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Application of combinatorial optimization
strategies in synthetic biology
Gita Naseri 1✉ & Mattheos A. G. Koffas 2,3,4✉

In the first wave of synthetic biology, genetic elements, combined into simple circuits, are

used to control individual cellular functions. In the second wave of synthetic biology, the

simple circuits, combined into complex circuits, form systems-level functions. However,

efforts to construct complex circuits are often impeded by our limited knowledge of the

optimal combination of individual circuits. For example, a fundamental question in most

metabolic engineering projects is the optimal level of enzymes for maximizing the output. To

address this point, combinatorial optimization approaches have been established, allowing

automatic optimization without prior knowledge of the best combination of expression levels

of individual genes. This review focuses on current combinatorial optimization methods and

emerging technologies facilitating their applications.

In the past decade, synthetic biologists have built an impressive collection of elements and
tools (genetic sequences performing defined functions such as promoters) and combined
them to achieve circuits with more advanced functions e.g. transcriptional regulation. These

circuits are now being combined to design regulatory circuits with complex performance, such as
logical gates1, RNA riboswitches2,3, oscillators4, and recorders5.

However, despite great developments of cutting-edge synthetic biology tools, engineering
microorganisms for industrial scale production is still a challenging effort, even for well-known
metabolic pathways6. Often, multiple genes must be introduced into the host and expressed at
appropriate levels to achieve the best possible output. Due to the enormous complexity of living
cells, it is typically unknown at which level heterologous genes must be expressed, and to which
level the expression of host-endogenous genes must be altered (if not deleted), to accomplish the
goal7. Therefore, synthetic biologists aim to develop computational tools that can allow pre-
diction of the performance of an assembly or an entire recombinant microorganism8,9. However,
results from the computational analysis typically require validation through further wet-lab
testing. This difficulty principally stems from the nonlinearity of biological systems10 and low-
throughput characterization methods11. Furthermore, it is not always clear how to control
noise12 and how to transfer the functionality of engineered elements between organisms7.
Moreover, tweaking multiple factors can typically be critical to obtain an optimal output in a
biological system13. Those may include overall structural state of chromatin and its domains14,
the strength of transcriptional regulators controlling gene expression8,15, transcriptional termi-
nators16–18, ribosome binding sites (RBS), biochemical properties of the protein(s) encoded by
the recombinant genes19–21, the availability of cofactors for the correct functionality of
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enyzmes22,23, the genetic background of the host24–26, and the
expression system itself (plasmid-based vs. chromosomal inte-
gration)27.

To overcome these issues, two types of optimization strategies
are available. The first one is “sequential optimization”, a classic
method to optimize pathway performance28. The sequential flux
maximization methodologies frequently utilize deletion of genes
encoding competing pathways29. However, deletion of a gene can
have broad physiological consequences that decrease cellular
growth and productivity. For example, different levels of ArgR
downregulation, achieved by CRISPR interference (CRISPRi),
resulted in two times higher growth rates of Escherichia coli
compared to deletion of ArgR30. However, increasing the pro-
duction rate of a heterologous product in a recombinant micro-
organism is complicated and narrowing the research to
debottlenecking strategies is too much of a simplification. For
example, extensive work has been conducted to investigate the
metabolism of the budding yeast Saccharomyces cerevisiae;
nonetheless, there is still little progress in industrial scale pro-
duction of high-value chemicals in this organism31. In one
example, 244,000 synthetic DNA sequences were recently
designed to uncover design principles of optimized translation in
the well-known prokaryotic host E. coli32. Although impressive,
this work provided little information about possible mechanisms
underlying the improved translation capacity.

Using sequential optimization, only one part, or a small
number of parts, is tested at a time, making the approach time-
consuming and expensive12,33 and successful engineering of
pathways is usually achieved only by trial-and-error7. Another
approach to circumvent these barriers is to establish pathway
“optimization” methods that do not require prior knowledge of
the optimal expression levels of each individual gene involved in a
multi-enzyme pathway. Several such methods have recently been
developed, such as the functional optimization of gene clusters34,
perturbation of the global transcription machinery35, genomic-
scale mapping of fitness modifying genes36, multiplex automated
genome engineering37,38, and “combinatorial optimization”.
Jeschek et al. defined combinatorial optimization as “multivariate
optimization” (in the context of metabolic engineering)7. The
combinatorial optimization allows the rapid generation of a large
number of diverse genetic constructs in short time7. Later on, to
achieve high-level production of metabolites, microbial strains in
a library that produce the highest level of a metabolite of interest
need to be identified (Fig. 1)39,40.

Here, we present recent advances in synthetic biology tools that
enable the development of complex libraries, and we summarize
combinatorial optimization strategies that have been developed
recently. Next, we discuss the application of barcoding tools to
facilitate tracking diversity to streamline combinatorial optimi-
zation techniques. Furthermore, we discuss the application of
“biosensors” for high-throughput screening used within the frame
of combinatorial optimization. We highlight development in
computational and machine learning methods to help generate
optimal constructs through minimizing or maximizing target
functions out of a defined subject. Finally, we outline applications
of combinatorial pathway optimization methods beyond meta-
bolic engineering.

From combinatorial optimization to efficient production
Synthetic biology tools41 and design principles (Fig. 2, black
arrow) are being used to accelerate development of combinatorial
optimization methods. The barcoding tools42 can next be used to
study the versatility of combinatorial optimization techniques at
DNA level (Fig. 2, gray arrow). However, the identification of
microbial strains in a library that produce the highest level of a

metabolite of interest often remains a laborious task, mainly due
to time-consuming metabolite screening techniques39,40. To
address this issue, the genetically encoded whole cell “biosensors”
and the laser-based flow cytometry technologies are combined to
transduce the production of chemicals into easily detectable
fluorescence signal (Fig. 2, blue arrow)5.

Generating combinatorial library. Combinatorial cloning
methods aim to generate multigene constructs from libraries of
standardized basic genetic elements such as regulators, gene
coding sequences, and terminators using a series of one-pot
assembly reactions8,39. In Fig. 3, we illustrated a tailor-made
pipeline for a complex combinatorial library generation. The
workflow starts with in vitro construction and in vivo amplifying
of combinatorially assembled DNA fragments to generate gene
modules. Terminal homology between adjacent assembly frag-
ments and the plasmids allows generating diverse construct in
single cloning reaction. In each module, the gene expression is
controlled by library of regulators39. To decrease the turnaround
time in bioengineering projects, CRISPR/Cas-based editing stra-
tegies are implemented for multi-locus integration of multiple
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Fig. 1 Schematic workflow for microbial factory optimization. Libraries of
pathway elements such as promoters (bent arrow), RBSs (chord), coding
sequences (arrow), terminators (“T”) are assembled to generate a
combinatorial library, in which the microbial members produce different
levels of the target metabolite. High-throughput techniques screen the
library for the optimized pathway variant. Consequently, the best producer
is used for large-scale production.
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groups of modules into loci, whereby each group is integrated
into a single locus of different microbial cells39. Sequential rounds
of cloning enable the construction of entire pathway in a plasmid.
The established plasmid can be either transformed into the host
(e.g. VEGAS method43) or be used for single- or multi-locus
integration into the microbial host genomes to generate combi-
natorial library (e.g. COMPASS39). Therefore, combinatorial
optimization projects require tools and methods to assemble parts
in genetic circuits, to change DNA sequences, and to integrate
DNA pieces into the genome of an organism31. Here, we discuss
two important synthetic biology tools: “advanced orthogonal
regulators” and “advanced genome-editing tools”, as well as the
recently established combinatorial optimization strategies.

Advanced orthogonal regulators. Constitutive promoters are
typically used to express heterologous genes in microbial cell
factories, but this is often metabolically burdensome as the for-
mation of the product competes with cell growth and prolifera-
tion8. Hence, auto-inducible (or self-induction) protein
expression systems were established to pair growth and induction
of recombinant proteins at desired time44. The system utilizes a
cell density-based control module that allows tight regulation of
the transcription of the recombinant gene; at low cell density, its
expression is negligible while at high cell density expression is
high. Such cell density-based control systems usually employ the
quorum sensing (QS) mechanisms from Vibrio fischeri imple-
mented in E. coli. However, these systems require the use of an

extra plasmid for the production of proteins under control of the
regulatory elements, which might be undesirable, particularly
when multiple genes must be expressed. Another way of con-
trolling the expression of regulators takes advantage of phage-
derived anti-CRISPR proteins that allow fine-tuning the activity
of dCas9-derived regulators at desired time points. The anti-
CRISPR molecule inhibits the binding of Cas9 protein to DNA.
This allows cells become resistant to further gene editing45. In
another work, β-farnesene, pantothenate (a metabolic precursor
of coenzyme A) was developed as a metabolic switch that effec-
tively postpones metabolic burden until an optimal time for
achieving maximal yield is reached46. Cultivation in media
lacking pantothenate removes the growth advantage of low-
producing mutants, resulting in improved production upon a
scale-up to lab-scale bioreactors.

Small RNAs can also be used to control the expression of genes
by RNA–DNA or RNA–RNA interactions47. More specifically,
small RNAs can affect the chromatin structure allowing
regulation of gene expression at the transcriptional level, or can
affect mRNA stability post-transcriptionally or during translation.
As a more sophisticated solution, orthogonal (and inducible)
ATFs have been developed recently to control the timing of gene
expression in various microorganisms48. To generate ATFs, the
DNA binding domains (DBDs) of zinc finger proteins (ZFPs)49,
transcription activator-like effectors (TALEs)15, and CRISPR/
dCas99,15 scaffolds are used. Other DBDs, including LexA50,
SrpR50, PhlF50, TarA50, Bm3R150, TetR50, auxin based degron51,
FadRSa, CarH52, and plant TFs8 may be promising alternatives.

Generating combinatorial library

Combinatorial library
Barcoding

Identified variantsSynthetic biology toolbox

Top producers Flow cytometry

Screening top producers in combinatorial library

Biosensor

Profiling diversity in combinatorial library

Fig. 2 Applying synthetic biology tools toward optimized production of chemicals. Synthetic biology speeds up combinatorial optimization. DNA
modification tools in the synthetic biology toolbox provide combinatorial optimization methods with various tools e.g. regulators and genome editing tools
(black arrow). Barcoding allows tracking of combinatorial library members through screening steps (gray arrow). Biosensors paired with high-throughput
monitoring techniques, such as flow cytometry, improve selection of library members to isolate (blue arrow).
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However, unlike DBDs from TALE and CRISPR/dCas9 proteins,
these DBDs cannot be easily modified to target any desired
genetic sequence because they need to be paired with their own
specific binding site. Nevertheless, ATFs have so far rarely been
used in metabolic engineering projects due to their often large
molecular size or low transcriptional activity. Surprisingly, plant-
derived ATFs have recently been developed as strong regulators
for S. cerevisiae (10-fold stronger than the yeast constitutive and
strong TDH3 promoter)8. Expression of ATFs can be controlled
by either exogenous chemical inducers (e.g., IPTG, arabinose)8 or
by light of specific wave lengths53. However, hypersensitivity,
toxic and pleiotropic effects limit the utilization of chemical
inducers. An important task of future research is the identifica-
tion of cost-effective inducers (chemical or others) that allow to
control and modulate protein levels in response to a defined input
signal in a fast-acting, tunable and robust manner. In this regard,
light-based (i.e., optogenetic) systems have been developed that
allow the expression of a gene of interest to an anticipated level by
exposing the metabolite producing cells to short light pulses.
Previous reviews have described diverse optogenetic control
systems54. In Table 2, we list reports about different light-
inducible systems, DBDs, transcription activation/repression
domains (A/RDs), and the light types utilized to regulate their
expression in various hosts, published since 2012. To the best of
our knowledge, light-inducible systems have not yet been
employed in combinatorial optimization methods. Rapamycin
and its synthesized analogues are commonly used chemical
inducers of dimerization (CIDs) employed by chemical biologists

to place biological processes under conditional control. These
CIDs bind to FK506 binding protein (FKBP) with a remarkably
tight binding affinity. This FKBP-rapamycin complex then binds
to the FKBP binding domain of mTOR (FRB)55. Such complexes
have been largely employed as heterodimerization tools for small
molecule switches. Unlike photoswitchable protein dimerizers
(Table 1), FKBP and FRB are significantly smaller molecule
photoswitches and do not need pulsed (or even constant)
irradiation55, allowing minimum potential for phototoxicity.
Considering the recent progress in the area of new light-sensing
proteins56 and light-inducible circuit building55,57, light-
controlled systems are more likely to be able to orthogonally
regulate the expression of genes compared to chemical-dependent
systems.

Advanced genome-editing tools. Chromosomal pathway inte-
gration projects are classically divided into multiple steps because
the rate of native double-strand breaks (DSB) followed by
homology-directed repair (HDR) is not high enough to support
simultaneous generation of large numbers of integrations, even in
a suitable host like S. cerevisiae. To greatly increase the recovery
of HDR-based genetic engineering events, selection markers are
often included in DNA integration cassettes. Recycling the mar-
ker genes, after their initial integration into the genome, allows
cells to become competent for the next round of pathway engi-
neering, as markers can be “re-used”. The Cre-LoxP system51,57,58

and CRISPR/Cas9-mediated genome modification can be utilized
to remove or mutate the selection marker coding sequences59.
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Fig. 3 Schematic workflow to generate complex combinatorial library. Construction of a combinatorial library relies on iterative engineering cycles of one-
pot assembly reactions, and amplification of assembled products in microbial cells. At the level of the assembly reaction, the reaction cocktail contains
libraries of genetic elements such as promoters (blue arrow), genes (green arrow), and terminators (orange “T”). Combinatorial assembly allows assembly
of all standard elements (e.g. promoters, genes, and terminators) in different combination in a single cloning step. To do this, homology sequences (for
homology-based cloning method) or sequences that consist of a restriction enzyme cleavage site (for classical digestion/ligation method) at the ends of
the fragments to assemble are required: X0 and X1 are segments upstream (left) and downstream (right) of the cloning in plasmid 1, respectively; segment
Z0 represents the 3′ region of the promoter and overlaps with the sequence upstream (left) of the gene; segment Y0 represents the 3′ region of the
gene and overlaps with the sequence upstream (left) of the terminator. Thereafter, the multiple groups of gene modules of may be integrated into multi-
locus of the host genome. A first combinatorial reaction cocktail is used for assembly of gene module, while a second reaction is used for generation of
two-gene module from individual gene module in plasmid 2. X2 and X3 are segments upstream (left) and downstream (right) of the cloning in plasmid 2,
respectively; and segment Z1 represents the 3′ region of the first gene module and overlaps with the sequence upstream (left) of the second gene module.
After establishing a plasmid library containing the entire pathway gene modules, the plasmid library can be directly transformed into the host or can be
integrated into the genome of the host to generate stable combinatorial library variants.
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However, iterative rounds of engineering long pathways are time
consuming.

A alternative is the CRISPR-Cas9 system (RNA-guided
genome editing tool) which induce DSB and therefore allow
higher efficiency in genome editing60–63. The combinatorial
optimization method COMPASS allows the generation of a
library of stable S. cerevisiae variants with thousands to millions
of different members through only four cloning reactions
followed by a one-step decoupled CRISPR-Cas9-mediated
integration of the variants into the genome39. In a recent study,
a method for the manipulation of the genome of mammalian cells
was established through combining the CRISPR-Cas9 and the
Cre-Lox systems64. In another effort, two optogenetic recombi-
nases were developed for E. coli65. This approach uses split Cre
and Flp (originally native to S. cerevisiae) recombinases coupled
with photodimers, where blue light brings the split protein
together to form a functional recombinase. However, application
of DSB-mediated genome editing is limited by the cellular
cytotoxicity of HDR, unwanted DNA insertions and deletions, or
unwanted additional DSB. To overcome these limitations,
Barbieri et al. developed eMAGE (eukaryotic Multiplex Auto-
mated Genome Engineering) to precisely modify multiple sites of
a genome without an involvement of DSBs. The method utilizes
synthetic single-strand DNA (ssDNA) oligonucleotides targeting
the lagging strand of the desired gene(s) in the replicating
chromosome. Lambda (λ) phage Red Beta ssDNA annealing
protein facilitates annealing of the ssDNA oligonucleotides to the
lagging strand of the targeted DNA during DNA replication at
the replication fork in S. cerevisiae66. Genome editing area of
research can (i) shorten the gap between genome engineering and
combinatorial library construction and (ii) the generation of
diverse cell variants.

Combinatorial optimization strategies. A multi-gene pathway
can be combinatorially optimized at the DNA level by altering gene
copy number, at the mRNA level by controlling transcriptional
output and transcript stability, at the protein lLianevel by mod-
ifying translational capacity, protein post-translational modifica-
tion, protein stability, and protein co-localization, at the metabolite
level by dynamic metabolic flux control and at the chassis level by
engineering microbial consortia. Lian et al. developed a combina-
torial strategy based on an orthogonal tri-functional CRISPR

system that combines transcriptional activation, transcriptional
interference, and gene deletion (CRISPR-AID) for metabolic
engineering purposes in S. cerevisiae67.

The majority of the research in the combinatorial optimization
area has focused on transcriptional control mechanisms as an
important control point for pathway gene expression. Currently
available combinatorial approaches typically employ constitutive
promoters, and therefore rely on growth-coupled biosynthesis.
Versatile genetic assembly system (VEGAS) exploits the native
capacity of S. cerevisiae to perform homologous recombination
and efficiently join sequences with terminal homology. Yeast
Golden Gate (yGG) is used to build transcription units
(constitutive promoter upstream of a pathway gene) for VEGAS
assembly. In the yGG reaction, each transcription unit is assigned
a pair of VEGAS adapters that assemble up- and downstream of
each transcription unit; VEGAS adaptor sequences subsequently
provide terminal homology for overlap-directed assembly by
homologous recombination “in yeast”. In contrast, inducible
regulators allow conditional control of heterologous gene expres-
sion. Only a limited number of methods employing inducible and
modular transcription factor-based controllers have been estab-
lished so far, including e.g. ePathOptimize68 and COMPASS39.
Combinatorial approaches typically rely on plasmid-derived
systems to take advantage of the simplicity of manipulation at
the plasmid level. However, genomic integration of a metabolic
pathway leads to higher and more stable production of a target
chemical than expression of genes from plasmids8,53, without the
need for expensive selectable markers. In general, the chosen
production host “determines” the regulatory elements (promoters,
terminators, RBS), codon preferences, the way enzymes (or
proteins in general) are modified by posttranslational modification
(e.g., phosphorylation), and the biochemical mechanisms by
which enzymes or metabolites are secreted out of the cell and into
the growth medium (an important aspect of synthetic biology
applications). Established combinatorial pathway optimization
methods for metabolic engineering are summarized in Table 2.
COMPASS, the most recently established approach for combina-
torial optimization in the S. cerevisiae, employs inducible plant-
derived artificial transcription factors (ATFs) and utilizes three
technical settings, (i) multi-locus integration of multiple genes into
the yeast genome, when speed of strain development is prioritized,
(ii) plasmid-based systems, when easy manipulation is favorable,
and (iii) single genomic locus integration of multigene constructs,

Table 1 Various light-inducible systems developed since 2012.

Light DBD A/RD Photoreceptor and partner Host Reference

Blue ZFP VP16 AD LOV and GI Human cell Polstein et al.109

Red TALE VP64 AD Cry2 and CIB1 Mammalian cell Konermann et al.110

Red Gal4 VP16 AD PhyB and PIF3 Mammalian cell Müller et al.111

UV-B UVR8 and COP1
Blue LOVpep and PDZ
Red TetR VP16 AD PhyB and PIF3 Plant cell Müller et al.112

Blue CRISPR/Cas9 VP64 AD Cry2 and CIB1 Mammalian cell Polstein et al.113

Blue CRISPR/Cas9 P65 AD Cry2 and CIB1 Mammalian cell Nihongaki et al.114

Blue LexA VP16 AD Cry2 and CIB1 S. cerevisiae Taslimi et al.115

Red TALE VP64 AD PhyB and PIF3 S. cerevisiae Hochrein et al.53

Red TALE VP64 AD PhyB and PIF3 S. cerevisiae Hochrein et al.57

Blue N terminal-T7 RNAPs C terminal-T7 RNAPs AD nMag and pMag E. coli Baumschlager et al.116

Blue LexA Gal4 AD ClpX and ClpP S. cerevisiae Xu et al.117

Blue Gal4 Gal4 AD WC-1 and VVD S. cerevisiae Salinas et al.118

Blue TetR P65 AD Cry2 and CIB1 Plant cell Yamada et al.119

Green AdoB12 VP16 AD CarH and CarO Plant cell Mammalian cell Chatelle et al.52

Blue ZFP VP16 AD CRY2 and CIB1 S. cerevisiae An-adirekkun et al.120

Blue NLS dCas9 RD LOV and α helix S. cerevisiae Geller et al.121
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when predictable regulator behavior is required (as the genomic
integration position affects the protein expression level)39.

Up to this point, we have highlighted the power of
combinatorial optimization in order to facilitate expressing
heterologous pathways in an in vivo system. The in vitro system
relies on designing functional biological systems from scratch.
Recently a straightforward in vitro method to smartly generate
DNA library construction has been developed called “in vitro
SCRaMbLE system” (an abbreviation for Synthetic Chromosome
Rearrangement and Modification by LoxP-mediated Evolution)
enabling optimization of the biosynthetic pathway flux via
rearranging relevant transcription units69. This system uses Cre
recombinase and purified DNA encoding multiple loxPsym sites
mixed in a tube. Wu et al.69 demonstrated two strategies using the
“in vitro SCRaMbLE system” for pathway optimization: (i) The
top-down method that consists of a purified DNA plasmid
encoding multiple loxPsym sites. Addition of Cre recombinase to
the reaction allows generating a library of SCRaMbLE DNA. (ii)
The bottom-up system that employs an “acceptor vector” and a
pool of “donor fragments” flanked by loxPsym sites. With the
addition of Cre recombinase to the tube, donor fragments are
randomly assembled into the acceptor vector. Therefore, a library
of diverse plasmids is generated. The plasmid library can be
subsequently transferred to a host strain for identification of
genotype of each individual derivative. The in vitro SCRaMbLE
system basically provides optimization in ways that the in vivo
system cannot accomplish. However, application of combinatorial
optimization strategies in in vitro production of proteins (cell-free
protein synthesis (CFPS))70 or ex vivo (experimentation per-
formed on tissue from an organism in an external environment)71

systems have not been studied yet. Such systems are typically used
to produce toxic and/or large protein complexes, as there is no
need to maintain cell viability. Combinatorial optimization
strategies can be implemented to generate various combinations
of genes and regulators in one cloning reaction cocktail. The
in vivo and ex vivo systems require cellular lysate, transcription
and translation factors72 to express different subunits of a large
protein complex from the complex library of linear or plasmid
DNA.

Profiling diversity in combinatorial library. Linking the diver-
sity within a combinatorial library at the DNA level to the
production level of various members of combinatorial library can
guide the debugging process to achieve the desired performance.
However, the ability to capitalize on the combinatorial library
diversity is limited by the number of individuals that can be
tracked and assessed. To ascertain the diversity present in a
combinatorial library, sequencing analysis is often used. While
the identification of DNA diversity in small library can be
achieved by Sanger sequencing, next-generation sequencing
(NGS) has opened new ways to tackle complexity quality
assessment of DNA diversity in a large library. Nevertheless,
NGS is not suitable for identifying and characterizing ATFs
implemented in COMPASS39 due to presence of repetitive
sequences (e.g. ADs, minimal promoters, and terminators) in
various ATFs.

Mapping the effects of protein mutation on its activity through
employing high-throughput protein engineering methods or
highly parallel mapping of genes to traits facilitated by multiplex
DNA synthesis are now available and allow testing of a whole (or
major fraction of) library population73. Microarray technology
combined with molecular barcoding has been used to enable
parallel tracking of genetically different individuals74. For
example, trackable multiplex recombineering (TRMR) allows
evaluation of thousands of definite genetic modifications in E. coli

within a week. To do this, synthetic DNA cassettes with
associated molecular barcodes were integrated into the E. coli
genome, producing thousands of variants. Barcode sequences
and microarrays were then used to compute population
dynamics42,75. In another example, a pooled library of barcoded
labelled mutants of Streptococcus pyogenes Cas9 (SpCas9)
nuclease were easily tracked by high-throughput short-read
sequencing76.

We can extend the design principle of these methodologies to
combinatorial libraries. Each DNA cassette encoding the
individual fragment (e.g. regulator, gene of interest, terminator)
can conceivably be labeled with a unique molecular barcode.
Thereby, thousands of fragment combinations can be tracked by
counting the frequency of the molecular barcodes. Moreover,
sequencing short barcode fragments can significantly reduce the
time and cost for sequencing regulators and downstream genes in
individual isolates. However, to track the evolving genetic
heterogeneity in a population of growing production cells,
sequencing individual short barcode fragments is not sufficient
and more advanced sequencing techniques such as “deep DNA
sequencing” are required47. Deep sequencing, i.e. sequencing a
genomic region multiple times, is an NGS approach that can be
applied to track the genetic heterogeneity in a library of cell
isolates. Höllerer et al. introduced a wildly applicable DNA-based
phenotypic recording approach to generate huge datasets linking
regulators to quantitative functional readouts of high precision,
only relying on sequencing short tag DNA elements77. The
technique implements a site-specific recombinase, a regulator that
controls recombinase expression, and a DNA substrate modifi-
able by the recombinase. Both regulator sequence and substrate
state can be determined in a single sequencing read, and the
frequency of modified substrates amongst constructs harboring
the same regulator presents the quantitative effect of regulator
(transcriptional output of regulator) on recombinase expression.
Using next-generation sequencing, the quantitative expression
effect of large library of regulators can be quantified in parallel. As
a proof of principle, this approach was applied to record
translation kinetics of more than 300,000 bacterial RBSs,
collecting over 2.7 million sequence-function pairs in a single
experiment. However, resolution of real genetic diversity in such
a population can be an issue. Very recently, Askary et al.
presented Zombie system for image-based readout of DNA
barcodes75. In this system, phage RNA polymerases transcribe
genomically integrated barcodes in fixed cells. The transcript
RNA is then detected by fluorescent in situ hybridization. Single-
nucleotide differences between barcodes are recognizable on the
basis of the relative signal intensity of competing match and
mismatch probes.

Identification of top producer in combinatorial library. Selec-
tion of strains with the highest product yield from a library with
huge genetic diversity is a serious bottleneck. Formation of
colored products that make microbial colonies screenable is an
option. However, most chemicals are not colorful and their
detection requires other methods. In that case, direct quantifi-
cation of product titer using low-throughput gas or liquid chro-
matography analysis is typically used despite being time-
consuming. Methods based on spectroscopic enzymatic assay
analytics are alternatives; however, they also have limited
throughput. A more sophisticated solution is utilizing biosensor
circuits to assay the target ligand at the single-cell level and
translate their concentrations into more quantifiable signals.
Biosensors are paired with high-throughput approaches, includ-
ing flow cytometry and microfluidics, which allow isolation of
variant cells with the phenotype of interest.
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Only TF-5,78,79 (Fig. 4a), fluorescence resonance energy transfer
(FRET)-80 (Fig. 4b), and RNA-based biosensors-3,11,81–83 (Fig. 4c)
based biosensors are commonly utilized for metabolic engineering.
TF-based biosensors, natural sensory proteins that regulate gene
expression in response to environmental signals, employ the host’s
transcription system to drive the expression of a reporter gene.
Skjoedt et al.84 (2016) implemented systematic engineering of
multiple parameters to establish a general biosensor design in the
yeast S. cerevisiae based on metasbolite binding transcriptional
activators from the superfamily of LysR-type transcriptional
regulators (LTTRs) of prokaryotes. They next used the biosensors
to screen cells producing different level of naringenin or cis, cis-
muconic acid. The designed biosensor output correlated with the
production of metabolite. LTTR-based biosensors have already
shown their utility to screen top producers: in one example they
were used for screening 0.0000025% of the theoretical complexity of
Narion (β-ionone and naringenin co-producer) library. Rogers et al.
attempted to evaluate the tuning of four genetically encoded protein
sensors that respond to acrylate, glucarate, erythromycin and
naringenin on either low-copy or high-copy plasmids5. Higher
number of the intracellular gene constructs ensured higher dynamic
range as well as rapid response to the target ligand5. However, TF-
based biosensors typically have relatively high background noise,
and a lot of current research focuses on addressing this short-
coming. FRET biosensors encompass a pair of donor and acceptor
fluorophores. A ligand-binding peptide is sandwiched between a
pair of donor and acceptor fluorophores, and ligand binding is
observed via the FRET change. A set of FRET biosensors, based on
three pairs of donor/acceptor, carboxyfluorescein (FAM)/Boron
dipyrromethene (BODIPY)85, Nitrobenzoxadiazole (NBD)/nonster-
oidal dye (Nile red)86, and coumarine/NBD86, was developed for
real time monitoring of acid sphingomyelinase at high sensitivity
and with high spatial resolution. The FRET biosensor is selectively
cleaved by sphingomyelinase that leads to significant increase in
fluorescence of the fluorescein FRET donor85. FRET biosensors
have high orthogonality, high temporal resolution, and relatively
easy construction80. The RNA-based biosensors include RNA

riboswitches and RNA Spinaches. In the case of RNA riboswitch-
based biosensors, the regulatory domain of an mRNA selectively
binds to a ligand resulting in a structural change to the response
domain that regulates translation of its encoded protein. Abate-
marco et al. developed RNA riboswitch-based biosensor to detect
the production of tyrosine and streptavidin concentrations in
S. cerevisiae library. The aptamer is co-encapsulated with a member
of a yeast library followed by incubation to produce the molecule of
interest and development of a fluorescence signal. The picoliter
droplets flow through a microfluidic device allowing sorting based
on fluorescence87. In comparison to TF based biosensors, their
kinetics are faster because the RNA has already been transcribed
and so offer faster responses to target metabolite. They also do not
rely on protein-protein or protein-metabolite interactions. This
allows for more targeted engineering of the aptamers (the ligand
binding domain) and the expression platforms. The development of
biosensors that allow in vivo evaluation of any desired product of
metabolic engineering would be an absolute boon for the field. A
step in this direction is the systematic evolution of ligands by
exponential enrichment (SELEX) approach, which can be, at least in
principle, used to generate artificial riboswitch-based biosensors
(single-stranded RNA aptamer) for any target metabolites. Using
SELEX, metabolite-responsive riboswitch-based biosensors are
developed from a library of nucleic acids. The selected
riboswitch-based biosensors are, subsequently, employed to detect
and report the metabolite signal88.

Very recently, a high-resolution methodology for the cell-specific
RNA labeling was established based on nucleoside–enzyme pair89.
The small molecule–enzyme pair consists of uridine/cytidine kinase
2 and 2′-azidouridine, where 2′-azidouridine is only incorporated in
cells expressing uridine/cytidine kinase 2. This pair can be used to
purify and track RNA from specific cellular populations.

Computational modeling to advance combinatorial
optimization
Metabolic engineering efforts aim to optimize the cellular pro-
cesses for production of a compound of interest in host of choice

a

b

c

Fig. 4 Diverse biosensors used for screening combinatorial libraries. a The conformation of transcription factor (TF, orange oval) changes to active form
upon binding the target ligand (blue octagon). When activated, the TF binds to its binding site (light orange square), upstream of a fluorescent reporter
gene, to induce production of a fluorescent reporter protein (green oval) that is detected by flow cytometry. b FRET sensors comprised of a donor-acceptor
fluorophore pair. Ligand is sandwiched between the two donor (orange cylinder) and acceptor fluorophores (green cylinder). Therefore, a conformation of
FRET is changed that allows detecting the fluorescent signal by flow cytometry. c Correctly folded aptamer structure of riboswitch (orange–gray structure)
allows transcription of fluorescent reporter gene (green arrow). The production of fluorescent protein (green oval) is detected by flow cytometry. In
presence of ligand (blue octagon), the secondary structure of riboswitch device is changed. Consequently, transcription of its fluorescent reporter gene is
inhibited.
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(Fig. 5, blue area). To bridge actual and desired function of
enzymes and pathways, the complexity of genome-wide meta-
bolism necessitates directed evolution approaches90. The directed
(or adaptive laboratory) evolution improves the natural evolution
process by (i) randomization of mutation or recombination and
(ii) accelerated screening rate of positive strains90. It uses different
databases, libraries of tools and conditions to generate the opti-
mal production rate of a desired compound. Mathematical
models and computational simulation could be applied as pow-
erful tools to understand and predict the behavior of the biolo-
gical systems.

The multi-level omics data obtained from different databases for
pre-characterized synthetic biology parts and modules are compu-
tationally integrated to establish mathematical models to support
the early design steps of a system. The computational design (Fig. 5,
white area) approaches allow connecting reactions obtained from

various databases; for example, enzymes can often recognize
molecules that are similar to their natural precursor. Next, com-
putational design approaches calculate all possible metabolic path-
ways to achieve wanted product. Although the computational
modeling of synthetic metabolic networks has improved tre-
mendously, the experimental data obtained from modeled synthetic
pathways is not always in agreement with the best modeled path-
ways suggested by computational modelling (in even very well
characterized organisms). In fact, to generate data for computa-
tional model building, better high-throughput techniques for ana-
lysis of the cellular transcriptome, proteome, and metabolome are
still necessary. Some combinations of pathways may include
unrealistic reactions or too long pathways. Moreover, dynamic
models usually do not cover a large number of reactions commonly
involved in a pathway. In such a case, the counted pathways
required to be evaluated. Recently, Carbonell et al. built and

Synthetic biology tools Complex library generating Barcode labeling

Gene characterization Choice of host

Combinatorial library

Production
Chemical characterizationNatural source

Gene identification Computational analysis

Top producer screening

1000 ml

2000 ml

3000 ml

Fig. 5 Schematic overview of computational design and evaluation to achieve optimal performance. Synthetic biology tools are used to establish
combinatorial optimization methods. The generated library is profiled using barcoding tools and biosensors allow to screen top producers within the library
(gray area). Nature is a vital source of identified nutrients and pharmaceuticals. Metabolic engineering applies synthetic biology tools to produce
compounds of the characterized biosynthetic pathway in a desired host (blue area). The production of certain compounds can be optimized using
combinatorial optimization strategies. The data obtained from combinatorial library and its pre-characterized modules are computationally integrated to
establish mathematical models to support the early design steps for chosen host on the basis of genome-scale metabolic modelling. The computational
data suggest which synthetic pathways are the most promising in a given target organism and which host pathway genes need to be upregulated or be
silenced based on knowledge of how different cellular subsystems work together. The best producers in combinatorial libraries can provide detailed
information to feed into models that aim to uncover principles of how synthetic circuits behave in host systems. Blue arrows, regulators. Orange squares,
CDSs. Brown “T”, terminators.
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demonstrated an automated Design–Build-Test–Learn (DBTL)
pipeline to computationally select the most promising parts, e.g.
enzyme coding regions and RBSs, for assembly, allowing sig-
nificantly more manageable experimental screening effort91. The
DBTL pipeline led to a 500-fold increase in titer of the flavonoid
(2S)-pinocembrin from screening of only 65 variants out of more
than 23,000 possible combinations. Although this system was
developed for E. coli, in principle it should be applicable for
synthesis in other chassis. RBS Calculator allows the prediction of
the translation initiation rate of internal start codons, particularly to
minimize undesired expression in E. coli19,92.

Several toolboxes are now available to integrate tran-
scriptomics, proteomics, fluxomics and metabolomics data. Tn-
Core allows automatic integration of Tn-Seq data in addition to
RNA seq data to generate context specific models. This provides a
“systems-level” view for metabolic engineering aims93. Principal
component analysis (PCA) was recently implemented to evaluate
various engineered strains for metabolites that contribute to
acetol formation using metabolomics datasets. This data helped
identify NADPH regeneration as the bottleneck for efficient
acetol biosynthesis94. However, few laboratories work con-
currently on both experimental and computational aspects of
metabolic engineering, a fact that impedes the robust information
exchange between these domains that is necessary for the highest
productivity. RiboLogic tool was developed for designing ribos-
witches that are responsive to RNA inputs, as well as small
molecule ligands3. RiboLogic algorithm was applied to design
286 switches that modulate MS2 (bacteriophage coat protein)
binding of flavin mononucleotide, tryptophan, theophylline, and
miR-208a, a 22-nt miRNA implicated in cardiac hypertrophythe.

The use of selective marker genes as biosensors, links the host
production performance with growth rate. Therefore, biosensors
make possible to study directed evolution of the microorganism
or the entire biological network (Fig. 5, grey area). Additionally,
combinatorial optimization, by rapid generating thousands to
millions constructs, makes it possible to circumvent insufficient
knowledge of in vivo reactions. This allows achieving the best
compromise (solution) among conflicting pre-defined subjects. In
other words, the best performer achieved from a combinatorial
library can guide the debugging process to achieve the wanted
performance. This data combined can be used to design a com-
putational model for generation of optimal constructs through
mathematical data to minimize or maximize wanted functions
out of required subjects. Finally, computational methods can
suggest possible synthetic pathways that are predicted to perform
the best in a target organism and the performance of the chosen
synthetic pathways is evaluated in the laboratory. Overall, results
achieved from combinatorial optimization and integration of
these data into available computational predictive models, can
provide better understanding of the whole cellular system95.
Höllerer et al., implemented next-generation sequencing to assess
the quantitative expression effect of extremely large sets of RBSs77

. They expanded from these large-scale datasets using a novel
deep learning approach that combines ensembling and uncer-
tainty modelling to predict the function of untested RBSs with
high accuracy. The data achieved from DNA-based phenotypic
recording supports deep learning databases and, therefore, pro-
vides a major advance in our ability to predict quantitative
function from genetic sequence.

Future perspective of combinatorial optimization
Combinatorial optimization techniques can be implemented to
construct gene circuits that satisfy quantitative performance,
something that has been a long‐standing challenge in synthetic
biology (Fig. 6).

In the past 30 years, a number of microbial processes have been
developed for the production of such high-value chemicals
including taxol33, strictosidine96, opioids97, and cocoa butter-like
lipids98. Until now, production of only a few compounds, such as
1,3-propanediol23,99, 1-4-butanediol26,100, β-farnesene45,101, and
amorphadiene102 has reached commercial scale. In order to
achieve fermentation titres of 25 grams per litre of artemisinic
acid, plant-derived heterologous genes were engineered into S.
cerevisiae. Furthermore, an efficient and scalable chemical process
for the conversion of artemisinic acid to artemisinin using a
chemical source of singlet oxygen was developed102. In another
study, the heterologous genes encoding biosynthetic enzymes of
the taxol biosynthetic pathway, isoprenoid pathway, and the
regulatory factors to inhibit competitive pathways were intro-
duced into the yeast S. cerevisiae to produce 33 milligram per liter
of taxadiene33. In both projects, the yeast promoters were used to
express the engineered enzymes on a high-copy plasmid. Indu-
cible orthogonal regulators8, and combinatorial optimization
approaches allowing to genomically integration of pathways
genes67 can pave the way to producing natural and novel che-
micals for new applications such as “non-natural” variants of
thaxtomin phytotoxins73 and new peptides with “designer”
functional properties. Protein production for biotechnological
and medicinal applications is a multibillion-dollar market. Che-
mical synthesis of protein molecules is prohibitively expensive.
Several expression systems ranging from bacterial hosts to
mammalian cells have been established24. However, only 25 of
them have been produced at a bioreactor scale24. In fact, biolo-
gical production of complex proteins is facing a series of chal-
lenges, such as the need for balanced expression of multiple
subunits of large proteins. Combinatorial optimization strategies
allow expression of various subunits of protein complex in dif-
ferent ratios and, by doing so, facilitate the correct assembly of
multi-subunit complexes (i.g. cytochromes, catalases, P450
enzymes, and carboxysomes).In particular, improvements in
synthetic biology have made possible to study gene regulatory
networks (GRNs) in a simplified setting amenable for exact
experimental controls.

For example, researchers constructed mutual inhibition toggle
between TetR and LacI inhibitors103,64, bistable circuit of auto-
activation104, or logic XOR and AND gates105. Combinatorial
optimization coupled with biosensor techniques can facilitate
generation of different possible GRNs, whose output can be
measured and compared by placing a reporter gene downstream
of the last regulator of the network and the output quantified by
flow cytometry. This paves the way to understand regulatory
relationships among genes and identifying key regulators and
bottlenecks in GRNs.

There is no super host that is best for the production of all
target molecules106. S. cerevisiae is a better production host than
E. coli for production of amorphadiene, and β-farnesene due to
less toxicity of pathway intermediates101,102, but producer
populations were compromised by a high percentage of non-
producer mutants47. Hypothetical scenario to handle especially
complex synthesis pathways is to divide them into pieces and
design a different synthetic microbial host for each piece.
The engineered microbes can then be grown together in
consortia107,108. This can be substantially mitigated by utilizing
combinatorial design principles to optimization multiple portions
of the complex pathway (across multiple hosts) in parallel.

Future directions
Synthetic biology projects often need tunable expression of var-
ious combinations of genes to achieve an optimal output. Ideally,
computational models will ultimately facilitate the forward-
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engineering of many parts to achieve desired function. However,
until then the best alternative is to rapidly generate and accurately
characterize as many new variants as possible. Therefore, smartly
designed combinatorial optimization methods for the empirical
balancing of metabolic pathway gene expression is of interest to a
broad range of synthetic biologists. The workflow described in
this review has the potential to become an enabling standard for
researchers seeking to achieve optimal output while minimizing
experimental effort in bioengineering projects. We expect that
future developments in combinatorial optimization will still be
limited by a lack of tools to screen the best producers from such a
library. To continue advancing in our ability to engineer living
organisms for high-level production of desired compounds using
combinatorial optimization methods, we will require high-
throughput screening techniques. Therefore, an interesting
research direction would be a generalized biosensor construction
framework for targeting diverse molecules. Ongoing advance-
ments in developing riboswitch-based biosensors may become a
larger part of the solution.

In this review, we discussed how DNA barcoding methodolo-
gies have significantly improved in recent years, enabling the
computation of population dynamics42,75 or tracking of mutants
of Cas9 nuclease library76. Such techniques however have yet to
be applied for tracking of combinatorial library members. In fact,
we can envision the use of the design principle of these meth-
odologies to combinatorial libraries to identify the DNA elements
combined in libraries of million circuits.

Combinatorial optimization in synthetic biology encompasses
a number of different techniques and disciplines that include

molecular biology, analytical and protein chemistry and compu-
tational modelling. Progress in this field is emerging from a close
interplay between bioinformaticians, chemists, and synthetic
biologists.
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