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Purpose: To evaluate the role of ensemble learning techniques with deep learning
in classifying diabetic retinopathy (DR) in optical coherence tomography angiography
(OCTA) images and their corresponding co-registered structural images.

Methods: A total of 463 volumes from 380 eyes were acquired using the 3 × 3-mm
OCTA protocol on the Zeiss Plex Elite system. Enface images of the superficial and
deep capillary plexus were exported from both the optical coherence tomography
and OCTA data. Component neural networks were constructed using single data-types
and fine-tuned using VGG19, ResNet50, and DenseNet architectures pretrained on
ImageNet weights. These networks were then ensembled using majority soft voting
and stacking techniques. Results were compared with a classifier using manually
engineered features. Class activationmaps (CAMs) were created using the original CAM
algorithm and Grad-CAM.

Results: The networks trainedwith the VGG19 architecture outperformed the networks
trained on deeper architectures. Ensemble networks constructed using the four fine-
tuned VGG19 architectures achieved accuracies of 0.92 and 0.90 for the majority soft
voting and stacking methods respectively. Both ensemble methods outperformed the
highest single data-type network and the network trained on hand-crafted features.
Grad-CAM was shown to more accurately highlight areas of disease.

Conclusions: Ensemble learning increases the predictive accuracy of CNNs for classify-
ing referable DR on OCTA datasets.

Translational Relevance: Because the diagnostic accuracy of OCTA images is shown
to be greater than the manually extracted features currently used in the literature, the
proposedmethodsmaybebeneficial towarddeveloping clinically valuable solutions for
DR diagnoses.

Introduction

Diabetic retinopathy (DR) is a leading cause of
blindness in the working age population1 and of an
estimated 285 million people worldwide with diabetes
mellitus, more than one-third have signs of DR.2
Because patients with DR may be asymptomatic,
even in late stages of the disease, it is recommended
that any patient diagnosed with diabetes be screened
regularly for signs of DR to palliate visual loss.3 Retinal

microvasculopathy, such as microaneurysms and capil-
lary occlusion and nonperfusion, is generally observed
first4,5 followed by secondary inner retinal degen-
eration.6,7 Optical coherence tomography angiogra-
phy (OCTA) is an emerging technology that is able
to provide both vascular information for detecting
signs of microvasculopathy and structural informa-
tion through its inherently co-registered optical coher-
ence tomography (OCT) volumes to detect neurode-
generation. The majority of publications investigat-
ing the diagnostic capability of OCTA as it relates to
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DR focus on manually created parameters based on a
priori knowledge of the disease pathophysiology. Such
morphometric and functional parameters can be quite
useful in classifying diseased and nondiseased retinas
and techniques using manually engineered features are
considered traditional machine learning. However, in
recent years a trend in deep learning has been to
identify where potential information from the images
that may be discarded (or not readily observed by
human perception) otherwise can be detected and used
for classification with convolutional neural networks
(CNNs).

CNNs learn through stochastic optimization, hence
they are inherently limited in performance due to the
high variance in predictions that results from sensi-
tivity to small fluctuations in the training set leading
to overfitting.8 As such, large datasets are generally
desired. Although large diabetic retinopathy databases
(DRIVE,9 STARE,10 etc.) are publically available, they
are comprised of fundus photographs, an imaging
modality that does not have the ability of OCT/OCTA
images to provide depth resolved images of the various
retinal layers. An alternative approach to reducing the
variance is to combine multiple, diverse, and accurate
models to achieve greater predictive accuracy.11 This is
termed ensembling, and in general, a neural network
ensemble is constructed in two steps: training a number
of component neural networks and then combining
the component predictions.12 For training compo-
nent neural networks, the most prevalent ensemble
approaches are Bootstrap aggregating (bagging) and
Boosting, which are algorithms that determine the
training sets of component networks. Bagging13 is
a method based on bootstrap sampling14 (sampling
with replacement) that generates a number of train-
ing sets from an original training set and trains a
component neural network on each sampled dataset.
Boosting15–17 generates a series of component neural
networks whose training sets are determined by the
performance of previous ones. Incorrect predictions
are more heavily emphasized in the training of later
networks. The networks are then combined typically
by majority voting, which can be used for segmen-
tation networks18 as well as classification networks.
Another method of combining multiple networks is
stacking, whereby the networks are combined by
a meta-classifier. This meta-classifier is typically a
fully connected neural network and allows for more
complex, nonlinear combinations of the network
features.

In health care applications, identifying the under-
lying features through which the algorithm classi-
fies disease, in addition to the quantitative algorith-
mic performance, is important to promote physician

acceptance.19 As such, methods to visualize the areas
of images most responsible for the CNNs classifi-
cation are gaining popularity. Class activation maps
(CAMs)20 are a common method where a heat map
is generated by projecting the class specific weights
of the output classification layer back to the feature
maps of the last convolutional layer, thereby highlight-
ing important regions for predicting a particular
class. This method has been used in ophthalmic
application previously to confirm CNN decision was
based off the anterior chamber angle in categoriz-
ing angle closure,21 areas of OCT B-scans associated
with various diagnoses22,23 and areas of segmenta-
tion error,24 and area of OCT enface images associ-
ated with the diagnosis of glaucoma.25 There exists
several variants of this method that build off of
the original CAM paper,20 including: Grad-Cam,26
Guided Grad-Cam,26 Guided Grad-Cam++,27 and
GAIN.28

In this paper, we use ensemble learning techniques
together with CNNs to classify referable DR, using
OCT and OCTA images. The results of the deep
learning algorithms will be compared to manually
extracted features. Additionally, we will show how
CAMs can be used to aid in the interpretation of the
CNN classification.

Methods

Patients

This study adhered to the tenets of the Declara-
tion of Helsinki and was approved by the Research
Ethics Boards of the University of British Columbia
and Simon Fraser University. Patients with diabetes
mellitus type 1 or 2, and any diabetic retinopathy sever-
ity level, as well as controls were included in the study.
Patients were excluded if they had substantial media
opacity that would preclude successful imaging, active
inflammation, structural damage to the center of the
macula, substantial nondiabetic intraocular patholo-
gies, or any intraocular surgery with the exception of
cataract surgery. A total of 380 eyes were examined
from 242 subjects. A total of 224 eyes were classified
as nonreferable DR, and the other 156 were classified
as having referable DR by a trained ophthalmologist.
Referable DR was classified as having more than mild
nonproliferative DR or any stage DR with diabetic
macular edema. The mean age of patients with refer-
able and nonreferable DR was 59.3 ± 11.7 years and
58.8 ± 17.4 years, respectively.
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Figure 1. Comparison of clinical features seen on both OCT and
OCTA enface images of a proliferative DR patient. Dilated capillar-
ies/microaneurysms (blue circles) are clearly visible in the superficial
and deep capillary plexus of both OCT and OCTA images. Areas of
capillary dropout (outlined in yellow) are more clearly seen in OCTA
images, though the deep structural OCT image also shows areas of
lower intensities in the larger area of nonperfusion.

Optical Coherence Tomography Data

Patients were imaged using the Zeiss PlexEite
9000 (Zeiss Meditec Inc, Germany) with an A-scan
rate of 100 Khz. OCTA was computed using the
OCTmicroangiography complex algorithm. Data were
acquired as a 3 × 3-mm volume centered on the foveal
avascular zone (FAZ). A sampling rate of 300 × 300
was used that corresponds to a distance of 10 microns
between scanning locations. Each B-scan location was
scanned a total of four times. The A scan depth is
reported as 3 mm in tissue with an optical axial resolu-
tion of 6.3 μm and a transverse resolution of 20 μm.
Scans were only included in the study if the system
specified signal strengthwas 7 or higher. Figure 1 shows
representative OCT and OCTA enface images for a
severe NPDR subject.

Manual Feature Extraction

En face OCTA images were extracted from the
superficial and deep vascular complexes and projec-
tion artifacts were removed using the in-built system
software before being exported. Images were then

segmented using a separate vessel segmentation DNN
(Deep Neural Network) (Lo J, Heisler M, Vanzan V,
et al., submitted, 2019) to calculate the handcrafted
features. Methods for feature extraction have been
previously reported,29–31 but are explained here in
brief for completeness. Seven FAZ morphometric
parameters were calculated from the vessel segmen-
tation network results: area, perimeter, acircular-
ity index, maximum and minimum diameter, axis
ratio, and eccentricity. The FAZ was found as the
largest connected nonvessel area. The centroid for this
area was then used to determine the perimeter, and
maximum and minimum diameter. Acircularity index
was defined as the ratio of the perimeter of the FAZ
to the perimeter of a circle with equal area. Axis ratio
was the ratio of the maximum FAZ diameter to the
minimum FAZ diameter, and eccentricity was calcu-
lated as the eccentricity of the ellipse made by the
minimum and maximum diameters.

Five vascular parameters were also extracted
from the superficial vessel segmentation network
results: whole image density, inner density, central
density, skeleton density, and fractal dimension. Before
quantification, the vessel segmentation network result
was binarized using a threshold of 0.5. Whole image
density was then calculated as the proportion of
measured area occupied by pixels that were classified
by the algorithm as a vessel. Central density was calcu-
lated as the density within the center 1-mm circle, and
inner density as the density in the ring between 1 and
3 mm from the center.

Diagnostic Network Architectures

Three different CNN architectures were used in
this paper: VGG19, ResNet50, and DenseNet. Each
network was loaded with the pretrained weights on
the ImageNet dataset and truncated at the deepest
convolutional layer. A global average pooling layer was
then appended followed by a dense layer with two
outputs.

For inputs, each base was trained with four differ-
ent single data-type en face images extracted from
the OCTA and OCT volumes. From the OCTA,
both enface superficial and deep plexus images were
extracted. Similarly, from the structural OCT volume,
both enface superficial and deep plexus images were
extracted.

The various networks were then combined to be
of the configurations in Figures 2 and 3 to evalu-
ate voting and stacking. For voting as in Figure. 2,
we implemented a majority soft voting scheme by
averaging out the probabilities calculated by individ-
ual networks. Although voting is the most common
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Figure 2. Example of the majority voting ensemble method for combining classification results from multiple component networks. The
component networks were previously trained on superficial and deep plexus enface images of OCT and OCTA volumes separately.

aggregation method in classification tasks, it only
considers linear relationships among classifiers. Stack-
ing as in Figure. 3, is another ensemble technique where
the meta-classifier is able to learn complex associa-
tions. As ensemble networks perform best when the
networks are diverse and accurate, the best perform-
ing trained network for each input type was chosen for
this architecture. The input to the meta-classifier was
the concatenation of last convolutional layer of each
chosen component network. This was followed by a
global average pooling layer, a dense layer with 1024
nodes and relu activation, a dense layer with 512 nodes
and relu activation, and a final dense layer with 2 nodes
for classification. The weights of all the trained convo-
lutional bases were frozen while the meta-classifier was
trained.

To compare the diagnostic capability of a feature
agnostic CNN to the manually extracted features,
the 12 manual features were also fed into a classi-
fier. The classifier comprised a multilayer percep-
tron with 2 hidden layers of 12 and 6 nodes,
respectively, and 1 binary output for referable
DR or nonreferable DR. A threshold of 50% was
applied to the output probabilities to determine the
classification.

Experimental Settings

The CNN-based detection method was imple-
mented in Keras using the Tensorflow backend and
Python 3.5.4. We ran the algorithm on a desktop
PC with an i7-6700K CPU at 4.0 GHz, 16 GB of
RAM, and a GeForce GTX 1060 GPU. Five-fold
cross-validation was performed on each configuration,
where the data were split 60% for training, 20% for
validation, and 20% for test. Care was taken to ensure
eyes from the same subject were only included in one
of either the training, validation or testing datasets.
Initially, all weights in the convolutional layer base
were frozen and just the two new layers compris-
ing the classifier were trained. This was done for 10
epochs, with a learning rate of 0.00001, batch size of
8, and 2 callback functions set to only save the best
network and to stop training if the validation loss
had not improved after 5 epochs. Then, all weights
were unfrozen and the network was retrained for
20 epochs with the same callbacks and learning rate. As
suggested in the literature,22 training from scratch on
OCT imagesmay be preferable asmany of the low-level
filters in networks pretrained on natural images are
tuned to colors and OCT images are monochromatic.



Ensemble Deep Learning for DR Detection Using OCTA TVST | Special Issue | Vol. 9 | No. 2 | Article 20 | 5

Figure 3. Example of the Stacking Ensemble Method for combining classification results frommultiple component networks. The compo-
nent networks were previously trained on superficial and deep plexus enface images of OCT and OCTA volumes separately and the weights
were frozen while the meta-classifier was trained.

However, retraining the entire network preinitialized
on ImageNet provided us with better performance
than training from uninitialized weights, likely due
to our significantly smaller dataset. Data augmenta-
tion techniques were also used with random rotations
([−5°, +5°]), zoom (≤ 20%), height and width shift
(≤ 10%), and both horizontal and vertical flipping set.
In response to the unbalanced classes used for train-
ing, class weights were also assigned to the loss function
to mitigate any undue bias toward the class with more
training data.

Model Visualization

In this paper, we will compare two class activation
maps: the original class activation map20 and a variant
termed Grad-Cam.26 Class activation maps were used
to help visualize the areas of the imagewhichweremost
helpful in determining the classification. The original
CAMmethod did this by modifying the network archi-
tecture to add a global average pooling layer, followed
by a dense layer to the convolutional network base.
Then, then CAM was calculated as a weighted sum
of the feature maps per class. Grad-CAM performs
a similar function by using the gradients of any
class, flowing into the final convolutional layer to
produce the localizationmap. For our purpose, we have

chosen to only propagate positive gradients for positive
activations.32

Results

Manual Features

The mean values of the manually extracted features
are shown in Table 1. Fifteen volumes were removed
from the manual feature analysis because of poor
segmentation resulting in inaccurate parameteriza-
tion. Two-tailed t-tests indicate that all the manually
extracted features in the dataset are statistically differ-
ent between means, except the axis ratio. As such, all
features except axis ratio were included in the manual
feature classifier.

Diagnostic Network Results

Table 2 shows the accuracy of the single input
networks. Interestingly, the VGG19 networks achieve
the best accuracy for all four inputs. Additionally, the
superficial structural images achieve the worst perfor-
mance when compared with the other input image
types. Conversely, the deep structural images achieve
the highest accuracy out of all the single networkswhen
using the VGG19 architecture.
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Table 1. Mean Values of Manually Extracted Parameters

Nonreferable DR (± SD) Referable DR (± SD) P Value

FAZ parameters
Area (mm2) 1.340 (0.825) 1.915 (1.204) < 0.01
Perimeter (mm) 7.591 (5.070) 10.199 (5.741) < 0.01
Acircularity index 1.835 (0.661) 2.072 (0.665) < 0.01
Minimum diameter (mm) 0.997 (0.242) 1.088 (0.293) < 0.01
Maximum diameter (mm) 1.545 (0.341) 1.867 (0.534) < 0.01
Axis ratio 1.654 (0.822) 1.762 (0.429) 0.11
Eccentricity 0.562 (0.152) 0.625 (0.147) < 0.01
Vascular parameters
Vessel density 0.449 (0.041) 0.384 (0.044) < 0.01
Inner density 0.463 (0.042) 0.395 (0.046) < 0.01
Central density 0.261 (0.062) 0.207 (0.065) < 0.01
Skeleton density 0.062 (0.007) 0.051 (0.007) < 0.01
Fractal dimension 1.883 (0.014) 1.861 (0.017) < 0.01

Table 2. Accuracy of Single Input Networks

Deep Superficial Deep Superficial
Structural (± SD) Structural (± SD) Vascular (± SD) Vascular (± SD)

VGG19 87.45 (2.98) 77.57 (2.57) 85.56 (2.33) 85.76 (2.86)
ResNet50 77.76 (5.72) 67.81 (6.46) 79.25 (3.76) 76.92 (5.18)
DenseNet 71.70 (1.83) 64.51 (4.35) 76.07 (5.54) 81.70 (5.68)

Table 3. Comparison of Ensembled Networks to Manual Feature Classifier

Majority Voting Stacking Manual Features

Accuracy 92.00 (1.92) 89.86 (2.55) 83.10 (4.89)
Sensitivity 90.41 (6.23) 87.38 (5.85) 69.26 (9.02)
Specificity 93.33 (5.18) 92.09 (5.16) 78.42 (6.32)

Table 4. Comparison of 3 Channel Input Networks

Majority Voting VGG-19

Accuracy 90.71 (1.65) 87.70 (3.41)
Sensitivity 93.32 (5.34) 94.20 (3.13)
Specificity 87.74 (4.88) 80.53 (6.60)

Table 3 reports the accuracy, sensitivity, and speci-
ficity of the ensembled networks as well as the network
classifier the manual features. Both ensemble methods
achieved higher accuracy than the manual feature
classifier.

Table 4 reports the accuracy, sensitivity, and speci-
ficity of a three-channel input ensemble network and
three-channel input VGG19 network. As the super-
ficial structural images showed the lowest diagnos-
tic accuracy in the single networks (Table 2), and we
used networks including pretrained ImageNet weights

which require a three-channel input, the networks in
these results did not include the superficial structural
images. Majority voting outperformed the stacking
method, and was chosen for comparison to a standard
single VGG19 network.

Model Visualization

A comparison of representative CAM and Grad-
CAM visualizations are shown in Figure 4 for the
case of a subject with DR. As shown, the Grad-CAM
image is better able to focus on features associated with
the diseased regions. The vessel thickening above the
FAZ, and region of capillary dropout to the left of the
FAZ are shown to be more predictive of disease than
the relatively normal looking vasculature more periph-
erally. An additional diabetic patient (severe DR) is
shown in Figure 5 along with the Grad-Cam images
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Figure 4. (A) A deep plexus enface image of a DR subject and the corresponding heat maps using the (B) original CAM method and (C)
Grad-CAM. As shown by the smaller, more focal regions of warmer colors, the Grad-CAM image is able to localize on areas of disease better
than the original CAMmethod. The vessel thickening above the FAZ, and region of capillary dropout to the left of the FAZ are shown to be
more predictive of disease than the relatively normal looking vasculature more peripherally.

Figure 5. Grad-CAMs for (A) the superficial structural image, (B) deep structural image, (C) superficial angiography image, (D) and deep
vasculature image of a severe DR patient. Hard exudates and regions of fluid are highlighted in the structural images. Microaneurysms and
regions of capillary dropout are highlighted in the vascular images.

for the superficial and deep plexus of both structural
OCT and OCTA images. These images highlight that
for each input image, the networks are searching for
distinctly different features for classification. In the
structural images (Figure 5), the most attention is given
to regions of fluid and the hard exudates surrounding
that region. For the OCTA images, the region of great-
est influence is centered on the larger microaneurysms
in the images. Conversely, for the control images shown
in Figure 6, the whole parafoveal zone is shown to be
influential.

In cases of misclassification, the results from Grad-
CAM resembled the pattern more typical of the incor-
rect classified category. For a referable NPDR patient,
as in Figure 7, the Grad-CAMs show the characteristic
pattern for nonreferable DR, having a brighter area in
the parafoveal zone with the FAZ being less influential.
For a case of mild DR incorrectly classified as refer-
able DR,more focal regions of potential vessel dropout
on the temporal side of the fovea are shown to be of

high importance and contributing to the misclassifica-
tion (Figs. 8F–8H).

Discussion

As retinal imaging systems continue to improve, so
does our ability to see hallmark features of DR.Optical
coherence tomography angiography allows clinicians
to view depth-resolved sections of the retina for both
structural clues, as well as vascular. As a result,
OCTA may enable accurate detection of DR if the
right features are used for classification. In this paper,
we compare the classification accuracy of features
automatically learned from single plexus enface images,
combinations of these learned features, and hand-
crafted features. Insight to the features learned by the
CNN are highlighted through CAM heat maps.
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Figure 6. Grad-CAMs for (A) the superficial structural image, (B) deep structural image, (C) superficial angiography image, and (D) deep
vasculature image of a control patient. Regions of higher uniform intensity in the structural images and regions of normal vasculature tend
to have a greater effect on the classification.

Figure7. RepresentativeGrad-CAMresults for aNPDRpatient thatwasmisclassifiedasnonreferable. The (A) superficial structural image, (B)
deep structural image, (C) superficial angiography image and (D) deep vasculature image of the referable NPDR patient who was misclas-
sified as nonreferable DR and (E-H) the corresponding Grad-CAMs. The typical nonreferable DR pattern of a brighter parafoveal region is
observed in all Grad-CAMs.

It is shown in Tables 2 and 3 that a combina-
tion of diverse component networks provide a higher
accuracy than single component networks alone. Both
majority voting and stacking techniques yield higher
accuracies. Although meta-learners, like the one in
the stacking technique, typically outperform simpler
algorithms such as majority voting, the relationship
between our four inputs was likely more straightfor-
ward than typical problems requiring meta-learners.
Different configurations for the meta-learner were
investigated, but none was able to beat the simple
majority voting approach for this dataset. For the
component networks, which were trained on enface
images from a single plexus, the shallower network

of VGG19 performed better on this task than the
deeper state-of-the-art networks. While there is some
precedent for this,33 it is expected that the ResNet
or DenseNet architectures would perform better with
more data. Although pretrained ResNet18 ImageNet
weights are not currently available for use with Keras,
this architecture may perform similarly or better than
the VGG19 architecture. The superficial structural
images had the worst performance, which may be due
to their relatively homogenous appearance, even in
diseased states. This lack of texture can make it diffi-
cult for CNNs to learn features. Additionally, the deep
structural images appear to achieve accuracies on par
or better than the vascular images, suggesting that
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Figure 8. Representative Grad-CAM results for amild DR patient that wasmisclassified as referable DR. The (A) superficial structural image,
(B) deep structural image, (C) superficial angiography image, and (D) deep vasculature image of the nonreferable mild DR patient who was
misclassified as referable DR and (E-H) the corresponding Grad-CAMs. (F-H) Focal regions of potential vessel dropout on the temporal side
of the fovea are shown to be of high importance in the images which were misclassified as referable DR, whereas the superficial structural
image shows the characteristic parafoveal pattern because it was the only image correctly classified.

OCT structural information should also be taken into
account while analyzing OCTA volumes.

There exists strong evidence in the literature that
hand-crafted features extracted from OCT and OCTA
images are able to differentiate between grades of
DR.34–36 One study37 that looked at combining hand-
crafted features from both the superficial and deep
plexus resulted in an overall accuracy, sensitivity, and
specificity of 94.3, 97.9, and 87.0, when classifying
between controls and mild DR patients. This paper
extracts parameters for the vessel density, blood vessel
caliber, and width of the FAZ and used an SVM
for the classifier. Another recent paper38 uses both
deep learning andmanually extracted features to detect
DR in OCT. For their network, they combined both
handcrafted features and learned features to differenti-
ate between grades 0 and 1 DRwith an accuracy, sensi-
tivity and specificity of 0.92, 0.90, and 0.95, respec-
tively. It is important to note that with manually
extracted features there is the ability for errors to
propagate where errors which arise during the segmen-
tation and parameterization phase to affect the classi-
fication. Future work could use an ensemble of both
hand-crafted features and learned features to enhance
performance.

To compare whether ensemble techniques achieved
better performance than a standard CNN, the three

grayscale images with the highest diagnostic accuracy
in Table 2 were chosen to create an RGB image as
input for a VGG-19 network. When compared with
an ensemble network with the same inputs, the ensem-
ble network achieved a higher accuracy and speci-
ficity as shown in Table 4. Additionally, although the
superficial structural image had a significantly worse
diagnostic accuracy on its own, the fact that the four-
channel input ensemble network outperformed the
three-channel input shows that it still holds important
information for the classification of DR and should be
considered in future works.

The CAMs, and Grad-CAM in particular, showed
good localization of the biomarkers associated with
DR, thereby increasing the interpretability of the CNN
results. In correctly classified referable DR images,
areas of hard exudates, DME, microaneurysms, and
capillary dropout show higher activation. The inter-
pretability, and subsequent physician trust in the
networks, could also be increased by utilizing Grad-
CAM in the choice of layers in which to ensemble as
done in a recent paper by Liu et al.39 Grad-CAMs were
created for each feature layer in networks trained to
detect pseudo-progression of glioblastoma multiform,
and a team of three specialists chose the most discrimi-
nating layer from each networkwithwhich to ensemble.
This technique could be used in future work to increase
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both algorithm performance and physician uptake of
the innovation.

Although this study demonstrates the ability of
CNNs to classify DR in OCTA with high accuracy,
there are notable limitations. First, the use of ensemble
learning methods greatly increases the computational
cost as it requires the training of multiple networks.
This increases both training time as well as the data
size of the final model, though this could be partially
alleviated through training the component networks
in parallel. Another limitation includes the restricted
dataset size; however, this limitation was mitigated
through the use of fine-tuning, data augmentation,
and class-weighting of the loss function. The authors
note that improved performance could be achieved
through a larger dataset. Furthermore, the dataset only
included images with a signal strength of 7 or above,
which is sometimes infeasible in patients with pathol-
ogy. The dataset also consists of images from only
one machine, thereby potentially limiting the network’s
performance on other OCTA machines. Future work
could endeavor to further stratify theDR classification.
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