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Single-cell RNA-sequencing (scRNA-seq) techniques provide unprecedented opportunities to investigate
phenotypic and molecular heterogeneity in complex biological systems. However, profiling massive
amounts of cells brings great computational challenges to accurately and efficiently characterize diverse
cell populations. Single cell discriminant analysis (scDA) solves this problem by simultaneously identify-
ing cell groups and discriminant metagenes based on the construction of cell-by-cell representation
graph, and then using them to annotate unlabeled cells in data. We demonstrate scDA is effective to
determine cell types, revealing the overall variabilities between cells from eleven data sets. scDA also
outperforms several state-of-the-art methods when inferring the labels of new samples. In particular,
we found scDA less sensitive to drop-out events and capable to label a mass of cells within or across data-
sets after learning even from a small set of data. The scDA approach offers a new way to efficiently ana-
lyze scRNA-seq profiles of large size or from different batches. scDA was implemented and freely
available at https://github.com/ZCCQQWork/scDA.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Single-cell RNA sequencing profiles gene expression of individ-
ual cells, allowing to detailly characterize multicellular organisms
than bulk RNA-seq [1–3]. While, given a scRNA-seq transcriptomic
data set, one challenge is to unsupervisedly find out distinguishing
features (or genes) for different cell populations [4,5]. In particular,
reliable features would greatly improve efficiency to annotate large
data sets or newly profiled cells [5,6].

Recently, a popular way is a two-step schema [7], i.e., firstly
identifying cell groups based on clustering approaches, then
obtaining discriminant genes between these cell groups. These
genes are usually referred to as marker genes [5]. For instance,
the pipeline of SC3 [8] is to first infer cell clusters, and then con-
duct binary comparisons (i.e., one cluster vs the remaining cells)
for selecting cluster-specific markers. SparseDC [9] model can
extract diverse types of marker genes with known cell labels based
on two-sample statistical theory. Unfortunately, this schema
roughly defines a stepwise solution, which ignores the inherent
correlations between genes and cells. Both results may be overfull
dependent on cell clustering and easily lead to biased analysis.
Meanwhile, group-level comparisons construct a separating line
or hyper-plane in the original data but are difficult to capture the
crucial information underlying heterogeneous structures. This
could largely depress their performances to discriminate cells from
new data sets.

Such issues thus turn the attention to those feature extraction
methods, which enable to discover a set of informative genes (or
metagenes) by preserving the supportive structure inherent in
data. Actually, many models are ever developed and widely used
for analogous problems in bulk RNA-seq [10,11]. For example,
principal component analysis (PCA), is directly borrowed to ana-
lyze scRNA-seq data sets [12], or modified to handle noisy data
(e.g., dropouts) in experiments [13]. Considering high heterogene-
ity among cells, some nonlinear methods, such as t-SNE [14] and
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SNN-Cliq [15], were also proposed. They aim to preserve local vari-
ations of data in a lower dimensional feature space and help
improve the visualization of natural cell groups, appearing more
viable for scRNA-seq profiles. However, there are two main short-
comings in these involved approaches: (i) they only retain part of
the data structures in new feature space, e.g., global linear struc-
ture (e.g., PCA) or neighborhood relationship (e.g., t-SNE), which
cannot take advantage of the full population heterogeneity; and
(ii) consequently the obtained features are usually ineffective for
annotating new samples. In most cases, these limitations further
require costly re-analysis when handling merged data sets, or
may take more time and memories with large amount of cells
(e.g., t-SNE).

To address such challenges in real applications, we propose a
novel model, which can unsupervisedly capture the overall rela-
tionship of cells and meanwhile obtain powerful discriminants
(metagenes) from scRNA-seq data sets. In particular, the cell-by-
cell relationship can be expressed as representations of multiple
neighboring cells [16,17], which provides information on the gross
(global and local) variabilities among the inherent cell types (Sup-
plementary note 1). The representation graph in our method is
more robust to noise and data heterogeneity in profiles [16], rather
than the pair-wise distances. Moreover, the metagenes are also
identified to best fit in with the full representation configuration.
These features carry optimal discriminative information, and can
be used to discriminate unlabeled cells from new dataset.

With the model, we made the analytic pipeline of single cell dis-
criminant analysis (scDA) for scRNA-seq data (Fig. 1). We separate
the whole data set into two parts: discovery (or old) set and vali-
dation (or new) set. On this basis, scDA implements two main
steps: identify data structures (cell quantitative affinities and cell
clusters) and discriminant features (metagenes) with the discovery
set, and then use them to label the cells in the validation set. Thus,
scDA can avoid unnecessary re-clustering, and is actually a combi-
national approach simultaneously performing both clustering and
classification. We demonstrate the effectiveness and efficiency of
our scDA on eleven scRNA-seq data sets involving different biolog-
ical systems and technologies.
Fig. 1. Illustrative scheme of scDA. (a) Identify cell affinities and discriminants from profil
discrimination matrix, which are solved through the formula using expression matrix o
define cell clusters in discovery data set. (b) Classify new samples from validation cohor
scDA implemented in two available ways: (i) unsupervised mode only with scRNA-seq
supervised mode, the prior cell annotations can help constrain scDA model either to obta
with the discriminant vectors and cell annotations). (For interpretation of the references t
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2. Materials and methods

2.1. Processing of scRNA-seq expression profiles

Ten scRNA-seq data sets were selected for method evaluation in
total (Table 1); we kept the originally normalized data from corre-
sponding researches. All these datasets were log-transformed after
adding a pseudo count of 1, and further preprocessed by different
approaches for different feature measurements.

With the four datasets from Camp to Pollen, we considered the
effect of dropouts on clustering and classification, and generated
series of corresponding data subsets with different numbers of
genes. Since the sparsity rate is empirical and uncertain, we simply
filtered out those genes when a gene has more than a certain pro-
portion of zeros (i.e., 0.1 � 0.9 by 0.1) across cells. Thus, these
benchmarks were expanded to 4� 9 data sets.

With pancreas datasets, we tested clustering and classification
performances of scDA within and across datasets. For the first pur-
pose, we generated two large datasets, namely Large1 and Large2.
Large1 is a mix of 4 profiles including Lawlor, Segerstolpe, Muraro
and Enge. Large2 is Baron. The raw data sets were firstly prepro-
cessed, including quality control and normalization. Then Large1
sets are further batch corrected. All the process steps are similar
as Haghverdi’s work[18] except that we use all the genes rather
than highly variable genes when removing batch effects of Large1.
We abandoned these ‘Unknown’ cells and retained the other six
types of cells in all. We applied scDA to Large1 under sparsity rate
of 0.3 and Large2 under 0.1 to make a similar number of gen-
es � 10,000. The specialized experiments can be used to test the
robustness of scDA as well as to evaluate intra-dataset classifica-
tion performances. For the evaluation of inter-dataset classification
performances, we keep all the common (i.e., 15,446) genes across
the five pancreas datasets for fair comparison instead.

We also used the Galen data for classification evaluation across
different subjects. The whole amount of genes, i.e., 27,672, passing
the filtering thresholds in the original paper are used in our work.
1 M dataset (obtained from https://support.10xgenomics.com/
single-cell-gene-expression/datasets/1.3.0/1M_neurons) is mainly
es of discovery cohort. Matrix Z and P respectively denote representation matrix and
f X. The representation matrix can be converted to similarity matrix, then used to
t (i.e., X*) based on the obtained cell clusters and discriminants. Red stars highlight
dataset; (ii) supervised mode with data and given labels of cells in training set. In
in features (i.e., representation and discrimination matrices) or build classifiers (i.e.,
o colour in this figure legend, the reader is referred to the web version of this article.)
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https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons


Table 1
Datasets for scDA evaluation.

Datasets k N Unit Description Protocol Reference

Camp 7 777 FPKM Human liver bud SMARTer Ref. [33]
Goolam 5 124 CPM Mouse embryo Smart-Seq2 Ref. [34]
Li 9 561 FPKM Human cell line SMARTer Ref. [35]
Pollen 11 301 TPM Human cell line SMARTer Ref. [36]
Lawlor 6 597 RSEM Human pancreas Smart-Seq2 Ref. [37]
Segerstolpe 6 1,812 RPKM Human pancreas Smart-Seq2 Ref. [38]
Muraro 6 1,940 Count Human pancreas CEL-Seq2 Ref. [39]
Enge 5 2,174 Count Human pancreas Smart-Seq2 Ref. [40]
Baron 6 7,742 Count Human pancreas inDrop Ref. [41]
Galen 15 4,677 CPM Human bone marrow aspirate Seq-Well Ref. [42]
1 M 20 1,306,127 Count Mouse brain 10X Genomics Chromium –

k: number of groups provided by the authors.
N: number of cells.
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used to test time efficiency and computing capacities of scDA,
where top 2000 highly variable genes are remained for simplicity.
2.2. Method overview

Given the processed scRNA-seq data (e.g., from discovery set),
scDA could construct two matrices, defined as the ‘representation
matrix’ and ‘discrimination matrix’ respectively, to accomplish
two tasks: characterizing cell types, i.e. clustering in discovery
set (Fig. 1a), and predicting new cells in unannotated set (Fig. 1b)
based on the model-determined or prior-given labels, i.e., identi-
fied in unsupervised and supervised modes (details in Sections
2.3–2.5).

The ‘representation matrix’ describes the inherent relationship
of cells, available for cell clustering, and the ‘discrimination matrix’
contains representation-learning-based features, qualified for clas-
sification. In fact, the key issue of scDA approach is to solve the two
matrices that involves three basic assumptions: (i) different cell
populations belong to distinct biological subspaces or processes,
(ii) each cell can be mathematically represented by other cells with
similar biological properties, and (iii) the intrinsic heterogeneity as
described in (i)-(ii) can be approximately reconstructed on a com-
mon feature subspace.

Under assumptions (i) and (ii), which cover global differences
and local similarities of underlying data, the cell-by-cell represen-
tation graph can be built based on expression profiles by subspace
segmentation theory [17,19]. It presents as a sparsely filled matrix,
where the coefficients are equal to zero if cells are faraway or in
different clusters (Supplementary note 1), and reveals implicit sub-
spaces of various cell populations. Note that representation-based
measurement not only describes cell affinities as well as pairwise
metrics, but also has robust performances against data biases or
noises from scRNA-seq experiments (Fig. 2 and Supplementary
Figs. S1–S4). Broadly, the graph quantitatively defines intrinsic
heterogeneity from cells, which is of great importance to obtain
discriminant features.

While, it is usually considered that the number of features
inherent in data is much smaller than the total number of profiled
genes [5,18]. As assumed in (iii), our dimensionality reduction is
constrained by the obtained representation structure (Supplemen-
tary note 2). Based on metric-learning theory [20], this approach
aims to project the original data onto a subspace which best fits
in with the detailed configuration of within- and between- groups
[21]. Therefore, the projection matrix contains the information of
underlying cell differences and has more discriminating power
on new objects than PCA or t-SNE.

However, it is generally impossible to simultaneously obtain
the optimal solutions of the two matrices. Inspired by the pheno-
typic and feature (metagene) correlations, here we design an alter-
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nately iterative optimization algorithm, which is guaranteed to
converge theoretically [17,19]. Our method is robust to a variety
of the hyperparameter settings (Supplementary Figs. 5 and 6).
We emphasize that the whole solving process forms a data-
driven closed loop to alternately compute the cell-by-cell and
feature-by-gene matrices until it reaches convergence. The loop
ensures scDA could unbiasedly derive inherent information from
(discovery) data sets.

Then, with the optimal representation matrix, scDA is capable
to estimate the involved cell types through a graph-based cluster-
ing method, e.g., spectral clustering [22]; and classify the unlabeled
cells to the acquired assignments based on discriminant vectors,
e.g., KNN classifier. The hybrid approach dispenses with re-
analysis, appearing more feasible to deal with large amount of cells
within or across datasets. We also provide supervised mode to
accommodate valuable prior-knowledge from experiencers to
obtain more reliable annotations. Regardless of running modes,
the performance of scDA is considered to be closely related to
the characteristics of these two matrices.

2.3. Optimization problem of scDA

Suppose we describe a scRNA-seq data with g biological mea-
surements and N samples as a matrix X ¼ x1; x2; � � � ; xN½ �. scDA
could learn the representation matrix Z and the discrimination
matrix P from the input data matrix by solving the following objec-
tive function:

min
Z; P

k Z k� þ k k PTX - PTXZ k2;1

s:t:
PTP ¼ I

ZT1 ¼ 1

Zij ¼ 0; i; jð Þ 2 X
�

8><
>:

ð1Þ

where Z ¼ ½z1; z2; � � � ; zN � is an N � N matrix containing all the coef-
ficient vectors of xi 1 � i � Nð Þ. j �j jj� represents the nuclear norm of
the matrix, which is the sum of singular values. The projection

matrix P ¼ ½p1;p2; � � � ;pd� 2 Rg�d denotes the d discrimination vec-
tors transformed from all the profiled genes and l2;1-norm is used
to measure the reconstructive error matrix due to its robustness
[19]. In the constraint conditions, I denotes the identity matrix,
indicating P is an orthogonal subspace without redundancy. Here
1 is an all-one vector for normalization. And X is the complement
of X, where X is a set of edges between the samples in a predefined
adjacency graph. For example, if xi and xj are not neighbors, then we

have i; jð Þ 2 X. Thus, the third constraint can guarantee the preserva-
tion of local structure underlying data. In unsupervised mode, we
use K nearest neighbor (KNN) algorithm with pair-wise Euclidean
distances to determine the sample adjacency graph; in supervised



Fig. 2. Comparative performances of scDA approach to existing methods. (a, b) Adjusted Rand index (ARI) values of clustering (a) and classification (b) for small data subsets
in scDA supervised mode at different sparsity rates, e.g., from 0.8 to 0.2 by 0.2. Performances at other sparsity rates are seen in Supplementary Figs. 1 and 2. Clustering and
classification are respectively abbreviated to clu and cla, which are used as footnotes in Figs. 2, 4 and Supplementary Figs. 1–3, 5, 9, 10, 13. Bars with zero height indicate NA
values. Error bars in (b) indicate upper 95% confidence interval of cross-validation results.
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mode, the local constraint is fully or partly determined by prior-
knowledge, e.g., known cell labels. While, parameter K is actually
free to set and besides it, the equation (1) have a tuning parameterk
to balance the two terms. They both can be selected according to
data properties, or settled empirically.

Next, we focus on the solution of the objective function. Consid-
ering either of the objective terms can be solved separately, we
design an alternately iterative algorithm to compute one matrix
by fixing the other one. The splitting problems can then be seen
as follows.

(1) Solving the optimal matrix Z by fixing P
Let’s convert the Eq. (1) to an equivalent form when P is fixed:

min
Z; E

k Z k� þ k k E k2;1

s:t:
PTX ¼ PTXZ þ E

ZT1 ¼ 1

Zij ¼ 0; i; jð Þ 2 X
�

8><
>:

ð2Þ

where E presents the reconstructive error matrix. It can be solved
via modified low-rank representation algorithm [17] (Supplemen-
tary Note 1).

(2) Solving the optimal matrix P by fixing Z
When Z is given, the substantial problem becomes as:

P� ¼ argmin
P

k PTX � PTXZ k2;1; s:t: PTP ¼ I ð3Þ

The problem (3) can be solved using l2;1-norm minimization
technique [23] (Supplementary Note 2).

2.4. scDA clustering for discovery set

Given representation matrix Z, the corresponding affinity

matrix W is obtained by W ¼ Zj þ jZT
��� ���� �

=2. With the affinity

graph, we used spectral clustering algorithm (e.g., RatioCut [24])
to identify the underlying groups of cells. And the number of
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groups, i.e., k, is estimated in this work by the eigengap heuristic
[22], or determined by other approaches, e.g., silhouette coeffi-
cients [25]. If Z is constrained fully by known cell labels, clustering
step can be omitted, e.g. study with Galen.

2.5. scDA classification for unannotated set

For 4 small data sets, we adopted five-fold cross-validation
experiments. All the cells in data are randomly separated into five
folds, while each fold is treated as the testing set and the remaining
folds as the training set. We use a set of discriminant vectors
obtained from training set and (i) inferred labels with representa-
tion matrix or (ii) the gold-standard cell labels to build KNN classi-
fiers, i.e., classifications in unsupervised /supervised way, for
annotating testing cells. Additionally, the prediction accuracy is
impacted by the number of discriminant vectors. We pick the first
d eigen vectors of the discrimination matrix P, as they are ordered
ascendingly by the eigen values.

For pancreas data sets in Results section, we have small discov-
ery subsets, of which (i) the cell number ranges from 3% to 10% of
all the cells from large datasets for classification intra-datasets, (ii)
less than 10% size of Baron for classification cross-datasets, and the
remaining cells as validation subsets. Under the same sizes, the
paired subsets were randomly generated for 100 times. At every
time, we randomly selected the same proportion of cells from all
the six cell types to guarantee a full learning with training sets.
Then, the classification experiments in unsupervised /supervised
way are similar to the above descriptions in small data sets.

For 1 M dataset, we firstly run PCA and get the 2,000 medoids
with 50 PCs as discovery landmarks for clustering, and then com-
pleted classification step.

2.6. Methods comparison

SC3 (version 1.14.0), t-SNE (package Rtsne version 0.15), Seu-
rat (version 2.3.4) and SparseDC (version 0.1.17) were also



Fig. 3. Characteristics of representation and discrimination matrices from scDA with small data sets. (a, b) Illustration of representation matrices (a) and projected data (b)
from Fig. 2a. Column-side colors indicate the reference cell types provided by the original authors. Sample orders are the same in (a) and (b). The optimal groups estimated by
the largest eigen gap are separated by black vertical lines in (b). The top discriminants (eigen vectors) occupying 5% of the total number of involved cells, were selected and
marked according to eigen values. (c, d) Discriminative abilities of the example discriminants to separate model-identified cell populations between the most distant pairs (c)
or neighboring groups (d). DDS, discrimination score for distant groups; NDS, discrimination score for neighboring groups (see Methods). Discrimination scores smaller than 0
are not shown. Fitness curves were created under ‘loess’ regression. P-value was calculated using Wilcoxon test.
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applied to the small data sets, where all four are to benchmark
cell clustering, and three for classification except t-SNE. For
SC3, the default parameters provided by the author are used
for clustering and marker-genes identification. For t-SNE, given
the existing cell types in each data set, we took the expected
smallest amount of cells as its perplexity parameter, and the pro-
jected data are clustered following k-means. For Seurat, we chose
the improved PCA-based clustering pipeline as representative
method from several packaged dimensionality reduction models.
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For SparseDC, we randomly divided the cells into two groups as
it requires two conditions before identifying cell types and the
related marker genes. Note that for SparseDC we only selected
the cell type-specific genes for classification. The number of cell
clusters is inferred by the default functions for SC3 and Seurat,
or directly set as original group number for SparseDC and t-
SNE. The whole sets of the identified marker genes are used
when built corresponding KNN classifiers for SC3, Seurat and
SparseDC.



Fig. 4. Application of scDA on two large data sets. (a) Clustering (for discovery cohort) and classification (for validation cohort) performances in unsupervised manner with
trained datasets of different sizes. For each data set, random sampling was repeated 100 times to construct the discovery sets at certain sampling rates, depicting the
percentage of cell amount in total. The validation set is the rest dataset with removal of discovery set. (b) ARI difference (i.e., mean jDARIj	 s.e.) between clustering and
classification performances from Fig. 4a. (c) Classification performance with construction of classifiers using reference labels. The dashed gray line indicates ARI of 0.9. (d)
Enrichment results of marker genes with discriminant vectors from Large1 pancreas dataset. Marker genes in Fi. 4 and Supplementary Fig. S12 are obtained from CellMarker
database [28]. The top 5% dimensions (or discriminant vectors) of discrimination matrix is used for enrichment analysis. Discriminant vectors were ascendingly sorted
according to the eigen values. The visual example is selected owing to the highest clustering accuracy at sampling rate of 8% with Large1 dataset (k = 40). Each dot indicates
enrichment significance.
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2.7. Evaluation metrics

We used two metrics to evaluate the performances of scDA, one
is adjusted Rand index (ARI) and the other is discrimination score
(DS).

ARI is used to quantify the similarity between the reference
labels and the clusters/predictions obtained by scDA and other
involved methods, as the cell labels were known or ever inferred
by the authors in all the applied data sets. For n objects, there
are two groups denoted as a and b, and the relationship of the
two groups can be summarized by a contingency table. Each entry
of the table stores the number of common observations between a
and b. Given the table, the ARI is calculated as

ARI ¼
P

ij

nij

2

� �
� P

i

ai
2

� �P
j

bj

2

� �� �
=

n

2

� �

1
2

P
i

ai
2

� �
þP

j

bj

2

� �� �
� P

i

ai
2

� �P
j

bj

2

� �� �
=

n

2

� �

where nij is the entry at the ith row and jth column in the contin-
gency table, ai, bj are the marginal sums for the corresponding
groups, and () represents a binomial coefficient.

The definition of DS is inspired by the fisher’s discriminant rule
[26] and a measure of group coherence, i.e., silhouette coefficient
[25]. We use it to assess how effective each projection vector (fea-
ture) is to discriminate a given pair of groups, for instance, denoted
as a and b. With the cell i in a, let a(i) be the median distance of cell
i to all other cells within a, and b(i) denotes the median distance of
cell i to all cells in b. The DS for cell i is defined as:

dsðiÞ ¼
1� aðiÞ

bðiÞ ; if aðiÞ < bðiÞ
0; if aðiÞ ¼ bðiÞ
bðiÞ
aðiÞ � 1; if aðiÞ > bðiÞ

8>><
>>:
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For simplicity, we further define distant DS (DDS) to measure
the separations between the most distant groups, and neighboring
DS (NDS) for neighboring groups. Both the scores range from + 1 to
�1. And its median value over all the cells can then be used to mea-
sure the discriminative power of the examined feature to separate
different groups. With the value bigger than 0, the feature could
make positive contributions to distinguish groups. While if the
value is closed to 1, it suggests that on the projected axis (or direc-
tion), cells are grouped tightly within respective clusters and far
from the other clusters (similar to the Fisher’s ratio of between-
to within-group distance), then indicates that the projection fea-
ture brilliantly discriminates cells from the two groups.

2.8. Biological insights

We adopted GSEA approach [27] to explore the biological signif-
icance of discriminant features (metagenes). Features are sorted in
a descending order according to the absolute scores of P (i.e., dis-
crimination matrix), and gene sets of certain biological functions
or sources are then tested. After FDR correction, the significant
gene sets, e.g., P-value � 0:05, can reveal the true biological infor-
mation contained in the features. For example, when we applied
scDA to the large data sets, we used the marker genes of known
pancreatic cell types from CellMarker database [28] to determine
whether the features are interpretable by the prior knowledge. It
is implemented by phenoTest package (version 1.34.0).
3. Results

3.1. Study on small benchmark datasets

To exploit the characteristics of representation and discrimina-
tion matrices identified by scDA, we considered four small
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scRNA-seq datasets with well-defined cell types and different
sequencing protocols (Table 1). As the representation graph is used
to identify cell groups, and with discriminant vectors together to
predict labels of new cells, we simply evaluate the two types of
matrices by clustering/classification accuracies. We also conducted
robustness tests using series of data subsets with different sparsity
rates (see Methods). Note that both matrices and clustering/classi-
fication performances are assessed by adjusted Rand index (see
Methods), which scores closer to 1 when the tested labels are sim-
ilar to gold-standard ones. Here, we considered four established
methods: SC3, t-SNE, Seurat[29] and SparseDC for fair
comparisons.

In respect of clustering, scDA performed generally better than
other involved methods, or pretty close to the best results
(Fig. 2a and Supplementary Fig. S1). It is remarkable that scDA
was the most stable method with respect to the percent of drop-
outs. Overall, the clustering achievements reveal that scDA can rec-
ognize the inherent data structures, and this feature is crucially
important as the discriminative projection learns from such repre-
sentation configuration (Fig. 1a). To classify unlabeled cells with
discriminant vectors, scDA outperformed the three tested models
(t-SNE not included): stable and accurate across the spectrum of
input gene sets (Fig. 2b and Supplementary Figs. S2, S3). While,
the second best method is SC3, which uses marker genes from bin-
ary classifiers. But the individual markers are less informative to
discriminate different cell clusters with the increase of sample
size; scDA showed more obvious superiority, such as on Li and
Camp data sets, in both unsupervised and supervised modes. Fur-
thermore, we compared clustering time cost of the best two algo-
rithms and found scDA (implemented in python) also computes
faster than SC3 (Supplementary Fig. S7).

In addition to these simple assessments, the cell-by-cell repre-
sentation matrices could provide more affinity details than plain
separations (Fig. 3a). Their illustrations appear nearly block-
diagonal, indicating cells are tightly grouped in the identified clus-
ters. Such ‘‘block” structures even can be seen in individual dimen-
sions of the discrimination space (Fig. 3b). Here we use
discrimination score (DS) to evaluate how powerful each single
feature can discriminate different cell types (see Methods). We also
compared scDA to principal component analysis (PCA), which also
yields orthogonal rotations but without restrictions of cell rela-
tions. According to the scores, these projection vectors derived
from scDA are overwhelmingly more favorable for distinct cell
populations (Fig. 3c, d). Together with the minor differences
between clustering and classifications (Supplementary Fig. S4),
all the results showed that the scDA projection space with the
preservation of overall-relationship is indeed spanned by remark-
able discriminant vectors.

Above all, scDA model can unsupervisedly recognize the intrin-
sic sample patterns, and also obtain a number of powerful discrim-
inants. These characteristics allow us to apply scDA to large scRNA-
seq profiles or across datasets.

3.2. Performance within large benchmark datasets

Inspired by the performance of scDA on small data sets, we
evaluated the applicability of scDA with two large scRNA-seq pro-
files denoted as Large1 and Large2 (see Methods). Both data sets
are generated to study human pancreas, a highly heterogeneous
tissue with several determined cell types (Supplementary
Table S1). The difference between them is that some cell groups
inherent in the mixed data set (after batch correction), i.e., Large1,
present less coherent than those in the single-sourced Large2 (Sup-
plementary Fig. S8), thereby enabling to make comparative and
contrasted evaluations with datasets in different qualities. Further-
more, we expected capacity of scDA to use small subsets of cells to
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discriminate the majority of cells, and thus conducted random
experiments varying different sample sizes of discovery set (see
Methods). Here, we use clustering ARI, classification ARI and their
agreement to assess the utility of scDA.

Firstly, we did unsupervised clustering with training data sets,
and used the inferred labels to classify the other unlabeled cells.
The results show that classification performance has strong corre-
lation with clustering qualities in both large datasets (Fig. 4a and
Supplementary Figs. S9, S10). However, more misclassifications
were made when model learnt data patterns from very few sam-
ples, e.g., less than 5% of the total cells. This is probably caused
due to the unbalanced distribution of given cell types (Supplemen-
tary Table S1), and small sampling ratio is more likely to obtain
invalid training sets. Moreover, such mistakes still may occur even
if sampling ratio increased in the dataset of Large1. Using this
mixed dataset, we can also see more variances of ARI difference
(Fig. 4b). The unsatisfactory performances may be subject to data
qualities, for Large1 is multi-sourced and some confounding effects
may still exist even after batch correction. While such situations
get greatly improved to obtain accuracies and consistencies very
close to those outcomes in Large2 when we use more training cells,
e.g., 8% but still less than 10% of the total cell amount for Large1
data (Fig. 4b). All the results suggest the robustness of scDA to data
coherences.

Furthermore, we then constructed the classifier with the refer-
ence cell labels instead, and also observed the classification can
achieve comparably reliable outcomes between Large1 and Large2
when training the classifier with cells occupying 8% � 10% of total
sample size (Fig. 4c). Our discriminant vectors show fair discrimi-
nation capacities to separate the farthest or closest cell groups
(Supplementary Fig. S11) and these metagenes are found highly
enriched with the known cell markers (Fig. 4d and Supplementary
Fig. S12). All the results indicate the discrimination matrix can cap-
ture true biological variances inherent in scRNA-seq datasets; thus,
with the matrix, scDA can well predict the unlabeled cells in unsu-
pervised (Supplementary Fig. S10) or supervised (Fig. 4c) manners.
Besides, we were able to analyze a very large 10X dataset with
more than 1.3 million cells and 20 clusters, generating results in
good agreement with its original annotations (Supplementary
Table S2). Taken together, the above analyses show excellent gen-
eralization of scDA, enabling the model to use a handful of cells to
well predict the labels of abundant cells within data sets.

3.3. Classification evaluation across datasets

We next tested the prediction ability of scDA across datasets as
batches or batch effects are really common between different
scRNA-seq experiments [30], e.g., from different labs, sequencing
protocols or subjects. An approach, which could handle cross-
dataset classification, is more preferred and practical. We used
the human pancreas and bone marrow aspirate datasets (Table 1)
for inter-dataset evaluation, and made directional classifications
where to use small datasets to predict large datasets.

We firstly tested classification performance of scDA across labs/
protocols with five pancreas data sets. Specially, we made extreme
tests to have scDA build classifiers from cells no more than 10% of
Baron, the largest of pancreas profiles, and randomly divided all
other datasets into different subsets, i.e., 2 folds for Lawlor, 3 folds
for Segerstolpe, Muraro and Enge. Applied to the subsets, scDA
obtained good cell annotations within each dataset in unsuper-
vised way (Supplementary Fig. S13), consistent with our findings
in previous sub-section. While, we then built classifiers with iden-
tified discrimination matrix and cell gold labels, and summarized
their performances in Fig. 5a. All the classifiers performed well
on predicting Lawlor’s dataset due to its small amount of cells.
However, the classifiers originated from Enge subsets predicted



Fig. 5. Classification performance across pancreatic datasets. (a) Heatmap of cross-dataset classification ARI values. Each dataset in discovery set is randomly divided into 2 or
3 folds to unsupervisedly get representation and discrimination matrices. Classifiers with prior-provided cell annotations are to classify the whole cells in each prediction
dataset. Classification ARI values are shown explicitly. Blue striped rectangle means NA value. (b, c) Visualization of trained and predicted cells in 3-dimenstional
discrimination space. Fold2 of Muraro is used to train classifier for classification of other two Muraro folds in (b); then also to predict cell labels across Lawlor, Segerstolpe,
Enge and Baron data sets in (c) Each point in graph represents a cell and colored by two annotation categories: data source and cell type. Cells are colored by given labels in
training fold and predicted labels in testing datasets. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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the other datasets not as well, but still acceptable (ARI
 0:79), as
the rest classifiers (Fig. 5a). This may be because Enge is the only
dataset that doesn’t contain PP (pancreatic polypeptide) cells (Sup-
plementary Table S2) and produces incomplete classifiers. While,
from Lawlor, Segerstolpe, Muraro subsets, the classifiers were the-
oretically unbiasedly trained, and performed much better on
across-dataset classifications, even on predicting the largest data-
set, i.e., Baron, with unsupervised cell annotations (Supplementary
Fig. S14). We then used principal component analysis to project
our discrimination space onto three-dimensional visualization
space (Fig. 5b and c), which clearly shows the ‘‘shifted gaps” across
the involved datasets. These gaps explicitly reveal external differ-
ences between batches. The results indicate that the scDA discrim-
ination space preserves biological variances underlying trained
dataset, therefore it allows to label unannotated dataset of the
same tissue or similar condition in regardless of batch effects.

We next tested classification performance of scDA across sub-
jects with bone marrow (BM) aspirate dataset, which contains 4
human donors named as BM1 to BM4 according to the ascending
order of available cell amounts. These sets have a total of 15 cell
types belonging to 4 developmental lineages (Supplementary
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Fig. S15). To guarantee that the training set has at least 10 cells
for one cell type, we trained with BMs1–3, i.e., about 25% the size
of BM4, to classify cells in BM4. We first obtained corresponding
discrimination matrix to the representation matrix, which was ini-
tially constrained by KNN using given cell annotations of BMs1-3.
The top 14 discriminant vectors contribute most to different types
of cells (Fig. 6a), thus are then used to build the classifier for BM4.
Subsequently, we compared the classified assignments with the
original annotations (Fig. 6b). Around 83.0% of cells are classified
correctly according to their cell types. Among the mis-classified
cells (17.0%), 13.0% are assigned to their related cell types within
the same lineages, or predicted between HSC/Prog and other com-
mitted progenitor cells (2.4%), early Ery and proB, GMP (1.0%). It
means that our mis-classifications mainly come from predicting
the intermediated states or cell types with differentiation potency
along the continuum of cells. Besides, we can also observe the
putative differentiation relationships from undifferentiated cells
to other lineages with our discrimination space (Fig. 6c and Supple-
mentary Fig. S16). And the expression of marker signatures also
supports our classification performance across different donors
(Fig. 6d).



Fig. 6. Classification performance using subjects of BMs1-3 to annotate BM4. (a) Scatter chart of discrimination scores of top 20 discriminant vectors. We select the top
discriminants by: (i) before the steep drop of median DDS, and (ii) with median NDS bigger than 0. (b) Prediction comparison for 3,738 hematopoietic cells in BM4. The square
of heatmap represents the ratio of cells in prediction class over all cells of the same annotation. (c) Visualization of BMs1-4 in 3-dimenstional discrimination space. Dashed
lines with arrows imply committed lineages from undifferentiated to mature states, which are inferred by cell labels (Supplementary Fig. 16). (d) Expression heatmap of 55
selected cell-type-specific genes (rows) across our annotated cell classes (columns). The median expression was calculated for each cell group. HSC: Hematopoietic stem cell;
Prog: Progenitor; early Ery: Early erythroid progenitor; late Ery: Late erythroid progenitor; pro B: Progenitor B cell; B: Mature B cell; Plasma: Plasma cell; T: Naïve T cell; CTL:
Cytotoxic T Lymphocyte; NK: Natural Killer cell; GMP: Granulocyte-macrophage progenitor; pro Mono: Promonocyte; Mono: Monocyte; pDC: Plasmacytoid dendritic cell;
cDC: Conventional dendritic cell.
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Overall, the evaluation of cross-dataset classification perfor-
mance revalidates the effectiveness of our discrimination matrix
to predict large amount of cells with small dataset. The discrimina-
tion space embodies inherent information from discovery dataset,
that is, it is capable to overcome batches or batch effects for new
dataset. Meanwhile, our approach allows to accommodate more
prior knowledge, making the results of great biological
interpretation.

4. Discussion

Identifying genes (or metagenes) to discriminate different cell
populations is effective to annotate large amount of cells within
or across scRNA-seq data sets. The challenge is that cell states
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are temporally and spatially heterogeneous but always unknown
in biological systems. While, existing methods usually adopt (i)
label-based discrimination approaches, e.g., scID [31], which needs
a reference annotation to identify cluster or cell type specific
genes; or (ii) unsupervised dimensionality reductions, e.g., PCA, t-
SNE, to learn hidden structures from unlabeled cells. Supervised
discrimination methods can be used to infer unlabeled cells in val-
idation datasets, but limited to the biological variances and cell
compositions underlying the discovery dataset. While, unsuper-
vised methods transform genes to metagenes, generally without
the ability to transfer cell labels between different datasets. In fact,
neither of the two types accounts for overall affinities inherent in
multiple cell populations, thereby easily resulting in misclassifica-
tion on new data. We demonstrated that our scDA method is able
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to successfully achieve powerful discriminant features in both
unsupervised and supervised manners using eleven scRNA-seq
data sets.

The notable advantage of scDA is that the model finds out dis-
criminant features based on cell-by-cell representation graph.
The graph quantitatively reveals both local (within cell groups)
and global (across different groups) variations in data sets, and is
robust to data heterogeneity. scDA features learnt from full repre-
sentation configuration, accommodate affinity differences between
any pairs of cells, and present more specific for cell discrimination.
Moreover, scDA uses an alternately iterative solution to take
advantage of the inherent correlations between samples and fea-
tures. Such approach makes our model data driven and can correct
the obtained information from data sets. The optimal results
become reliable when considering the underlying heterogeneity
across profiled cells.

We demonstrated that scDA accurately predicts plentiful unla-
beled cells after obtaining discriminant metagenes and estimating
potential cell types from a small amount of cells, such that unnec-
essary re-analysis can be avoided for large studies. The differences
between estimation and prediction are proven quite small, sug-
gesting that scDA is flexible to only implement the objective of rec-
ognizing cell populations for those small or finished studies.
Moreover, the separable pipeline of scDA adopts spectral clustering
and KNN classification in this work, but it also allows integrations
of other useful approaches for scRNA-seq data, for example, hierar-
chical clustering or support vector machine algorithm. Theoreti-
cally, even the representation matrix of core model can be
alternatively initialized (rather than KNN graph), e.g., with prior
knowledge of cell groups, which helps to obtain more interpretable
outcomes. Its potential scalability would deal with different prac-
tical issues and thus be well in conjunction with other information
or analytical procedures [32].
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