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Abstract
The phloem plays a central role in transporting resources and signalling
molecules from fully expanded leaves to provide precursors for, and to direct
development of, heterotrophic organs located throughout the plant body. We
review recent advances in understanding mechanisms regulating loading and
unloading of resources into, and from, the phloem network; highlight
unresolved questions regarding the physiological significance of the vast array
of proteins and RNAs found in phloem saps; and evaluate proposed
structure/function relationships considered to account for bulk flow of sap,
sustained at high rates and over long distances, through the transport phloem.
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Introduction
Successful functioning of land plants depends upon specialized 
transport systems. With some exceptions such as remobilized 
reduced carbon in winter-deciduous trees during the winter-spring 
transition, xylem conducts water and essential mineral elements 
from roots to transpiring leaves. Phloem transports water, mineral 
elements, amino nitrogen compounds, and sugars (resources), 
together with signalling molecules, from fully expanded leaves 
(sources) to meet the nutrient requirements of heterotrophic  
growth or storage organs (sinks) and to direct their develop-
ment, respectively. Thus, phloem transport is at the heart of plant  
growth and development and, as such, is a primary factor deter-
mining crop yield potential. (For recent reviews, see Braun et al.1,  
Ham and Lucas2, and Yadav et al.3.)

Phloem transport occurs as a pressure-driven bulk flow through 
a longitudinally arrayed subset of transport-specialized cells  
termed sieve elements (SEs). During their development, SEs 
undergo partial autophagy that leaves a parietal enucleate  
cytoplasm enclosed by a plasma membrane (PM). (For more details 
of recent progress in understanding phloem development, see  
reviews by Rodriguez-Villalon4 and de Rybel et al.5.) In contrast 
to SEs, their adjoining companion cells (CCs) contain a dense 
cytoplasm and are connected to their corresponding SE through 
an extensive network of plasmodesmata (PD) to form a meta-
bolic and genetic unit, the sieve element-companion cell complex  
(SECCC). Loading SECCCs in the collection phloem of source 
leaves generates an osmotically derived hydrostatic pressure  
potential that drives bulk flow through the SE arrays of the  
transport phloem to reach the release phloem where resources and  
signals are unloaded to enter pathways leading to plant growth or 
storage6,7.

In this commentary, we review new insights into key aspects  
of phloem transport and highlight unresolved questions that need  
to be addressed to gain a fuller understanding of phloem transport.

Phloem loading
Sugar uptake into the phloem is a principal contributor to estab-
lishing source-sink hydrostatic pressure differentials driving  
phloem transport6,7. Different phloem loading types have been  
identified, and abundant insight into phloem loading mechanisms 
has become available. However, two key aspects remain largely 
unexplored: the ecology and regulation of phloem loading.

Three major types of phloem loading
The three main types of phloem loading currently recognized are 
(i) active apoplasmic, (ii) active symplasmic, and (iii) passive  
symplasmic (Figure 1). The mechanism of active apoplasmic  
loading (Figure 1) is well understood with proton-coupled  
sucrose transporters (SUTs), also referred to as SUCs, concen-
trating sucrose into SECCCs8–10 released from surrounding cells 
by sucrose uniporters, termed sugars will eventually be exported  
transporters (SWEETs)11,12. In contrast, the function of the two 
symplasmic loading types has been established only recently.

A remaining major question for active symplasmic loading is how 
PD enable steric filtering to allow sucrose movement into CCs 
while preventing the synthesized sugar oligomers from leaking 
back to the mesophyll cells (Figure 1). No method exists to resolve 
PD canal sub-structure to the degree required to answer this ques-
tion, and current insights rest solely on mathematical modelling. 
For instance, Liesche and Schulz13 showed that a PD structure that 
is highly restrictive to solute movement, with cytosolic channels 
of 0.65 nm in diameter compared with diameters of 2.5 nm in PD 

Figure 1. Major phloem loading types. In active apoplasmic loading, the sieve element-companion cell complex (SECCC) 
is symplasmically isolated. Sucrose produced in the mesophyll cells (MCs) diffuses into phloem parenchyma cells (PPCs), where it is  
released into the apoplasm by efflux carriers (SWEETs) before being taken up into the SECCC by plasma membrane-localized sucrose 
transporters. In active symplasmic loading, sucrose can diffuse or convect into the companion cell (CC) through the abundant 
plasmodesmata (PD). Sucrose in the CC is converted to sugar oligomers, which are hindered from diffusing back into the phloem 
parenchyma but instead enter the SE through the larger PD at the SE-CC interface. In passive symplasmic loading, sucrose can diffuse or  
convect along the whole phloem loading pathway from mesophyll cells to SEs following the sugar concentration gradient. Aquaporins 
facilitate the osmotic uptake of water from the phloem apoplasm into SEs in all loading types. In symplasmic loaders, water also enters  
the SECCC through PD. SWEET, sugar will eventually be exported transporters.
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between leaf mesophyll cells14, could enable steric sugar filtering 
while accommodating observed phloem loading rates. However, 
this extreme PD anatomy might not be necessary as differences 
in intracellular sugar concentrations along the loading pathway 
from mesophyll to phloem could be sufficient to drive a combina-
tion of diffusion and mass flow of molecules (convective flow) into 
SECCCs. As a consequence, diffusion of sugar oligomers out of 
the SECCC, against the direction of the convective flow, would be 
limited15,16.

New evidence regarding passive symplasmic loading (Figure 1) 
was provided by the finding that sucrose export from poplar leaves 
was not compromised by blocking apoplasmic loading of sucrose17. 
This was achieved through expressing a cell wall invertase to cleave 
sucrose into hexoses, thereby making the sugar unavailable for 
uptake by SUTs. Furthermore, microfluidic experiments showed 
that passive phloem loading is feasible with convective flow through 
PD to the SECCCs18. However, it is unclear whether this concept 
is universally applicable across all species exhibiting features of  
passive symplasmic loading. For example, in several designated  
passive loaders, higher sugar concentrations were detected in 
phloem compared with mesophyll cells19,20. In addition to methodo-
logical controversies surrounding measurements of intracellular 
sugar concentrations, a switch between loading types or even their 
concomitant operation could explain the conflicting conclusions21.

Parallel and sequential operation of different phloem 
loading types
Coexistence of phloem loading types has become apparent for 
many plant species22. For instance, two anatomical types of 
CCs have been detected in minor veins in 35% of 320 Asteridae  
species exhibiting PD characteristics consistent with active  
symplasmic or apoplasmic loading23 as well as other species 
of various growth forms24,25. Moreover, switching from active  
symplasmic to apoplasmic phloem loading, putatively by modi-
fying PD conductance in the same CC, has been described for  
virus-infected melon plants26. A switch between loading types 
in the same CC is thought to be impossible without adaptation 
of the relevant PD21,27. Consequently, elucidating this potential  
mechanism of switching between loading types is a major task  
for future research on phloem loading.

In addition to switching between loading types, concomitant  
operation of passive and active loading by the same CC has 
been proposed20 and shown to be theoretically possible though 
attenuated by a low efficiency21. Passive loading could func-
tion as a fallback mechanism as demonstrated by continued 
growth, at a reduced rate, of plants in which active loading is 
blocked through introduction of mutations that render either the 
relevant SUT or enzymes involved in sucrose oligomerization  
non-functional22,28,29.

Ecology of phloem loading types
No satisfactory answer has been provided to account for why  
there are different phloem loading types. Slewinski et al.22 theo-
rized that some plants load certain molecules symplasmically in 
addition to those transported across the PM of SECCCs, but no 
candidates have been identified so far. Analysis of growth form 

concluded that herbaceous plants generally are not passive sym-
plasmic loaders30. Presumably, this is because active loading 
allows the plant to keep carbon content low in leaves, which pro-
vides a substantial, positive effect on growth rate31. However, 
this does not mean that the slower-growing trees are all passive  
loaders. Indeed, half of the families dominated by woody plant 
species exhibit an active loading mechanism21,30. Evolution-
ary and distribution analyses similarly do not provide a clear  
explanation for why certain families use a particular phloem  
loading type30. A closer examination of a plant’s ecology might 
reveal ecophysiological adaptations that different loading types 
offer. For example, a link between loading type and a plant’s  
adaptive environmental response has been demonstrated in a  
comparative study of minor vein structure developed under  
different temperature and light conditions32.

Regulation of phloem loading
While sugar export rates are a function of sugar availability and  
sink demand33,34 as well as phloem loading capacity35,36, the 
underlying molecular mechanisms are poorly understood. SUT  
activities are expected to be principal regulators of sugar export 
in apoplasmic loaders6 as demonstrated by SUT overexpression37. 
In this context, transcriptional SUT regulation by phytohor-
mones and corresponding changes in sugar export rates were  
observed in potato38. Several studies suggest that post-trans-
lational regulation of SUTs contributes to determining export 
rates (for example, Sakr et al.39). How post-translational  
regulation of SUTs occurs in vivo is unclear but could involve  
differential intracellular localization40, dimerization41, and pro-
tein-protein interactions42. However, other factors should be  
considered. For instance, simultaneous upregulated expression 
of SUTs and SWEETs, in response to water deficit, increased 
phloem loading43. Furthermore, constitutive overexpression of a 
proton-pumping pyrophosphatase in Arabidopsis thaliana leaf 
CCs increased phloem loading possibly by enhancing the proton  
motive force driving sucrose flux through SECCC localized 
SUTs44,45. Regulation of sucrose exchange between cytosol and  
vacuole of cells in the pre-phloem pathway influences phloem  
loading rates even in apoplasmic loaders46,47. So far not demon-
strated is the short-term regulation of phloem loading through 
modification of PD permeability, which would be especially  
relevant in symplasmic loaders21. After elucidation of the molecu-
lar mechanisms regulating phloem loading, the important question  
will be how these are linked to sink demand48.

Phloem transport
This section combines a description of the transport phloem,  
especially how its anatomy facilitates sap flow, with a more  
general discussion on the mechanism of phloem transport and the 
molecules transported within.

The mechanism of phloem transport in trees
Osmotically driven pressure flow has been widely accepted as 
the mechanism of phloem transport in herbaceous plants49,50.  
However, in regard to trees, where distances between source and 
sink can extend up to 100 m, there are doubts about whether a 
hydrostatic pressure potential sufficient to drive flow could be  
generated51,52. A variety of approaches have been employed to 
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answer this question. Simple theoretical models of Münch-type 
pressure flow agree with measurements of stem diameter vari-
ations53 or SE anatomy54,55. Importantly, the main prediction of  
pressure flow, that SE conductivity scales with transport  
distance56, could be confirmed. The scaling of SE conductivity 
with tree height was shown within a single tree (Figure 2A;57,58), 
within a species59, and across species (Figure 2B;55,60), confirm-
ing that resistance decreases to accommodate mass flow in larger 
trees. Furthermore, it was recently shown in mature, field-grown 
Scots pine trees that there is an osmotic pressure gradient along 
the phloem pathway from leaves to the stem base (Figure 2C;61).  
The osmotic pressure gradient, supported by gravity, was calcu-
lated to be large enough to overcome the xylem water pressure  
potential and establish a phloem turgor pressure gradient that 
drives mass flow according to the Münch mechanism at all times 
across the diel cycle61. Taken together, these results confirm that  
Münch-type pressure flow works even in the tallest angiosperm 
and gymnosperm trees, although transport speed might be up  
to 10 times lower than in herbaceous plants62. However, this is 
in agreement with equally lower rates of photosynthesis and 
growth63.

Open questions regarding the functional anatomy of the 
phloem
Despite major progress in determining how phloem anatomy 
facilitates osmotically driven pressure flow, not all questions  
regarding its functional anatomy have been resolved. For exam-
ple, sieve plates forming the axial connection between adjoining 
SEs have been assumed to evolve toward a simple form associated 
with lower hydraulic resistance—a paradigm overturned by an 
anatomical analysis of 447 species60. Rather, the distinct organi-
zational patterns of sieve plates might relate to general vascular 
anatomy (for example, SE length or xylem cell anatomy) instead 
of differences in conductivity60. Another aspect that is relevant  
for phloem transport is the symplasmic coupling along the  

transport path. Even in apoplasmically loading herbaceous plants, 
unloading along the stem can switch between apoplasmic and 
symplasmic unloading pathways, depending upon the source/
sink ratio, with high ratios favouring symplasmic unloading64. In 
many tree species, especially conifers, the presence of PD con-
necting the SECCC with surrounding cells65 indicates symplasmic 
coupling, presumably to efficiently supply the cambium with the 
large amounts of sugars needed for wood formation. The question 
is in how far symplasmic coupling along the path compromises  
whole-plant phloem transport. A recent theoretical analysis  
showed that unloading along the transport path considerably  
influences flow if it is not balanced by reloading66. The most  
likely explanation is that unloading is symplasmic only in case of 
high sugar concentrations in the ground tissue, which then could 
also have a function in homeostatically maintaining SE turgor67.

Another central issue is the relationship between fibrous SE  
protein (p-protein) agglomerations, considered to occlude sieve 
pores to prevent sap loss in the event of damage68. Careful prepa-
ration of material for electron microscope examination reveals 
unobstructed SE lumens bounded by a parietal cytoplasm.  
However, Froelich et al.69 showed that in A. thaliana phloem, 
the p-protein, AtSEOR1, forms a meshwork at the margins and  
clots in the lumen of intact SEs and their presence does not  
impede longitudinal flow. Together with discrepancies between 
theoretical flow speeds calculated according to SE conductiv-
ity and observed flow speeds70, these observations have led to 
the conclusion that phloem transport in herbaceous plants and  
grasses is not limited by SE conductivity but only by sink 
strength71.

Phloem sap composition
Knowledge of phloem sap composition is relevant to reach a  
quantitative understanding of resource allocation and inter-organ 
signalling. Sugar concentrations are typically around 20%, but 

Figure 2. Scaling of sieve element (SE) conductivity and osmotic pressure potential enable Münch-type pressure flow in trees.  
(A) Axial widening of phloem cells along the stem of individual trees of Norway spruce (blue), European ash (orange), and bitter willow (gray). 
Average values of cell diameter contain up to 30% non-SE cells. Axial widening of SEs toward the bottom of a tree translates to decreased 
hydraulic resistance, and the scaling relationship was found to enable optimal xylem-phloem water exchange that is critical to drive flow in 
tall trees. (B) SE resistance of 44 different tree species with sampled individuals grown to their typical maximum height. Negative scaling of 
resistance with transport distance illustrates the anatomical optimization of SEs for phloem transport in trees. (C) Measurements of osmolality 
indicated the presence of an osmotic pressure gradient along the phloem of 18 m high Scots pine trees, which changed in accordance with 
the xylem water potential. The differences in osmotic potential were calculated to be large enough to overcome the xylem water pressure 
potential and establish a phloem turgor pressure gradient that drives mass flow according to the Münch mechanism across the diel cycle56. 
Frames (A–C) are based on data from Petit and Crivellaro57, Liesche et al.60, and Paljakka et al.61, respectively.

Page 5 of 12

F1000Research 2017, 6(F1000 Faculty Rev):2096 Last updated: 06 DEC 2017



the sap contains other molecules (for example, amino nitrogen  
compounds, proteins, and RNAs) and mineral ions72. Deter-
mining the precise abundance of the different sap components  
remains one of the biggest challenges in phloem research as 
all methods available so far are prone to artifacts73–75. Recently,  
laser-capture microdissection was used to uncover the link 
between seasonal differences in phloem metabolites and phloem  
formation in Norway spruce. However, since sampling could not 
be restricted to SEs, results were not representative of phloem 
sap76. In the future, insight on relative sap composition might be 
gained from using rapid freezing and nanoscale secondary ion 
mass spectrometry (NanoSIMS), which enables semi-quanti-
tative imaging of ions as well as isotope-labeled nitrogen and  
carbon compounds within SEs77. Gaining a complete picture 
of the spatiotemporal dynamics of phloem sap composition 
will be instrumental in refining multi-compartmental metabolic  
models describing source-to-sink metabolite flows (for example,  
Zakhartsev et al.78).

Controversy persists surrounding the function of phloem-mobile 
proteins and RNA79. Recently, a meta-analysis comparing  
proteomes of xylem, phloem, and leaf apoplasmic saps  
highlighted phloem sap as being the most enriched in signalling 
proteins of which 13 were conserved across experiments and 
that included the ubiquitous phloem-mobile protein FLOWER-
ING LOCUS T80. Grafting studies suggest phloem mobility of a 
multitude of additional proteins81. However, without further vali-
dation of their signalling function, many of these proteins could 
have entered the translocation stream “by accident” rather than 
by a control mechanism located at PD interconnecting CCs with  
SEs82. Of the proteins identified in phloem sap by proteomics, 
those associated with redox regulation and plant defense con-
sistently have been found across species80, suggesting that many 
phloem proteins function in the response to biotic and abiotic  
stress. Prominent examples of phloem-mobile RNAs include 
the transcription factors BEL5, which influences potato tuber  
induction83, and the Cucurbit NACP regulating apical meris-
tem development84. Recently 2,006 A. thaliana phloem-mobile  
mRNAs were identified85 with a conserved tRNA-derived sequence 
conferring mobility86. However, since most of the mRNAs 
are expressed in mesophyll cells, it is unclear how they could  
enter the phloem stream in the apoplasmic loader A. thaliana. In 
addition to those many phloem-mobile proteins and mRNAs, the 
role of microRNAs87 and lipids88 as systemic signals needs to be 
further explored.

Phloem unloading
Phloem unloading describes the movement of phloem sap con-
stituents from SECCC lumens (SECCC unloading) and their 
subsequent cell-to-cell transport to final destinations in non- 
SECCC vascular or ground tissues. Cellular pathways of phloem 
unloading are apoplasmic (Figure 3A) or symplasmic with or  
without an intervening apoplasmic step located in the post- 
SECCC pathway (Figure 3B, C;89). As outlined below, phloem 
unloading mechanisms are only partially resolved.

Apoplasmic phloem unloading mechanisms
Possible mechanisms contributing to efflux across any cell 
PM, including SECCC PMs, are passive diffusion, transporter- 
mediated facilitated diffusion, and energy-coupled movement. 

Passive diffusive fluxes of molecules and ions are the product of 
their membrane permeability coefficients and trans-membrane  
gradients in chemical potential for non-electrolytes or electro-
chemical potential for electrolytes90. To illustrate the magnitude 
that these passive fluxes could reach for apoplasmic SECCC  
unloading of sucrose along the entire phloem pathway from  
source to sink, a plausible maximum of 1 M for the SECCC  
trans-PM sucrose concentration difference and a membrane per-
meability coefficient of 10−10 m s−191 predict a sucrose efflux of  
1 × 10−7 mol m−2 s−1. This matches the maximal membrane flux  
for loading sucrose into SECCCs (2.3 × 10−7 mol m−2 s−1; 
Giaquinta92). Thus, it is imperative to experimentally determine 
rates of diffusive leak from SECCCs and include this component in 
theoretical models of phloem transport.

For facilitated membrane efflux of sugars by uniporters,  
SWEETs11,12 have been detected in transport phloem paren-
chyma cells93, but whether these function in efflux to, or retrieval 
from, the phloem apoplasm remains to be determined. However,  
sucrose/proton symporters occur in SECCCs of root and stem  
transport phloem (for example, 94,95). Depolarized membrane  
potentials (−55 mV) of root SECCCs predict that sucrose/ 
proton symport could reverse to an efflux mode driven by a 
trans-membrane sucrose concentration difference of 85.5 mM 
(for more information, see Carpaneto et al.94). In contrast,  
symporter reversal in stem phloem is highly unlikely as their  
SE/CC membrane potential of −110 mV96 would require a sucrose 
concentration difference of 7,200 mM, a concentration differ-
ence that far exceeds physiological limits.

During sugar accumulation in fleshy fruits, phloem unloading  
follows an apoplasmic route64,97–100. Whether the sucrose leak 
from fruit SECCCs is augmented by reversal of sucrose/proton  
symporters101,102 cannot be evaluated, as their membrane poten-
tials are unknown. However, pharmacological studies suggest 
that sucrose efflux from vascular bundles of apple fruit and grape  
berries is mediated by energy-coupled carriers97,103. Resolving 
the identity (or identities) of the putative effluxer (or effluxers) 
is central to acquiring a full understanding of phloem unloading 
in fleshy fruits. What is clearer is that monosaccharide/proton  
symporters retrieve inverted disaccharides from the fruit  
apoplasm into storage parenchyma cells104–107 and, together 
with cell wall invertases, function to co-regulate phloem  
unloading106,108,109.

In all cases, unloading of osmotic solutes must be accompa-
nied by a proportionate loss of phloem water to maintain water  
potential equilibrium. The exit of water likely occurs through 
aquaporins localized in PMs of the unloading SEs (Figure 3A and, 
for example, 110,111).

Symplasmic unloading mechanisms with or without an 
intervening apoplasmic step located in the post-SECCC 
pathway
In recent years, it is becoming increasingly clear that a major  
component of symplasmic unloading from SECCCs is contrib-
uted by bulk flow. For instance, experimental manipulations of  
hydrostatic pressure gradients in root tips and stems cause changes 
in phloem unloading rates consistent with bulk flow (reviewed 
by Patrick112). In developing wheat seeds, hydrostatic pressure  
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Figure 3. Cellular pathways and mechanisms of phloem unloading. (A) Apoplasmic sieve element-companion cell complex (SECCC) 
unloading of sucrose mediated by sucrose transporter reversal and/or possible by sugars will eventually be exported transporters  
(SWEETs) with energy coupled transporters retrieving sugars from the sink apoplasm while accompanying water transport across the  
plasma membranes facilitated by aquaporins. (B) Symplasmic phloem unloading by bulk flow. (C) Symplasmic phloem unloading by 
bulk flow with an intervening apoplasmic step in the post-phloem pathway of developing seeds. Sucrose release to the seed apoplasm  
from maternal seed coats is mediated by SWEETs, sucrose facilitators and possibly a yet-to-be-cloned sucrose/proton antiporter. SWEETs 
and sucrose transporters recover released sucrose from the seed apoplasm into the endosperm/embryo. Membrane transport of water 
facilitated by aquaporins. GT, ground tissue; PPC, phloem parenchyma cell.

differences of up to 1.0 MPa between SEs and vascular paren-
chyma cells account for observed PD volume flow rates113. In  
contrast, modelling flows through large-diameter funnel-shaped  
PD, interconnecting SEs, and adjacent pericycle cells in  
A. thaliana root tips predicted that hydrostatic pressure differ-
ences of only 0.05 to 0.2 MPa were required114. Whether these 
model-based hydrostatic pressure differences can be recon-
ciled with measured hydrostatic or osmotic pressures of 1.3 and  
0.6 MPa, respectively, between SEs and surrounding cells in  
barley and maize root tips115,116 awaits determination.

For the apoplasmic step in the mandatory phloem-unloading  
pathway of developing seeds (Figure 3B), sucrose release from 
maternal seed coats occurs by a combination of facilitated  
diffusion and sucrose/proton antiport while retrieval by embryo/
endosperm is mediated by sucrose symporters117 or SWEETs118 
or both. Cloned sucrose facilitators (SUFs) from grain legume 
seed coats exhibited transport properties consistent with those 
found for facilitated diffusion of sucrose in native membranes of 
seed coats and were expressed in cells considered responsible for 
sucrose efflux119,120. In developing A. thaliana seeds, SWEETs 
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are positioned to provide a cascade of sucrose transport from 
the outer (SWEET15) and inner (SWEET12) integuments and 
uptake into the filial tissues (SWEET11 and SWEET15121) while  
SWEET11 facilitates release from maternal tissues of devel-
oping rice seeds122. Consistent with relative contributions of 
facilitated diffusion to sucrose effluxed from grain legume seed  
coats117, seed weights, but not number, were depressed by 50% 
in the A. thaliana triple-mutant sweet11, 12 and 15, and by 65% 
in the rice sweet11 mutant121,122. The challenge now is to identify  
the gene or (genes) encoding the membrane protein (or proteins) 
responsible for energy-coupled sucrose/proton antiport from  
maternal seed tissues123 that may also operate in fleshy fruit (see 
previous section). Membrane transport of solutes is matched by 
water movement through aquaporins located in PMs of maternal 
and filial tissues of developing seeds (Figure 3C and, for  
example, 124,125).

Conclusions and future directions
Throughout the text, we have highlighted a series of unresolved 
questions of phloem transport biology required to move the  
understanding of phloem loading, axial transport, and unloading 
forward. Their resolution will inform profitable approaches to 

address the key question of how the components of phloem  
transport are integrated into a functional whole71 and how phloem 
transport mechanistically intermeshes with photosynthesis and  
sink demand for resources63,71.
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