
Introduction
Pharmacogenomics is the study of how inter-individual 
genetic variation determines drug response or toxicity 

[1]. With the rapid development and increasing appli-
cation of genome-wide genotyping and sequencing 
technologies, the fi eld has shifted from evaluating single 
genes or pathways known to be associated with a drug’s 
metabolic detoxifi cation profi le towards evaluating 
millions of variants using a comprehensive, unbiased 
approach. Genome-wide association studies (GWAS) 
involve the rapid evaluation of common SNPs throughout 
the genome for associations with complex diseases or 
pharmacological traits, and can be used in various study 
designs, including case-control studies, cohort studies 
and clinical trials [2]. Th e fi eld of oncology is especially 
invested in the discovery of pharmacogenomic markers 
that predict drug response or toxicity, because chemo-
therapeutic drugs often have narrow therapeutic indices 
with toxicity or non-response being potentially life-
threatening [3]. Th e aim is to identify genetic markers 
that will facilitate physician decision-making regarding 
optimal drug selection, dose and treatment duration on a 
patient-by-patient basis, with consequent improvement 
in drug effi  cacy and decreased toxicity.

Recent advances in sequencing technologies, statistical 
genetics analysis methods and clinical trial designs have 
shown promise for the discovery of variants associated 
with drug response. Successful clinical GWAS of cancer 
pharmacogenomic phenotypes have been reported 
[4-11], but replication of germline variant associations 
has been diffi  cult, often owing to challenges associated 
with large clinical trials and a l ack of well-defi ned 
replication populations in oncology. In this review, we 
will focus mainly on the contribution of germline genetic 
variations in chemotherapeutic toxicity and response, 
and discuss the advantages and limitations of GWAS in 
patient cohorts and lymphoblastoid cell lines (LCLs). 
Finally, we will refl ect on the challenges of pharmaco-
genomic discovery for cancer chemotherapeutics and the 
implementation of these discoveries in the clinical 
setting.

 Challenges of pharmacogenomic discovery
Th ere are several diff erences between using pharmaco-
genomics to study cancer compared with other complex 
diseases. For one, there are two genomes (germline and 
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tumor) to be considered. Variation in the germline 
genome represents inter-individual inherited genetic 
differ ences. In contrast, the tumor genome is composed 
of acquired somatic mutations that have accumulated 
over the evolution of the cancer, in addition to germline 
SNPs. Thus, variation in the tumor genome represents 
disease variation. The tumor genome is undeniably 
important in explaining the heterogeneous responses 
seen in patients treated with chemotherapy. An excellent 
example of this is the identification of somatic mutations 
in the tyrosine kinase domain of the epidermal growth 
factor receptor (EGFR) gene that correlate with response 
to gefitinib in non-small-cell lung cancer patients [12,13]. 
However, previous studies have shown that chemo thera-
peutic response is likely a heritable trait, suggesting that 
germline genetic variation also contributes to a patient’s 
response to a drug [14-16]. The role of the germline 
genome in cancer pharmacogenomics will be the main 
focus of this review.

Another characteristic of pharmacogenomics in the 
field of oncology is the difficulty of performing studies in 
humans, especially using pedigrees or related individuals. 
Chemotherapeutics are too toxic to be given to 
unaffected individuals, and as a result classical genetic 
studies with related individuals are not possible. Further-
more, chemotherapy response and toxicity are probably 
multigenic traits; therefore, for most drugs, many 
biologically important signals do not reach genome-wide 
significance but may contribute to some extent to the 
trait [17-19]. One solution to these challenges is to use a 
very large clinical study for the discovery of markers and 
then to confirm the findings in a large validation cohort 
[20]. However, this brings up one of the greatest chal-
lenges, which is that clinical studies are very expensive, 
and large clinical studies of a single agent, same dosage 
regimen of a chemotherapeutic are rare. Confounders 
might include concomitant medications or alternative 
therapies [21]. Despite these challenges, pharmaco-
genomic discovery has led to the identification of genetic 
markers associated with response to chemotherapy. Yet, 
even when significant genotype-pharmacological pheno-
type associations have been validated, effectively applying 
these discoveries to clinical practice remains challenging.

Genetic variants in germline DNA
Contributions to chemotherapeutic toxicity
There are several well-studied relationships between 
germ line genetic variation in a metabolizing gene and 
drug toxicity. This has led to the inclusion of pharma-
cogenomic information for chemotherapeutics in the US 
Food and Drug Administration (FDA) drug labels to 
ensure prescribing physicians are aware of the conse-
quences of relevant genetic information. Discoveries of 
pharmacogenomic-trait-associated genetic polymorphisms 

that have resulted in inclusion of pharmacogenomic 
information in FDA drug labels are listed in Table 1. We 
list only genetic variants, but there are several other 
biomarkers that can be utilized when prescribing drugs, 
including gene expression changes, chromosomal trans-
locations and copy number variations.

Genetic variation in thiopurine methyltransferase 
(TPMT) is associated with myelosuppression after 6- 
mercaptopurine (6-MP) and 6-thioguanine (6-TG) treat-
ment [22]. 6-MP is a standard treatment option for the 
most common childhood malignancy, acute lympho-
blastic leukemia (ALL) [23]. In addition, data suggest that 
genetic testing of TPMT may be important not only for 
determining TPMT-related 6-MP toxicity but also for 
determining response to 6-MP, measured by minimal 
residual disease (MRD), in the early course of childhood 
ALL [24]. Dose modifications based on TPMT genetic 
testing are now recommended by the FDA, and have 
been adopted widely at St Jude Children’s Research 
Hospital and certain other centers in the treatment of 
pediatric ALL [25,26].

Genetic variation in the metabolizing enzyme UDP 
glucuro nosyltransferase 1 family, polypeptide A1 
(UGT1A1) is associated with irinotecan-induced neutro-
penia [27,28]. Irinotecan is used to treat rhabdomyo-
sarcoma and refractory solid tumors, and the high 
association between drug toxicity and genetic variation 
in UGT1A1 has resulted in an FDA-mandated label 
change [29].

Another well-studied example is 5-fluorouracil (5-FU)/
capecitabine toxicities and dihydrophyrimidine dehydro-
genase (DPYD) genetic variation, which is the rate-
limiting enzyme in 5-FU catabolism [30,31]. Associations 
between DPYD genetic variants, specifically hetero zy-
gosity for the defective DYPD*2A allele, were found to be 
a risk factor for 5-FU toxicities, including leucopenia and 
severe mucositis. Interestingly, the effects of this hetero-
zygosity depended strongly on sex, because increased 
toxicity was observed only in men with the risk variant 
[32]. However, the predictive value of DYPD*2A geno-
typing is limited, and although the FDA label for 5-FU, 
which is used in the treatment of several cancers, states 
that patients with DPYD enzyme deficiency should not 
use 5-FU-based chemotherapy, the FDA does not require 
genetic testing [15,33].

These findings are all examples of the successful imple-
mentation of genetic testing in the clinic to affect drug 
treatment strategy. In each case, the genetic variants were 
discovered by candidate gene studies focusing on genes 
involved in drug metabolism and were found to have a 
large effect size. However, for most chemotherapeutics, 
toxicity and response are probably multigenic traits, 
dependent on multiple SNPs in modifier genes that have 
small effect sizes. Thus, a more comprehensive technique, 

Moen et al. Genome Medicine 2012, 4:90
http://genomemedicine.com/content/4/11/90

Page 2 of 9



such as GWAS, has been critical for furthering our 
understanding of genetic influences on chemotherapeutic 
toxicity and response.

In 2010, a GWAS was conducted that aimed to identify 
genetic variants associated with a common side effect of 
aromatase inhibitors, adverse musculoskeletal effects [8]. 
Aromatase inhibitors are an alternative treatment to 
tamoxifen for post-menopausal, hormone-dependent 
breast cancer patients [34,35]. The GWAS included 293 
cases and 585 controls. The four most significant SNPs 
were located on chromosome 14, and T-cell leukemia 1A 
(TCL1A) was the gene closest to the four SNPs [8]. 
Although this study did not include a validation cohort, 
the authors performed follow-up studies in cell lines to 
identify potential mechanisms by which these SNPs may 
be contributing to adverse musculoskeletal effects. They 
found that one of the SNPs created an estrogen response 
element and that TCL1A expression was estrogen 
dependent, suggesting that patients who carry the SNP 
might be more sensitive to the reduction of estrogen 
caused by aromatase inhibitor treatment. Although the 
means by which TCL1A expression causes adverse 
musculo skeletal effects were not described, the functional 
follow-up of their GWAS findings was valuable to the 
study [8]. Having a potential mechanism to at least partly 
explain why a genetic variant influences drug response 
increases the chances that it is indeed biologically 
relevant, especially if a validation cohort is not available.

Contributions to response to chemotherapy
In contrast to chemotherapeutic toxicity, which affects 
normal cells, the tumor genome and the germline 
genome are probably both important in the response to 
chemotherapeutics. Many of the FDA-mandated label 
changes relevant to drug response relate to genetic 
variants in the tumor genome, such as somatic mutations 
in EGFR for gefitinib, erlotinib and cetuximab, as 
mentioned previously. Other well-studied examples of 
tumor gene-drug pairs are KRAS and cetuximab, and 
BRAF and vemurafenib (Table  1) [36]. However, several 
recent studies have demonstrated the importance of 
germline genetic variation in drug response using a 
GWAS approach. In 2009, two studies identified genetic 
variants that are critical in determining pediatric ALL 
patient prognosis [10,37]. One paper focused on response 
to methotrexate, finding that, in a discovery cohort of 
434 patients, the most significant associations were with 
SNPs in the organic anion transporter polypeptide 
SLCO1B1 [10]. These SNPs were validated in an inde pen-
dent cohort of 206 patients. SLCO1B1 mediates uptake 
and excretion of substrates from the blood, including 
methotrexate [38]. Further investigation by sequencing of 
SLCO1B1 demonstrated that both common and rare 
variants contribute to methotrexate clearance [4]. These 

studies were able to identify a novel gene that was pre-
viously ignored in candidate gene studies, emphasizing 
the benefit of utilizing unbiased, genome-wide approaches 
[39-41].

The other study aimed to identify germline SNPs asso-
ciated with risk of MRD after chemotherapy to induce 
ALL remission in pediatric patients [37]. It is important 
to note that GWAS with a pharmacological phenotype as 
the measured endpoint in clinical samples provide more 
specific data related to the drug than GWAS measuring 
overall survival. There are other examples of studies 
measuring overall survival in a population of cancer 
patients treated with a specific drug, but whether the 
SNPs identified by these studies are involved in drug 
responsiveness or in other factors important in overall 
survival, such as disease aggressiveness, cannot be 
elucidated without further functional studies [5]. This 
study investigated two independent cohorts of newly 
diagnosed pediatric ALL cases: 318 patients in St Jude 
Total Therapy protocols XIIIB and XV, and 169 patients 
in Children’s Oncology Group trial P9906 [37]. The two 
patient cohorts were on slightly different remission-
induction regimens with different time points for MRD 
measurement. One benefit to this strategy is that SNPs 
identified in both cohorts would be expected to have 
broader prognostic significance, but SNPs specific to 
either induction treatment could be missed. This study 
identified 102 SNPs associated with MRD in both 
cohorts, five of which were located within the IL15 locus. 
These SNPs were also associated with other leukemic 
phenotypes such as hematological relapse.

Both of these studies highlight the benefits of investi-
gating genetic variants associated with drug response at a 
genome-wide level. They also address some of the chal-
lenges of GWAS, such as the high rate of false discoveries, 
variation between patient cohorts, and accessibility of 
validation cohorts. As a complement to clinical studies, 
LCLs can be used to investigate associations between 
genetic variation and chemotherapeutic susceptibility.

LCLs as a model for pharmacogenomic discovery
Some of the limitations of clinical GWAS can be over-
come by performing whole-genome studies using cellular 
models. Studies performed in LCLs derived from large 
pedigrees have demonstrated a significant role of genetics 
in the variation in cellular sensitivity seen with several 
chemotherapeutic agents [14,42-45]. The Inter national 
HapMap Project was launched in 2002 with the intention 
of creating a public database of common variations in the 
human genome [46]. The benefits of HapMap LCLs in 
identifying genetic variants associated with pharmaco-
logical traits include publicly available genotype and 
sequencing data, allowing for GWAS between the 
HapMap/1000 Genomes variants [47,48] and cellular 
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phenotypes. Furthermore, gene expression data [49,50], 
cytosine modification patterns [51-53], and microRNA 
data [54] are publicly available for several of the popu-
lations, making them a valuable resource for exploring 
genotype-phenotype relationships at a genome-wide 
level. Overlaying these datasets on top of each other 
allows researchers to investigate genetic and epigenetic 
influences on gene expression, and how they can affect 
cellular phenotypes such as cellular sensitivity to a drug 
(Figure  1). Unlike clinical GWAS, which can only show 
correlation, LCLs offer the opportunity to test the finding 
via experimental manipulation and therefore begin to get 
at the underlying biology. LCLs are an unlimited resource 
and allow for the evaluation of toxic drugs in a controlled 
testing system.

However, as with any model system, there are dis-
advantages of working with LCLs for pharmacogenomic 
discovery. The phenotype observed from in vitro experi-
ments may not be recapitulated in vivo. For example, 
studies have shown differences in LCL DNA methylation 
patterns compared to whole blood and peripheral blood 
samples [55,56]. This suggests that LCLs may not recapi-
tu late the epigenetic regulation of normal blood cells, 
which should be taken into consideration when analyzing 
downstream phenotypes. But there is still a strong 
genetic influence on inter-individual DNA methylation 
patterns in LCLs [51], and incorporating these data into 
epigenetic studies in LCLs may help researchers focus on 
biologically relevant epigenetic differences. Experiments 
with LCLs are also subject to in vitro confounders, such 
as Epstein-Barr virus (EBV) copy number, growth rate 
differences between cell lines, and thaw effects. A dis-
advantage that is especially important to take into 
consideration for pharmacogenomic studies is that most 
LCLs lack expression of many CYP450 enzymes and 
several transporters [57]; therefore, they are most useful 

for identifying the contribution of pharmacodynamic 
genes.

LCLs seem most appropriate as a model for chemo-
therapeutic toxicity and, to some extent, chemothera-
peutic response, although they do not contain the 
extensive somatic mutations known to be present in 
tumors. There are several cellular phenotypes that can be 
measured to determine cellular sensitivity to a drug, 
including cytotoxicity, apoptosis, gene expression changes, 
and intracellular concentration of the drug or metabolite. 
Owing to the diverse world populations from which 
LCLs were created, inclusion of multiple ethnic popu-
lations allows for either investigation of inter-ethnic 
differences or meta-analyses of multiple populations to 
obtain ‘cross-population’ SNPs [58,59].

In addition to identifying genetic variants associated 
with cellular pharmacological traits, LCLs have also been 
used to map SNPs associated with endophenotypes such 
as gene expression. Comprehensive expression quanti-
tative trait loci (eQTL) maps can be analyzed in con-
junction with pharmacological-trait-associated SNPs to 
evaluate the potential function of these associated SNPs 
[60]. Interestingly, SNPs associated with chemothera-
peutic-induced cytotoxicity in LCLs are enriched in 
eQTLs [61]. Since most pharmacogenetic studies previous 
to GWAS were focused on variation in coding regions of 
known candidate genes, this was an important finding 
because it opened up the possibility that SNPs in introns 
or intergenic regions associated with gene expression 
contributed significantly to variation in pharmacological 
phenotypes. Furthermore, connections between pharma-
co logically important variants and eQTLs may lay the 
basis for understanding the mechanism behind genetic 
influence on cellular sensitivity to chemotherapy.

To facilitate the integration of genotype, gene expres-
sion and drug phenotype data in LCLs, the ‘triangle 

Table 1. Genetic polymorphisms that are included as pharmacogenomic information in FDA labels for chemotherapeutic 
agents

   Chemotherapeutic response 
Gene Drug(s) versus toxicity Reference(s)

In tumor genome

 BRAF Vemurafenib Response [82]

 KIT  Imatinib Response [83]

 EGFR Cetuximab, erlotinib, Gefitinib, panitumumab Response [13,84-86]

 KRAS Cetuximab, panitumumab Response [87,88]

In germline genome

 G6PD Rasburicase Toxicity [89]

 TPMT Cisplatin, 6-MP, 6-TG Toxicity [25,90]

 UGT1A1 Irinotecan, nilotinib Toxicity [28,91,92]

 DPYD Capecitabine Toxicity [30]

The top half of the table shows tumor genome mutations associated with drug response and the bottom half shows germline mutations associated with drug toxicity.
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model’ was first proposed in 2007 [62]. The first side of 
the triangle is a GWAS between SNPs and a pharma-
cological phenotype. On the second side, eQTL analysis 
is performed on the most significant SNPs from the first 
side to identify SNPs associated with expression of a 
gene. To complete the triangle, the expression of the 
eQTL target genes is tested for significant correlation 
with drug sensitivity. For example, the HapMap LCLs 
were used to investigate the role of genetic variation in 
susceptibility to cytarabine arabinoside (ara-C) [63]. Ara-
C is an anti-metabolite used to treat patients with acute 
myeloid leukemia and other hematological malignancies 
[64]. Using the triangle method, four eQTLs were identi-
fied that explained 51% of the variability in ara-C 
sensitivity among HapMap individuals of European 
descent (CEU) and five SNPs that explain 58% of the 
variation among individuals of African descent (YRI). 
These SNPs were specific to each population, and the YRI 
population was observed to be more sensitive to ara-C 
compared to the CEU population.

Translation of LCL findings to the clinic
Although the use of LCLs as a model system for cancer 
pharmacology brings with it a variety of challenges [65], 
targets discovered through studies using the LCL model 
have been replicated in clinical trials, arguably the 
ultimate measure of utility (Figure  2). A candidate-gene 

approach in LCLs identified SNPs in FKBP that were 
associated with sensitivity to anti-leukemics, and these 
SNPs were found to also associate with clinical response 
in acute myeloid leukemia patients [66]. In another study 
using the LCL model, novel germline genetic biomarkers 
of platinum susceptibility were identified, and these 
variants were replicable in a clinical setting with head 
and neck cancer patients [67]. In another LCL study, a 
top SNP associated with resistance to cisplatin was found 
to be significantly associated with decreased progression-
free survival and poorer overall survival in ovarian cancer 
patients [68]. A similar study assessed cisplatin cyto-
toxicity in LCLs from the Human Variation Panel. The 
168 most significant SNPs identified in the LCL GWAS 
were then genotyped in 222 small-cell lung cancer and 
961 non-small-cell lung cancer patients treated with 
platinum-based therapy [69]. Several of the top SNPs 
were trans-eQTLs, and subsequent knockdown of two of 
the target genes significantly decreased cisplatin sensi-
tivity in three lung cancer cell lines. Although the top 
SNPs from these two platinum-based studies did not 
overlap, this may be attributed to the relatively small 
sample sizes, differences in ethnicities, differences in cell 
line panels (HapMap versus Human Variation Panel), and 
other common LCL confounders such as intrinsic growth 
rate and ATP levels [69].

Furthermore, recent work from our group has shown 
that LCLs are able to model paclitaxel-induced peripheral 
neuropathy. Paclitaxel is a tubulin-targeting agent used in 
the treatment of many cancers, including breast, lung, 
head and neck, and ovarian [70]. Peripheral neuropathy 
is a common side effect of many chemotherapeutic 
agents, including paclitaxel, and limits their efficacy in 
patients [71]. A recent GWAS conducted with the 
CALGB 40401 patient cohort aimed to identify germline 
genetic variants associated with this adverse effect, and 
found significant associations with SNPs in FGD4 in both 
the discovery and validation cohorts [7]. Modeling this 
toxicity in LCLs would allow for functional follow-up 
studies to understand better the mechanisms behind this 
specific adverse effect. To test LCLs as a potential model 
for peripheral neuropathy, a GWAS was performed in 
247 HapMap LCLs and the results from this experiment 
were compared to the CALGB 40101 GWAS of sensory 
peripheral neuropathy in 859 breast cancer patients 
treated with paclitaxel in the previous study. We observed 
an enrichment of LCL cytotoxicity-associated SNPs in 
the peripheral-neuropathy-associated SNPs from the 
clinical trial with concordant allelic directions of effect 
(empirical P  =  0.007) [72]. A second study investigated 
cis-eQTLs in β-tubulin IIa (TUBB2A) and their corre-
lation with paclitaxel neurotoxicity in 214 cancer patients 
treated with paclitaxel [73]. Patients with promoter 
genotypes associated with higher levels of TUBB2A 

Figure 1. Integration of LCL datasets allows for comprehensive 
investigation of genotype-phenotype relationships. Genotype 
information can be found in the International HapMap Project 
or 1000 Genomes Project databases. Publicly available cytosine 
modification and microRNA data can be included to identify SNPs 
associated with these epigenetic factors. Genetics and epigenetics 
can both influence gene transcriptional activity, which may 
ultimately lead to variation in pharmacological phenotypes.
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expression experienced less paclitaxel neurotoxicity. In 
sub se quent analyses in LCLs, it was found that increased 
TUBB2A expression correlated with resistance to 
paclitaxel. This is another example of how clinical studies 
and LCL experiments can complement each other to 
generate a more comprehensive understanding of the 
role of genetic variation in drug sensitivity [73].

Clinical implementation of pharmacogenomic 
discoveries
Although the idea of ‘personalized medicine’ has generated 
much excitement, the clinical use of pharmacogenomic 
discoveries remains uncommon. One of the barriers to 
the use of pharmacogenomic testing is that some pres-
cribing decisions must be made quickly, making the need 
to wait for a genetic test unappealing to many physicians 
[74]. A solution to this is preemptive genetic testing. 
However, preemptive genetic testing has life-long impli-
cations, and the physician must make the decision 
whether to disclose all of the patient’s genetic information 
or just the information relevant to the current prescribing 
situation [74]. For example, genetic variation in genes 
important in drug metabolism and transport may be 
important in adverse drug responses to several drugs, not 
just chemotherapy; thus, the patient’s genotype for these 
drugs may be useful in future clinical decisions [75].

In order to study the feasibility of incorporating 
prospective pharmacogenomic testing, the 1200 Patients 

Project at The University of Chicago has been designed 
as a model to identify and overcome barriers to the 
clinical implementation of pharmacogenomics [76]. This 
model system is prospectively recruiting 1,200 adults 
who are receiving outpatient care under one of 12 ‘early 
adopter’ physicians. Preemptive comprehensive pharma-
co genomic genotyping will be performed on all patients 
in a high-throughput Clinical Laboratory Improvement 
Amendments setting. This addresses the barriers of time 
delay and cost, because physicians will receive genetic 
information about a patient from a single, cost-effective 
test for many pharmacogenomic variants before they 
prescribe any drug. Using a genotyping platform designed 
for specific variants associated with pharmacogenomic 
traits also reduces the ethical concerns raised regarding 
next-generation sequencing, which may identify 
incidental genetic findings such as genetic variants 
associated with disease risk [76].

If genetic information about patients is to be made 
available to physicians, databases that facilitate physicians’ 
searches for the impact of specific SNPs on relevant 
drugs will be needed, and are currently being developed 
[77]. The Pharmacogenetics and Pharmacogenomics 
Knowledge Base (PharmGKB) is an example of a database 
that serves as an interactive tool for researchers and 
physicians searching for information on genetic variation 
and drug response [78]. PharmGKB displays genotype, 
molecular and clinical data, and lets the user know the 
strength of the association based on the confidence of the 
existing literature. Users can search and browse the 
knowledge base by genes, drugs, diseases and pathways 
[78]. Yet, even with this information easily accessible, 
physicians as a community will still need guidance on 
how to handle such an abundance of knowledge. The 
realization of this challenge inspired the creation of the 
Clinical Pharmacogenetics Implementation Consortium 
(CPIC) in 2009 [79]. CPIC is a collaboration between 
Pharmacogenomics Research Network members, 
PharmGKB staff, and experts in pharmacogenetics, 
pharma cogenomics and laboratory medicine. Their goal 
is to provide clear, peer-reviewed guidelines to physicians 
in order to facilitate the effective use of pharmacogenetic 
tests in the clinic. Even with these efforts in place, it will 
require ongoing hard work and communication between 
researchers, physicians, pharmaceutical companies and 
patients before pharmacogenetic testing is implemented 
effectively and commonly in the clinic. For more 
information on the progress in and challenges of clinical 
implementation of pharmacogenomic testing in the 
clinic, please see the following literature [3,80,81].

Conclusions
Recent advances in genotyping and sequencing tech no-
logies have had a significant impact on the field of 

Figure 2. Translation between cell-based models and clinical 
studies is bidirectional. The identification of SNPs associated with 
drug response from a GWAS in LCLs has to be confirmed in patient 
studies to determine clinical significance. Conversely, SNPs associated 
with drug response that are identified in a patient cohort and are 
confirmed in a validation cohort can be experimentally tested in the 
LCL model to determine biological significance.

Cell-based models

• In vitro drug treatment of LCL
populations
• GWAS to identify SNPs
associated with drug sensitivity
• eQTL analysis of significant
SNPs
• Functional follow-up studies

Clinical studies

• GWAS to identify SNPs
associated with
chemotherapeutic response
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In vitro experiments to test biological significance 
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phar maco genomics. The goal of pharmacogenomics is to 
use a patient’s genotype to inform clinical decision-
making regarding treatment strategies, with the ultimate 
goal of avoiding adverse drug reactions while achieving 
the best drug response. This review has highlighted several 
successful pharmacogenomic GWAS and discussed the 
challenges of identifying genetic variants associated with 
pharmacological traits. Future progress will likely require 
a combination of patient cohort studies as well as cell-
based studies, and effective implementation of pharma-
co genomic findings into clinical practice.
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