecular diagnostic platform
provided the rapid and reliable identification of several microorganisms
involved in the BRD outbreak. Further studies focusing on the char-
acterization of etiological agents detected in BRD are extremely im-
portant to clarify the circulating strains in epidemiological studies. The
elucidation of the plurality of infectious agents that may be involved in
BRD outbreaks in dairy calves highlights the importance of adopting
preventive measures for BRD control, particularly in calf-rearing units
where heifer calves from diverse origins and with distinct health and
immunological status are grouped together in the same rearing system.
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