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ABSTRACT

Background: Several studies associating single nucleotide polymorphisms (SNPs) 
frequencies with tumors outcome have been conducted, nevertheless malignant 
melanoma literature data are inconclusive.

Therefore we evaluate the impact of different genotypes for phosphoinositide-
3-kinase (PI3K) and vitamin D3 nuclear receptor (VDR) SNPs on melanoma patients’ 
outcome.

Materials and methods: Genomic DNA of 88 patients was extracted from blood 
and tumor samples. SNPs were determined by PCR using TaqMan assays. We selected 
polymorphisms of the regulatory and catalytic subunit of PI3K (PIK3R1 and PIK3CA 
genes, respectively), analyzing rs2699887C>T of PIK3CA and rs3730089G>A of 
PIK3R1 SNPs. Furthermore we considered the following VDR SNPs: rs2228570A>G 
(Fok1), rs731236A>G (Taq1) and rs1544410C>T (Bsm1).

Progression free survival (PFS) and overall survival (OS) were estimated with 
the Kaplan-Meier method and with Mantel-Haenszel log-rank test.

Results: The statistical analysis for Fok1 of VDR showed a significant difference 
in PFS after the first line therapy (median PFS= 21.2 months in the homozygous 
recessive genotype group vs. 3.3 months of homozygous dominant and heterozygous 
ones, p= 0.03). In particular, in homozygous recessive patients for Fok1 SNPs of VDR 
a high rate of histological regression and BRAF (B- Rapidly Accelerated Fibrosarcoma 
gene) mutation were observed. Furthermore, more efficacy of BRAF +/- MEK (MAPK-
ERK-Kinase) inhibitors therapies in homozygous recessive patients vs. homozygous 
dominant and heterozygous ones was shown.

Conclusions: Our study showed a significant correlation between homozygous 
recessive genotype of Fok1 SNPs of VDR gene and an increased PFS in patients who 
underwent a first line therapy with BRAF inhibitors.

INTRODUCTION

Malignant melanoma is the most aggressive skin 
cancer and the fifth and seventh most common cancer in 

developed countries among men and women, respectively. 
By the end of 2016 it is estimated that 76,380 malignant 
melanoma of the skin will be diagnosed and 10,130 disease-
related deaths will occur, in the United States only [1].
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The 5-year probability of surviving malignant 
melanoma ranges from 98% to <20% [2] depending on 
the stage of disease at diagnosis [3].

Evidences suggest that sex, age at presentation, 
histological features and stage of disease at time of 
diagnosis represent important factors influencing 
melanoma progression and survival [4–15].

Recently, important biological mechanisms have 
been examined for their contribution to the development 
and progression of malignant melanoma, including the 
phosphatidylinositol 3-kinase (PI3K)/PTEN/AKT/mTOR 
signaling pathway and the nuclear vitamin D receptor 
(VDR) function.

Many growth factors and cytokines are responsible 
for the activation of these two pathways implicating cell 
growth and death [16, 17].

In particular, numerous and different human 
tumors exhibited genetic alterations in the PI3K pathway. 
Specifically, PIK3CA, which encodes for the catalytic 
subunit p110α of class IA PI3-kinase, is amplified and 
overexpressed in ovarian cancer [18] and is commonly 
gain-of-function mutations in colon [19], brain [20], breast 
[21] and gastric cancers [22–25], but PIK3CA mutations 
seem to have a limited impact on growth of melanoma, up 
to now [26].

On the other side PIK3R1, encoding for the regulatory 
subunit p85 of PI3K, shows mutations especially in 
ovarian, colon [27], endometrial [28], prostate cancer [29], 
glioblastoma [30] and also in malignant melanoma [31].

Finally, considering VDR, its higher expression has 
been related to better survival in patients with lung [32, 
33] and breast cancer [34, 35].

A lower VDR expression, at the same time, was 
observed in melanoma especially for the vertical growth 
phase versus normal skin or nevi [36] and hypo-activation 
of VDR signaling pathway can inhibit melanocytic 
progression [37].

Frequent epigenetic and genetic alterations, such as 
single-nucleotide polymorphisms (SNPs), may increase or 
decrease the function of genes in VDR signaling pathways, 
resulting in susceptibility and modified prognosis of 
malignant melanoma [38–40].

Some variants of PIK3CA and PIK3R1 SNPs 
were studied in different type of tumor demonstrating an 
influence on prognosis [41–47] but in malignant melanoma, 
PI3K polymorphisms have not been evaluated yet.

For more common variants of polymorphisms in 
the VDR gene, available data indicated their capacity to 
change disease-specific survival in patients with breast 
cancer [48], lung cancer [49, 50] ovarian cancer [51] 
colorectal cancer [52, 53], renal cell carcinoma [54], 
prostate tumor [55–57], head and neck squamous cell 
carcinoma [58, 59], glioma [60] and, only very recently, 
in patients with malignant melanoma [46].

Currently, the treatment of advanced malignant 
melanoma made use of immuno-therapy with PD-1 and 
CTLA-4 inhibitors and, for melanomas harboring BRAF 

mutation, also, of target therapy with BRAF and MEK 
inhibitors.

Our study aimed to examine the associations 
between the clinical outcomes of malignant melanoma 
and some variants of SNPs in PIK3CA, PIK3R1 and VDR 
genes.

RESULTS

We enrolled 88 consecutive patients treated for 
cutaneous or occult malignant melanoma between 2012 
and 2016: 48 with no evidence of disease (NED) and 40 
with metastatic melanoma. Genotypes characteristics of 
the studied population are summarized in Table 1.

We did not observe a statistically significant 
difference in frequency distribution of polymorphisms 
between NED patients and metastatic ones.

The MAF (minor allele frequency) for all studied 
SNPs was >10%, therefore most statistical analysis were 
conducted applying a dominant model: patients with 
homozygous dominant and heterozygous genotype were 
compared with those with homozygous recessive ones.

In the pooled population, homozygous recessive 
genotype was not detected for SNP rs1544410 (Bsm1) of 
VDR while for SNP rs3730089 of PIK3R1 the number of 
homozygous recessive patients was too small to obtain 
statistical results, therefore we compared homozygous 
dominant with heterozygous patients.

All the examined polymorphisms fit the Hardy-
Weinberg equilibrium (HWE), except for Bsm1 SNP of 
VDR gene.

Therefore we did not include data about Bsm1.
In terms of OS, we observed no statistical 

differences between the two groups of patients evaluated 
for the SNPs rs3730089 in the PIK3R1 gene and VDR 
SNPs rs2228570 (Fok1), rs731236 (Taq1).

Nevertheless, for the SNP rs2699887 of PIK3CA 
gene, a very interesting trend of better OS in dominant 
homozygous and heterozygous genotype vs. recessive 
homozygous one was shown (median OS= 185.1 months 
vs. 19.4 months, respectively with a hazard ratio (HR)= 
0.28 (95% CI: 0.02-3.61), p= 0.06) (Figure 1).

Furthermore, in the cohort of metastatic patients 
we identified no statistical differences, in terms of PFS, 
between the selected groups for SNPs rs2699887 in the 
PIK3CA gene, rs3730089 in the PIK3R1 gene and Taq1 
in the VDR gene.

Considering the SNP Fok1, we observed statistical 
differences in PFS after the first line of treatment in 
favor of homozygous recessive patients vs. homozygous 
dominant and heterozygous ones (median PFS= 21.2 
months vs. 3.3 months, respectively with HR= 0.26 (95% 
CI: 0.09-0.69), p= 0.03 (Figure 2).

In particular, we observed that the homozygous 
recessive genotype in the Fok1 polymorphism is 
associated with a higher rate of tumor histological 
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regression (28% vs 8% in homozygous dominant and 
heterozygous patients; p= 0.05) and a higher incidence 
of BRAF mutations (100% vs 36% in homozygous 
dominant and heterozygous patients; p= 0.01) in the 
primary melanoma. Among the metastatic patients, 
17 of 40 (42.5%) resulted in melanomas harboring 
BRAF mutation, and 12 of them (70.6%), received 
BRAF +/- MEK inhibitors as first line of treatment; 
the treatment of the remaining patients is shown in 
Table 2. Furthermore, patients carrying a homozygous 
recessive genotype (41.7%) in the Fok1 polymorphism 
showed a better disease control rate by the first line 
of treatment with anti-BRAF +/- anti-MEK drugs vs. 
homozygous dominant (25.0%) and heterozygous 
groups (33.3%), with disease stability in 60% of cases 
vs. 25%, respectively (p= 0.01). The complete results of 
the statistical analysis are shown in Table 3.

DISCUSSION

The primary endpoint of our study was to assess 
whether SNPs genotype in key genes associated with 
tumor regression or progression have an impact on patients 
prognosis in terms of OS and PFS.

In melanoma patients VDR polymorphisms have 
been largely studied for their role in the development of 
the disease [61–65], while their influence on prognosis 
and survival has been evaluated by a limited number of 
studies.

The prospective study conducted by Newton-
Bishop et al. [66] considered 872 patients to identify an 
association between circulating levels of vitamin D and 
Breslow thickness; in addiction, five SNPs, including 
Fok1, Bsm1 and Taq1 were genotyped. Except for a 
weak association between the risk of relapse and the 
Bsm1 A allele and low circulating levels of vitamin 
D, no other impact of the SNPs on disease relapse or 
overall survival was observed. Annika Shäfer et al. [67] 
evaluated SNPs in VDR gene and other genes involved 
in vitamin D metabolism in 305 patients with melanoma 
and 370 healthy volunteers to find a connection 
between genotype, risk of developing melanoma and its 
prognosis. No interesting data seemed to arise from this 
study.

Recently Orlow et al. [46] analyzed the genotype 
of 38 different SNPs in the VDR gene in 3566 patients 
to assess their role on melanoma specific-survival. Their 
results showed that a statistically significant association 
exists between survival and the SNPs Bsm1 and Taq1 
also analyzed in our study. Differently from their results, 
we showed no influence on OS by aforementioned SNPs 
presumably due to our small sample and short median time 
of follow-up (2.6 years compared to 7.6 years of Orlow et 
al.’s study).

To the best of our knowledge this is the first 
study which aimed to evaluate the influence of SNPs 
in the VDR gene on response to antitumor treatment, 
demonstrating that homozygous recessive patients for 

Table 1: distribution of polymorphism genotypes among NED and metastatic patients

Gene Polymorphism Patients’ groupa Patients in NED Metastatic patients Unknown

PIK3CA  rs2699887  

HD 34 (38.6%) 24 (27.2%)

2 (2.3%)  Ht 11 (12.5%) 13 (14.8%)

HR 2 (2.3%) 2 (2.3%)

PIK3R1  rs3730089  

HD 38 (43.2%) 33 (37.5%)

1 (1.1%)  Ht 8 (9.1%) 6 (6.8%)

HR 2 (2.3%) 0

VDR  

rs2228570  

HD 22 (25.0%) 17 (19.3%)

2 (2.3%)  Ht 20 (22.7%) 16 (18.2%)

HR 6 (6.8%) 5 (5.7%)

rs731236  

HD 16 (18.2%) 17 (19.3%)

4 (4.5%)  Ht 21 (23.9%) 15 (17.0%)

HR 8 (9.1%) 7 (8.0%)

rs1544410  

HD 18 (20.4%) 17 (19.3%)

2 (2.3%)  Ht 29 (33.0%) 22 (25.0%)

HR 0 0

aHD, Ht and HR stand respectively for: homozygous dominant, heterozygous and homozygous recessive.
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Figure 1: overall survival curves for SNP rs2699887 of PIK3CA gene in homozygous dominant (genotype CC) and 
heterozygous (genotype CT) patients (blue curve) and homozygous recessive patients (genotype TT) (green curve).

Figure 2: progression free survival for SNP rs2228570 of VDR gene in homozygous dominant (genotype GG) and 
heterozygous patients (genotype GA) (blue curve) and homozygous recessive patients (genotype AA) (green curve).
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Fok1 polymorphism have a longer progression free 
survival and a better disease control rate to the first line 
of treatment with anti-BRAF +/- anti-MEK drugs when 
compared to homozygous dominant and heterozygous 
genotypes.

Nowadays limited data have been published about 
the SNP rs2699887 in the PIK3CA gene and it has not 
been investigated in melanoma patients so far.

In particular the aforementioned SNP was studied in 
esophageal [68], endometrial [28], oral [69], pulmonary 
[70, 71], and colorectal cancer [72] with various endpoints: 
risk of tumor development, association with pathological 
features, risk of metastasis, toxicity to chemotherapy and 
survival.

Wang et al. [45] studied 115 patients with 
endometrial cancer observing a better survival for 
heterozygous genotype in the PIK3CA rs2699887.

In our study we identified a trend (p= 0.06) of 
worse OS in recessive homozygous patients for PIK3CA 
rs2699887 SNPs vs. dominant and heterozygous ones. 
This SNPs could become a very interesting prognostic 

biomarker if it will be confirmed and demonstrated 
significative in future research.

Few data has been published on the SNP rs3730089 
in the PIK3R1 gene, studied only in prostate [73] and 
colon cancer. Despite no association between the SNP 
and prostate cancer risk was observed, the homozygous 
recessive and heterozygous genotypes have been 
associated with a greater risk of developing colon cancer 
[74].

Our study is the first to evaluate this SNP rs3730089 
in the PIK3R1 gene in melanoma patients and its impact 
on prognosis, even though no statistical association was 
found between genotype, OS and PFS.

In conclusion, in our study we showed for the 
first time that homozygous recessive patients for Fok1 
polymorphism have a longer progression free survival 
and better disease control rate during the first line of 
treatment with anti-BRAF +/- anti-MEK drugs compared 
to homozygous dominant and heterozygous genotypes. 
Furthermore, we first studied SNPs rs3730089 in the 
PIK3R1 gene and rs2699887 in the PIK3CA gene in 

Table 3: hazard ratios (HR) with 95% CI and p value of the Mantiel-Haenszel log-rank test for the studied 
polymorphisms in the different patients groups

Gene Polymorphism Patients’ group 
OS PFS

HR (95% CI) P value HR P value

PIK3CA rs2699887
HD and Ht

vs.
HR

0.28 (0.02 – 3.61) 0.0670 0.51 (0.03 – 7.94) 0.503

PIK3R1 rs3730089 HD
vs.Ht 2.11 (0.78 – 5.66) 0.186 1.71 (0.60 – 4.84) 0.333

VDR  

rs2228570
HD and Ht

vs.
HR

1.27 (0.33 – 4.84) 0.742 0.26 (0.09 – 0.69) 0.030

rs731236
HD and Ht

vs.
HR

1.02 (0.30 – 3.48) 0.964 1.13 (0.39 – 3.29) 0.812

rs1544410
HD
vs.
Ht

1.50 (0.62 – 3.62) 0.345 1.35 (0.55 – 3.27) 0.478

Table 2: summary of first line treatment in BRAF mutated patients

BRAF mutated patients

Treatment N (%)

Chemotherapy 1 (5.9)

BRAF +/- MEK inhibitors 12 (70.6)

ANTI-PD1 1 (5.9)

Best supportive care 3 (17.6)
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melanoma patients, observing a trend of worse OS in 
homozygous recessive patients for the SNP rs2699887 
in the PIK3CA gene vs. homozygous dominant and 
heterozygous genotypes.

The main study limitation is related to the small 
sample of patients: increasing sample size and time of 
follow-up would improve the statistical power of our 
findings allowing us to confirm, most likely, the prognostic 
and predictive role of the SNPs Fok1 in the VDR gene 
and rs2699887 in the PIK3CA gene. There are no 
evidence-based guidelines, up to now, that specify the best 
therapy sequence for treatment of metastatic melanoma 
(immunotherapy followed by target treatments or vice 
versa), therefore it could be interesting to evaluate whether 
the Fok1 polymorphism is associated with a major efficacy 
of treatment with BRAF +/- MEK inhibitors regardless of 
line of therapy.

MATERIALS AND METHODS

Patients’ selection

We retrospectively reviewed clinical history and 
follow-up of patients with cutaneous or occult malignant 
melanoma treated at the Department of Medical Oncology 
and at the Dermatology Unit of Università Politecnica 
Marche-Azienda Ospedaliero Universitaria Ospedali 
Riuniti Umberto I°-G.M. Lancisi-G. Salesi in Ancona, 
Italy between 2012 and 2016.

Eligibility criteria included histological diagnosis 
of malignant melanoma and no contraindications to anti-
tumor therapy. Data was retrospectively collected from 
patients’ medical records.

Recorded patient characteristics and clinical-
pathological features included: age, sex, Eastern 
Cooperative Oncology Group (ECOG) performance 
status, stage of disease according to the TNM (AJCC 
2009) [3], site of tumor, histological features, mutational 
status of BRAF gene, allele frequencies of the analyzed 
SNPs and data regarding all the treatments performed by 
the patients.

For patients who underwent immunotherapy, 
response to treatment was evaluated with the immune 
related Response Criteria (irRC) [75].

For all the others, response to therapy was assessed 
according to RECIST 1.1 (Response Evaluation Criteria In 
Solid Tumors) [76]. The “Common Terminology Criteria 
for Adverse Events” (NCI CTCAE, version 4.0) [77] was 
used to record side effects of anti-tumor therapy.

PI3K and VDR genotyping

DNA extracted from formalin-fixed paraffin-
embedded tissue blocks of malignant melanoma or from 
whole blood was used to PIK3CA, PIK3R1 and VDR 
genotyping.

Single nucleotide polymorphisms within each gene 
were selected using the Single Nucleotide Polymorphism 
database (dbSNP) generated by the National Centre for 
Biotechnology Information [78] and by reviewing the 
published literature, using the following criteria:

1. the polymorphism had some degree of likelihood 
to biologically modify the structure or the expression of 
the gene.

2. the MAF was above 10%.
3. the genetic polymorphism was well-documented.

On the basis of aforementioned criteria, we selected the 
following SNPs:

• PIK3CA gene: rs2699887 SNP, located in an intron 
region in proximity of the 5'-side, with C/T allelic 
variants.

• PIK3R1 gene: rs3730089 missense SNP, located in 
exon 6, with A/G allelic variants. In presence of minor 
allelic variant, PI3K/AKT pathway becomes hyper-
activated [79].

• VDR gene: rs2228570 missense SNP, named Fok1, 
located near starting codon, with T/C variants that 
defined f and F alleles respectively [80, 81].

• VDR gene: rs731236 SNP, named Taq1, located in 
exon 2, with C/T variants that define t and T alleles 
respectively.

• VDR gene: rs1544410 SNP, named Bsm1, located in an 
intron region, with A/G variants [82].

SNP genotyping was performed by TaqMan technology, 
using SNP genotyping assay. Genotypes were analysed on 
the 7300 Real-Time PCR System.

Statistical analysis

The association between categorical variables was 
evaluated by Fisher exact test for binomial categorical 
variables and by chi-square test for all other applications. 
Survival probability was estimated using the Kaplan–
Meier method.

Significant differences in the probability of survival 
between the strata were evaluated by log-rank test 
(significance was set at a 0.05 level for all analyses).

For statistical analysis, OS was evaluated from 
histological diagnosis of melanoma to event or censoring, 
whereas PFS was considered as the interval between the 
date of start of 1st line treatment until death, last follow-up 
visit or first sign of clinical progression, whichever came 
first.

Statistical analysis for polymorphisms was 
conducted considering the outcome of wild type 
(homozygous dominant) and heterozygous vs. 
homozygous recessive genotype.
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Nevertheless, in the pooled population, two 
polymorphisms showed the absence or a poorly 
representation of homozygous recessive genotype. In these 
cases for the statistical analysis we confronted wild type 
with heterozygous patients.

All genetic polymorphisms were examined for 
deviation from HWE using the Powermarker v.3.25 
package [83]. All statistical analyses were performed by 
using MedCalc Statistical Software version 14.10.2 [84].
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