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Identification 
of a methylomics‑associated 
nomogram for predicting 
overall survival of stage I–II lung 
adenocarcinoma
Heng Wang1,4, Chuangye Wei2,4, Peng Pan3,4, Fengfeng Yuan1 & Jiancheng Cheng1*

The aim of this paper was to identify DNA methylation based biomarkers for predicting overall survival 
(OS) of stage I–II lung adenocarcinoma (LUAD) patients. Methylation profile data of patients with 
stage I–II LUAD from The Cancer Genome Atlas (TCGA) database was used to determine methylation 
sites‑based hallmark for stage I–II LUAD patients’ OS. The patients were separated into training and 
validation datasets by using median risk score as cutoff. Univariate Cox, least absolute shrinkage 
and selection operator (LASSO) and multivariate Cox analyses were employed to develop a DNA 
methylation signature for OS of patients with stage I–II LUAD. As a result, an 11‑DNA methylation 
signature was determined to be critically associated with the OS of patients with stage I–II LUAD. 
Analysis of receiver operating characteristics (ROC) suggested a high prognostic effectiveness of 
the 11‑DNA methylation signature in patients with stage I–II LUAD (AUC at 1, 3, 5 years in training 
set were (0.849, 0.879, 0.831, respectively), validation set (0.742, 0.807, 0.904, respectively), entire 
TCGA dataset (0.747, 0.818, 0.870, respectively). Kaplan–Meier survival analyses exhibited that 
survival was significantly longer in the low‑risk cohort compared to the high‑risk cohort in the training 
dataset (P = 7e − 07), in the validation dataset (P = 1e − 08), and in the all‑cohort dataset (P = 6e − 14). 
In addition, a nomogram was developed based on molecular factor (methylation risk score) as well as 
clinical factors (age and cancer status) (AUC at 1, 3, 5 years entire TCGA dataset were 0.770, 0.849, 
0.979, respectively). The result verified that our methylomics‑associated nomogram had a strong 
robustness for predicting stage I–II LUAD patients’ OS. Furthermore, the nomogram combined 
clinical and molecular factors to determine an individualized probability of recurrence for patients 
with stage I–II LUAD, which stood for a major advance in the field of personalized medicine for 
pulmonary oncology. Collectively, we successfully identified a DNA methylation biomarker and a DNA 
methylation‑based nomogram to predict the OS of patients with stage I–II LUAD.

Lung cancer is the most common type of cancer in terms of cancer-related death  worldwide1. Non-small-cell lung 
cancers (NSCLCs) accounts for roughly 85% of all lung cancers based on  pathomorphology2. Importantly, 35% 
of the NSCLCs are diagnosed as LUAD. In spite of the improvement of treatment, 5-year survival rate of NSCLC 
is  poor3. Nearly 30% of stage I NSCLC patients would undergo recurrent disease, and many of them would die 
due to cancer recurrence after surgical  therapy3,4. Therefore, exploring novel prognostic hallmarks could assist 
clinicians in prognostic evaluations and therapeutic selection for early stage LUAD patients.

Growing researches showed that specific molecules could function as prognostic markers for lung cancer. 
For example, Wang et al. found potential diagnostic and prognostic biomarkers of circular RNAs for lung cancer 
in  China5. Ning et al. suggested that CPSF3 was a promising prognostic biomarker and predicted recurrence of 
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 NSCLC6. Liu et al. revealed lncRNA SLC16A1-AS1 as a novel prognostic hallmark in  NSCLC7. Zhang et al. iden-
tified six metabolic genes as potential biomarkers for  LUAD8. Meanwhile, emerging studies have demonstrated 
that epigenetics plays a critical role in the initiation, progression, therapeutic response, and result of human 
 tumors9,10. DNA methylation serves as a significant epigenetic modification of cancer cells, which may be the 
main mechanisms of the inactivation of cancer-associated suppressor genes in the process of  tumorigenesis11. 
Various studies suggested that DNA methylation was closely related to the development, invasion, and metastasis 
of carcinoma, and may act as a hallmark of  prognosis12,13. For example, Guo et al. revealed a five-DNA meth-
ylation signature as an effective prognostic hallmark in patients with ovarian serous  cystadenocarcinoma14. Li 
et al. suggested that a four-DNA methylation signature served as a robust prognostic biomarker for survival of 
patients with gastric  cancer15. In addition, a previous study reported that methylation was more likely to occur 
for DNA in tumor cells than that in normal  cells16. Nielsen et al. indicated that aberrant DNA methylation was 
a relatively stable as well as potentially reversible therapeutic  signal17. Therefore, DNA methylation has great 
potential as biomarker of prognosis for cancer patients. However, few studies have investigated the value of DNA 
methylation for prognostic prediction in patients with stage I–II LUAD. The identification of novel prognostic 
DNA methylation hallmark for stage I–II LUAD patients was highly desired.

We analyzed the genome-wide methylation map of stage I–II LUAD patients in TCGA database to investigate 
a DNA methylation-based predicator and a DNA methylation-associated nomogram. The Kaplan–Meier survival 
curve and ROC analyses were employed to test the robustness of the 11-DNA methylation signature and the 
results suggested a good value of our nomogram.

Results
Clinical characteristics of the study populations. A total of 393 stage I–II LUAD samples were 
enrolled in the present study. The demographics and clinical features of the included patents are summarized in 
Table 1. Workflow of model generation and subject enrolment was summarized in Fig. 1.

Methylation markers associated with OS of stage I–II LUAD patients. We identified 2332 dif-
ferentially expressed methylation sites between dead and alive cohorts that were adopted for univariate Cox 
proportional hazard regression analysis. Consequently, 84 DNA methylation sites were revealed to be closely 
involved in stage I–II LUAD patients’ OS (P < 0.05). Following this, the identified 84 DNA methylation sites were 
used for LASSO Cox regression model (Supplementary Table S1) and 25 methylation sites were determined as 
the candidate methylation sites (P < 0.01) (Fig. 2A,B) that were then used for multivariate Cox proportional haz-
ard regression. Of these, 11 methylation sites were screened as optimal model sites for the prognostic evaluation 
of patients with stage I–II LUAD based on the multivariate Cox regression analysis. The risk scoring formula was 
calculated as follows: Risk score = 1.31688*cg00237391 + 8.85449*cg04529955 − 3.3827*cg06393879 − 3.34536*c
g11539066 + 2.62432*cg12133048 − 6.18862*cg13600632 + 1.50514*cg13643814 + 2.3872*cg17186803 − 3.74192
*cg20546263 + 2.57421*cg24311704 + 1.19749*cg27468419. The scores showed strong associations of poor prog-
nosis with hypermethylation of cg00237391, cg04529955, cg12133048, cg13643814, cg17186803, cg24311704, 
cg27468419 and the hypomethylation of cg06393879, cg11539066, cg13600632 and cg20546263 sites (Fig. 3).

Association between the 11‑DNA methylation signature and stage I–II LUAD patients’ 
OS. The prognostic value of the selected 11-DNA methylation hallmark was assessed on the basis of 
Kaplan–Meier survival analyses in the training, validation and the all-cohort datasets. The median risk scores 
were employed as cutoff value to divide the patients into low and high risk groups. As exhibited in Fig. 4A, 
OS was significantly longer in the low-risk cohort in comprison to the high-risk cohort in the training dataset 
(P = 7e − 07). A similar result was found in the validation dataset (P = 1e − 08) (Fig. 4C) and in the all-cohort 
dataset (P = 6e − 14) (Fig. 4E). The results implied a great robustness of the predicator as prognostic indicator in 
patients with stage I–II LUAD.

Evaluation of the predictive ability of the 11‑DNA methylation biomarker by ROC analy‑
sis. We performed ROC analysis to further evaluate the value of the 11-DNA methylation biomarker. The 
AUC of the 11-DNA methylation hallmark at 1, 3, 5 years in training set were 0.849, 0.879, 0.831, respectively 
(Fig. 4B). A good value was also found in validation set (0.742, 0.807, 0.904, respectively) (Fig. 4D) and the whole 
validation set (0.747, 0.818, 0.870, respectively) (Fig. 4F), the results showed that the 11-DNA methylation bio-
marker had a significant capacity for predicting OS of stage I–II LUAD patients.

Then, the patients enrolled in this study were ranked based on their risk scores (Fig. 5A), and the dotplot was 
drawn in based on their recurrence status (Fig. 5B). The outcomes showed that the low-risk cohort had a longer 
OS than that in the high-risk cohort. Heatmap of 11 methylation sites distribution on the basis of risk score was 
observed in Fig. 5C, which had a similar result to our previous boxplot. Finally, we performed subgroup analysis 
by using several clinicopathological factors (site, age, stage, gender and smoking history). A good predictive 
ability of the 11-DNA methylation biomarker was verified in most sub-group (Supplementary Figs. S1, Figs. S2, 
Figs. S3, Figs. S4 and Figs. S5).

Implementation of the 11‑DNA methylation biomarker‑related biological pathways. Single-
sample Gene Sets Enrichment Analysis (ssGSEA) was carried out in accordance to TCGA LUAD mRNA dataset 
by employing GSVA  package18 for exploring the 11-DNA methylation signature-based signaling pathways. The 
median score was employed as the cutoff to divide the patients into low and high risk groups. Top 20 pathways 
that were more activated in the high-risk samples than that in low-risk samples were exhibited in Fig. 6A (Sup-
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plementary Table S2). The exact Pearson correlations between enriched pathways and risk score was presented 
in Fig. 6B.

Nomogram development. To assess whether the 11-DNA methylation biomarker was an independent 
predictor for OS of stage I–II LUAD patients, we carried out univariate and multivariate Cox model via risk 
score and a few clinicopathological factors. Hazard ratios (HRs) showed that the 11-DNA methylation hallmark 
was significantly involved in the OS of stage I–II LUAD patients (P < 0.01, HR 2.60, 95% CI 1.91–3.53) (Table 2), 
which implied that the 11-DNA methylation hallmark was an independent prognosis classifier. To further pre-

Table 1.  Clinical features of enrolled samples.

Characteristics Total (n = 393) Training dataset (n = 276) Testing dataset (n = 117)

Sex

Female 212 (53.94) 144 (52.17) 68 (58.12)

Male 181 (46.06) 132 (47.83) 49 (41.88)

Age

≤ 65 195 (49.62%) 140 (50.72%) 55 (47.01%)

> 65 189 (48.09%) 130 (47.1%) 59 (50.43%)

Not available 9 (2.29%) 6 (2.17%) 3 (2.56%)

Stage

Stage I 275 (69.97%) 192 (69.57%) 83 (70.94%)

Stage II 118 (30.03%) 84 (30.43%) 34 (29.06%)

M

M0 263 (66.92%) 194 (70.29%) 69 (58.97%)

MX 125 (31.81%) 78 (28.26%) 47 (40.17%)

Not available 5 (1.27%) 4 (1.45%) 1 (0.85%)

T

T1 154 (39.19%) 107 (38.77%) 47 (40.17%)

T2 209 (53.18%) 151 (54.71%) 58(49.57%)

T3 30 (7.63%) 18 (6.52%) 12 (10.26%)

N

N0 306 (77.86%) 208 (75.36%) 98 (83.76%)

N1 75 (19.08%) 58 (21.01%) 17 (14.53%)

NX 12 (3.05%) 10 (3.62%) 2 (1.71%)

Location

Central lung 45 (11.45%) 33 (11.96%) 12 (10.26%)

Peripheral lung 84 (21.37%) 63 (22.83%) 21 (17.95%)

Not available 202 (51.4%) 134 (48.55%) 68 (58.12%)

Unknown 62 (15.78%) 46 (16.67%) 16 (13.68%)

Neoadjuvant treatment

No 391 (99.49%) 274 (99.28%) 117 (100%)

Yes 2 (0.51%) 2 (0.72%)

Site

L-Lower 64 (16.28%) 47 (17.03%) 17 (14.53%)

L-Upper 87 (22.14%) 59 (21.38%) 28 (23.93%)

R-Lower 61 (15.52%) 44 (15.94%) 17 (14.53%)

R-Middle 13 (3.31%) 8 (2.9%) 5 (4.27%)

R-Upper 160 (40.71%) 114 (41.3%) 46 (39.32%)

Not available 8 (2.04%) 4 (1.45%) 4 (3.42%)

Residual tumor

R0 252 (64.12%) 175 (63.41%) 77 (65.81%)

R1 4 (1.02%) 3 (1.09%) 1 (0.85%)

Not available 137 (34.86%) 98 (35.51%) 39 (33.33%)

Race

Asian 4 (1.02%) 3 (1.09% 1 (0.85%)

Black or African American 44 (11.2%) 31 (11.23%) 13 (11.11%)

White 315 (80.15%) 221 (80.07%) 94 (80.34%)

Not available 30 (7.63%) 19 (6.88%) 11 (9.40%)
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dict OS of stage I–II LUAD patients via a quantitative strategy, we developed a nomogram (Fig. 7) based on risk 
score, age and cancer status. The significance between risk score and other clinical factors was found in Fig. 8A. 
The value of the nomogram was measured based on C-index (0.787, 95% CI 0.751–0.832), AUC (1, 3, 5-year: 
0.770, 0.849, 0.979) (Fig. 8B) and calibration plot (Fig. 8C–E), the results suggested a good value of our nomo-
gram. Besides, calibration plot and decision curve analysis (DCA) (A novel method for evaluating prediction 
models) suggested that the nomogram had crucial clinical appliance potential for the prognostication of stage 
I–II LUAD patients’ OS than that in treat all or treat none cohort. Net benefit was proved for stage I–II LUAD 
patients in 3-year recurrent risks (Fig. 8F). The result indicated that our methylomics-associated nomogram had 
a strong robustness and may have clinical application potential.

Comparison of our nomogram with several known prognostic hallmarks. We compared the 
nomogram of this study with other known prognostic biomarkers to confirm whether the nomogram hallmark 
had the advantage of stable and great performance. The biomarkers for predicting early stage LUAD patients’ 
OS were employed for the  comparison19–25. As indicated in Fig. 9, the result manifested that the nomogram 
outperformed a few known prognostic hallmarks. The AUC of the nomogram at 5 years was 0.979, which was 
obviously larger than that in other biomarkers, suggestive of a greater value for the nomogram in comparison to 
other signatures in predicting LUAD patients’ prognosis.

Discussion
Despite advances in diagnosis and therapy of NSCLC over the past few decades, the 5-year survival rate is still 
 poor3. Thus, it is urgently needed to identify potential hallmarks correlated with the prognosis of NSCLC and 
develop optimum targeted therapy. With the deepening study of epigenetics, increasing studies have suggested 
that DNA methylation is crucial to gene regulation and acts as early events of a few tumors. DNA methylation 
serves as one of the earliest detectable neoplastic alterations, which give it a significant superiority as carcinoma 
diagnosis and prognosis  hallmarks26–28. Various studies indicated that DNA methylation could function as predi-
cators for cancer patients. For instance, Zheng et al. revealed a prognostic 11-DNA methylation biomarker for 
lung squamous cell  carcinoma29. Peng et al. identified a DNA methylation signature to improve survival predic-
tion of gastric  cancer30.

In the present study, TCGA database were applied to analyze the methylation of stage I–II LUAD. We identi-
fied a signature which contained 11 methylation sites (cg00237391 (DEF6: 1stExon), cg04529955 (SLC10A7: 
Body), cg06393879 (MYT1L: Body), cg11539066 (MIR596: TSS1500), cg12133048, cg13600632 (FAM125B: 
Body), cg13643814 (CHRNA7: TSS1500), cg17186803 (CN4B: Body), cg20546263 (C3orf33: TSS1500), 

Figure 1.  Workflow of model generation and subject enrolment.
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cg24311704 (MUC21: 1stExon) and cg27468419 (SDR16C6: TSS1500)) and corresponded to ten genes (DEF6, 
SLC10A7, MYT1L, MIR596, FAM125B, CHRNA7, SCN4B, C3orf33, MUC21, SDR16C6) by differential methyla-
tion analysis, Kaplan–Meier survival analysis, ROC analysis, and Cox regression analysis. Interestingly, previous 
studies have indicated that most of these ten genes were related to cancer, respectively. For example, Liew et al. 
suggested that DEF6 expression in ovarian carcinoma was associated with poor survival of  patients31. Liu et al. 
indicated that SLC10A7 was involved in prognosis-associated alternative splicing events of  cancer32. Zhang et al. 
revealed the clinical significance of MYT1L gene polymorphisms in Chinese patients with gastric  cancer33. Liu 
et al. reported that miR-596 could modulate melanoma growth via regulating cell survival and  death34. Xiang 
et al. found that CHRNA7 inhibited cell invasion and metastasis of LoVo human colorectal cancer cells by PI3K/
Akt  signaling35. Dai et al. revealed that miR-424-5p promoted the proliferation and metastasis of colorectal 
cancer via directly targeting  SCN4B36.Yuan et al. identified a novel splice variant of AC3-33 (C3orf33) in breast 
 cancer37. Kai et al. discovered that mucin 21 was a novel, negative immunohistochemical marker for epithelioid 
mesothelioma for its differentiation from  LUAD38. The result showed that 8 of these 10 genes were involved in 
cancer. We speculated the above 10 genes may be related to OS of LUAD patients. In addition, the result of Fig. 3 
suggested that hypermethylation of cg00237391, cg04529955, cg12133048, cg13643814, cg17186803, cg24311704, 
cg27468419 sites was involved in poor OS and the hypomethylation of cg06393879, cg11539066, cg13600632 
and cg20546263 sites was associated with a shorter OS. The prognosis predictive ability of a single methylation 
site was limited while the combination of multiple methylation sites had a stronger robustness for predicting OS 
of LUAD patients, which was further verified by Fig. 4B,D,F.

To better explore whether different clinical characteristics have different effects on the 11-DNA methylation 
signature, we divided the patients based on site, age, stage, gender and smoking history and used the subgroup 
analysis to detect whether there were differences between ROC curves of different clinical characteristics cohorts. 
An 11-DNA methylation signature was determined in the present study. The result indicated that the biomarker 
had a high diagnostic ability for prognosis of stage I–II LUAD patients. We hope that it can assist monitor stage 
I–II LUAD patients’ OS and also offer some assistance for the in-depth study of stage I–II LUAD. In addition, a 
few significant superiorities were required to be elaborated in the study. We developed a nomogram based on risk 
score, age and cancer status to predict 3- and 5-year stage I–II LUAD patients’ OS. The result suggested that AUC 
at 1, 3, 5 years entire TCGA dataset were 0.770, 0.849, 0.979, respectively, indicating good value of the 11-DNA 
methylation biomarker in the clinical application, which made our study more valuable. On the other hand, we 
performed LASSO Cox regression analysis to explore the candidate methylation sites significantly involved in 
stage I–II LUAD patients’ OS, which can filter the variables between univariate and multivariate Cox analysis. 

Figure 2.  Candidate methylation sites selection on the basis of the LASSO Cox regression model. (A) LASSO 
Cox regression with L1 regularization. Tenfold cross-validation for tuning parameter selection in the LASSO 
model via minimum criteria (the 1-SE criteria). (B) The LASSO Cox regression model was employed to 
determine the most robust hallmarks. LASSO coefficient profiles of the 84 methylation sites. A coefficient profile 
plot was created against log (lambda) sequence. Vertical line was used at the value selected by using tenfold 
cross-validation, where optimal lambda resulted in 25 non-zero coefficients.
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That is to say, the application of LASSO Cox regression model can elevate the predictive value of the 11-DNA 
methylation biomarker.

Following that, a comparison of the nomogram with other known prognostic predicators exhibited that our 
nomogram had apparently higher value in the result prediction of LUAD. In addition, the AUC of the nomogram 
was larger than the 11-DNA methylation biomarker in this study, demonstrating that the combination of the 
risk score with clinical variables was more significant in comparison to the methylation-correlated signature 
alone in the prediction of LUAD patients’ prognosis. In addition, based on our nomogram, clinicians will be 
able combine clinical and molecular factors to determine an individualized probability of recurrence for patients 
with stage I–II LUAD, which represents a major advance in the field of personalized medicine for pulmonary 
oncology, suggesting that this tool could help clinicians overcome one of the most challenging limitations we 
face when treating patients with stage I–II LUAD.

Whereas, there were a few limitations that needed to be emphasized in this study. Firstly, an independent 
external validation set was required to improve the predictive accuracy of DNA methylation biomarker in our 
study. Secondly, it takes a relatively long time for this predictive marker to be used clinically. Thirdly, our study 
was a retrospective study from TCGA database, which might produce some amount of selection bias. In addi-
tion, the samples of our study contained a mixture of methylomes in a tumor-lymphocytes/subsets, macrophage/
subsets, fibroblasts, as well as tumor cells, which may make reproducibility challenge. Furthermore, Illumina’s 
450 K Platform chip measured 450,000 methylation sites, which was less than 1% of all methylation sites, and 
this may yield some bias in our study.

Conclusions
In this study, we successfully developed a new DNA methylation prognostic predicator. In addition, a nomogram 
was developed based on methylation risk score, age and cancer status by a comprehensive analysis of bioinfor-
matics methods, which could be used for the prediction of stage I–II LUAD patients’ OS.

Figure 3.  Boxplots of methylation β values against risk group in the entire TCGA dataset. “High Risk” and 
“Low Risk” represent the high-risk and low-risk samples, respectively. The median risk score was applied as a 
cutoff. Vertical coordinates represent the β-value of 11-DNA methylation sites respectively. Mann–Whitney U 
test was employed to assess the diferences between the high-risk score and low-risk score groups.
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Materials and methods
DNA methylation data of stage I–II LUAD patients. DNA methylation data of patients with stage I–II 
LUAD from TCGA database that was processed using the Illumina HumanMethylation450 BeadChip (Illumina 
Inc., CA, USA) and the associated clinical information was retrieved from TCGA database by R TCGAbiolinks 
 package39, notably, Illumina’s 450 K Platform chip analyzed 450,000 methylation sites, which was less than 1% 
of all methylation sites, and this may yield some bias in our study. The DNA methylation were evaluated via 
β-values and calculated as the proportion of M and M + U + 100, in which M represented the signal from methyl-
ated beads, and U referred to the signal from unmethylated beads targeting CpG site. Data for a total of 393 stage 
I–II LUAD patients containing 485,577 DNA methylation sites were enrolled after removing patients for whom 
clinical survival information was not available. We analyzed the correlation between DNA methylation levels 
and the related OS of patients with stage I–II LUAD. We randomly divided the total stage I–II LUAD patients 
into two parts: training group (70%) and testing group (30%). The training group was used for model construc-
tion and the testing group for assessing the value of the model. LASSO is a critical regularization in many various 
analysis approaches. Here, LASSO regression model was used to screen core methylation sites involved in stage 
I–II LUAD patients’ OS. LASSO COX regression analysis was conducted by using a publicly available R package 
‘glmnet’40 for 1000 iterations.

Data processing, normalization, and determination of differentially expressed methylation 
sites. The preprocessing of the raw data was performed to analyze the prognosis prediction classifier. The 
methylation site whose beta value was not available (NA) in any sample was deleted. Following this, we per-
formed the normalization of the data by ‘betaqn’ function of wateRmelon  package41. Moreover, the whole sam-
ples were divided into dead and alive groups based on recurrent status. The normalized beta was transformed to 
M value with the formulation: M = log(β/(1 − β)). M value was employed for the elimination of the bias caused by 
different probes. Finally, M value was exploited for the determination of the differentially expressed methylation 
sites between recurrent cluster and no recurrent cluster with ‘dmpFinder’ function of minfi  package42.

Figure 4.  Kaplan–Meier and ROC analysis of patients with stage I–II LUAD in in training, validation and 
whole datasets. (A, C, E) Kaplan–Meier analysis for stage I–II LUAD patients between the low-risk and high-
risk. The x-axis is follow-up time, the y-axis is OS. The log-rank test indicated the higher risk scores were 
significantly correlated with worse OS (P < 0.05). (B, D, F) 1-, 3-, 5-year ROC curves of the 11-DNA methylation 
signature. Blue line, green line and red line represent 1-, 3-, 5-year ROC curves respectively.
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Identification of methylomics‑based signature. First of all, Univariate Cox regression analysis was 
conducted to screen the methylation sites associated with the OS of stage I–II LUAD patients. Then, the LASSO 
Cox regression analysis was performed via the screened methylation sites for the selection of the candidate 
methylation sites correlated with OS of stage I–II LUAD patients. Following this, the candidate methylation sites 
were analyzed by multivariate Cox regression analysis to determine the independent prognostic hallmark for 
OS of stage I–II LUAD patients. Eventually, an 11-DNA methylation signature was determined for the predic-
tion of OS stage I–II LUAD patients. Risk score models were developed on the basis of the 11-DNA methylation 
signature to calculate the risk score of each sample. The median risk score was set as the cutoff point. Patients 
with stage I–II LUAD were categorized into “high-risk” or “low-risk” cohorts based on a high and low score, 
respectively. Log-rank testing of the Kaplan–Meier curve was performed via the “survival”  package43 to assess 
the difference in OS of the two cohorts. ROC analysis was performed via the ‘survivalROC’  package44 and the 
area under the ROC curve (AUC) was employed to evaluate the predictive performance of the hallmark. The 
greater the AUC value of a hallmark, the better the predictive capacity of the marker. Unless otherwise noted, all 
curves were plotted using R (version 4.0.2$2020).

Gene set variation analysis (GSVA). To reveal the established biomarker-associated signaling pathways, 
we used a GSVA  package18 to evaluate DNA methylation risk score and enriched pathways activity conditions. 
The median risk score was set as the cutoff point to divide the patients into “high-risk” or “low-risk” cohorts. 
The exact pearson was drawn to analyze the correlations between enriched pathways and risk score. Significance 
was set as P < 0.05.

Construction of the nomogram. To improve the predictive value of established predicator for stage I–II 
LUAD patients’ OS, a nomogram was built via the ‘rms’ R  package45. The univariate and multivariate Cox pro-
portional hazard analysis were conducted on the basis of the methylation risk score and other clinical factors. 
Cox proportional hazard models was adopted to measure hazard ratios (HR) and corresponding 95% confidence 
interval (CI). We used the factors (P ≤ 0.05) from the multivariate Cox proportional hazard analysis to construct 
the nomogram. The nomogram was assessed based on C-index, ROC, DCA. The calibrate curve described the 
outcome of the nomogram, and the 45° line suggested the best prediction.

Figure 5.  Methylation risk score analysis of 393 stage I–II LUAD cases in the entire TCGA dataset. (A) 
Methylation risk score distribution against the rank of risk score. The red triangle represented the high-risk 
samples, the green ball represented the low-risk samples. (B) Survival status of stage I–II LUAD patients 
against the rank of risk score. The green ball referred to alive samples, the red ball referred to the dead samples. 
(C) Heatmap showed 11 methylation sites profiles in low- and high-risk groups. Each row of the heat map 
represented a profile of a methylation site.
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Figure 6.  Exploration of the 11 DNA methylation signature-based biological pathways. (A) Heatmap of top 20 
enriched pathways associated with high risk group. Each row of the heat map represented a pathway and each 
column represented a stage I–II LUAD sample. (B) Correlation graph between risk scores and top 20 pathways. 
Each red ball represents a pathway, and each transverse line represents one sample. The score characteristic of 
each sample was shown in the graph.
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Table 2.  Univariate Cox regression analysis and multivariate Cox regression analysis outcome on the basis of 
risk score and other clinical factors.

ID

Univariate Cox analysis Multivariate Cox analysis

HR HR.95L HR.95H P value HR HR.95L HR.95H P value

Score 3.0302306 2.296882692 3.99772146 4.44E − 15 2.59759935 1.9090689 3.5344572 1.24E − 09

Cancer status 0.4924994 0.365731098 0.663207593 3.09E − 06 0.60389188 0.4468942 0.8160442 0.001026

Age 1.0486502 1.022854165 1.075096827 0.0001854 1.04561408 1.0169743 1.0750604 0.001645

Ethnicity 0.4618099 0.252547796 0.844467451 0.0121097 0.56260564 0.2980827 1.0618701 0.075942

Smoking number 1.0121688 1.00413782 1.020263986 0.002921 1.00730659 0.9979011 1.0168007 0.128261

Location 0.6257271 0.411043888 0.95253669 0.0287594 0.87308145 0.572785 1.3308156 0.527977

Sex 0.6849284 0.412997794 1.135906531 0.1425824 0.92573233 0.5377101 1.593759 0.780697

Race 1.6990724 1.099136566 2.626467912 0.0170644 1.06966614 0.660713 1.7317438 0.784103

Residual tumor 0.7152782 0.40245641 1.271250417 0.2534502

History 1.4308373 0.76004129 2.693663511 0.2670376

N 0.3970412 0.054727983 2.880458938 0.3609272

M 0.772249 0.442725232 1.347039772 0.3625725

Smoking history 0.9727666 0.769862071 1.229148509 0.8170547

T 1.0463717 0.637579911 1.717265142 0.8576759

Site 1.0012003 0.887959798 1.128882291 0.9843716

Figure 7.  In order to quantify the risk assessment and survival probability for individual stage I–II LUAD 
patients, a nomogram was developed in the entire TCGA dataset according to the 11 DNA methylation 
signature-based risk score, age and cancer status.
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Figure 8.  Analysis of the 11-DNA methylation biomarker-related nomogram in the entire TCGA dataset. (A) 
The horizontal axis stood for clinical factors, the vertical axis stood for the percentage of importance. (B) 1-, 
3-, 5-year ROC curves for the 11-DNA methylation biomarker-related nomogram. (C–E) referred to the 1-, 3-, 
5-year nomogram calibration curves, respectively. (F) The DCA for the nomogram. The net benefit was plotted 
versus the threshold probability. The red line represented the nomogram. The blue line represented the treat-all 
and the green line represented the treat-none.

Figure 9.  ROC curves illustrated the effectiveness of the methylation-related nomogram and a few known 
biomarkers in predicting the prognosis of stage I–II LUAD patients. The AUC in Rotunno et al. is 0.810, in Chen 
et al. (0.656), in Kuo et al. (0.802), in Wu et al. (0.940), in Sun et al. (0.765), in Zhao et al. (0.760), in Sun et al. 
(0.786).



12

Vol:.(1234567890)

Scientific Reports |         (2021) 11:9938  | https://doi.org/10.1038/s41598-021-89429-4

www.nature.com/scientificreports/

Ethics approval and consent to participate. Data obtained from the TCGA open-access database was 
collected from tumors of patients who provided informed consent based on the guidelines from the TCGA Eth-
ics, Law and Policy Group.

Consent for publication. All patients included in the TCGA public domain database consented for publi-
cation as detailed in [https:// cance rgeno me. nih. gov/ about tcga/ polic ies/ infor medco nsent].

Data availability
All data generated or analyzed during this study are included in this published article (and its “Supplementary 
Information” files).
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