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A mesophilic, neutrophilic and aerobic, ammonia-oxidizing archaeon, strain EN76T, was isolated

from garden soil in Vienna (Austria). Cells were irregular cocci with a diameter of 0.6–0.9 mm and

possessed archaella and archaeal pili as cell appendages. Electron microscopy also indicated

clearly discernible areas of high and low electron density, as well as tubule-like structures. Strain

EN76T had an S-layer with p3 symmetry, so far only reported for members of the Sulfolobales.

Crenarchaeol was the major core lipid. The organism gained energy by oxidizing ammonia to nitrite

aerobically, thereby fixing CO2, but growth depended on the addition of small amounts of organic

acids. The optimal growth temperature was 42 6C and the optimal pH was 7.5, with ammonium

and pyruvate concentrations of 2.6 and 1 mM, respectively. The genome of strain EN76T had a

DNA G+C content of 52.7 mol%. Phylogenetic analyses of 16S rRNA genes showed that strain

EN76T is affiliated with the recently proposed phylum Thaumarchaeota, sharing 85 % 16S rRNA

gene sequence identity with the closest cultivated relative ‘Candidatus Nitrosopumilus maritimus’

SCM1, a marine ammonia-oxidizing archaeon, and a maximum of 81 % 16S rRNA gene sequence

identity with members of the phyla Crenarchaeota and Euryarchaeota and any of the other

recently proposed phyla (e.g. ‘Korarchaeota’ and ‘Aigarchaeota’). We propose the name

Nitrososphaera viennensis gen. nov., sp. nov. to accommodate strain EN76T. The type strain of

Nitrososphaera viennensis is strain EN76T (5DSM 26422T5JMC 19564T). Additionally, we

propose the family Nitrososphaeraceae fam. nov., the order Nitrososphaerales ord. nov. and the

class Nitrososphaeria classis nov.

Introduction
Microbes are immensely diverse and abundant, and inhabit
virtually all environments on Earth. However, most of this
microbial diversity remains undescribed, given that many
novel organisms are fastidious and their isolation and
cultivation is time-consuming or even impossible (Rappé
& Giovannoni, 2003). Cultivation-independent techniques

have increased our knowledge of microbial diversity and
metabolism tremendously (Lane et al., 1985; Marcy et al.,
2007; Rinke et al., 2013; Schmidt et al., 1991; Stein et al.,
1996), and have led to the proposal of several new bacterial
and archaeal phyla (e.g. Elkins et al., 2008; Gordon &
Giovannoni, 1996; Huber et al., 2002; Hugenholtz et al.,
1998; Nunoura et al., 2011; Rinke et al., 2013). In addition,
metabolic predictions based on meta-omic studies can also
support the design of media and consequently facilitate the
cultivation of uncharacterized microorganisms (Tyson &
Banfield, 2005). When used in combination, microbial
cultivation and metagenomics represent a powerful tool-
box to describe newly discovered microbial physiologies,
and to simultaneously assess their ecological distribution
and impact. The discovery of ammonia-oxidizing archaea

Abbreviations: AOA, ammonia-oxidizing archaea; AOB, ammonia-
oxidizing bacteria; DoE, design of experiment; GDGT, glycerol dibiphy-
tanyl glycerol tetraether; RSM, response surface model.

The GenBank/EMBL/DDBJ accession number for the genome
sequence of strain EN76T is CP007536.

Two supplementary tables and two supplementary figures are available
with the online version of this paper.
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(AOA) represents a successful example of such an inte-
grated approach. These archaea, originally called ‘mesophilic
Crenarchaeota’, were first identified in marine samples
(DeLong, 1992; DeLong et al., 1994; Fuhrman et al., 1992)
and were later detected in many more environments
(Jurgens et al., 1997; Karner et al., 2001; MacGregor et al.,
1997; Ochsenreiter et al., 2003; Preston et al., 1996; Schleper
et al., 1997; Takai et al., 2001). The first evidence for their
metabolism and potential ecological role was given by the
discovery of genes encoding a putative ammonia mono-
oxygenase, the key enzyme for ammonia oxidation, through
metagenomics (Hallam et al., 2006b; Treusch et al., 2005;
Venter et al., 2004) and through the cultivation and isolation
of the first AOA, ‘Candidatus Nitrosopumilus maritimus’
SCM1 (Könneke et al., 2005). The widespread occurrence of
potential archaeal ammonia oxidizers in the environment
has been confirmed by a large number of qualitative and
quantitative molecular surveys (Adair & Schwartz, 2008;
Alves et al., 2013; de la Torre et al., 2008; Francis et al., 2005;
He et al., 2007; Hershberger et al., 1996; Leininger et al.,
2006; Pester et al., 2012; Reigstad et al., 2008; Shen et al.,
2008; Wuchter et al., 2006; Zhang et al., 2008). Based on
phylogenetic analyses of concatenated ribosomal protein
sequences and full-genome comparisons with the first genome
sequence of the putative AOA ‘Candidatus Cenarchaeum
symbiosum’ (Hallam et al., 2006a), Brochier-Armanet et al.
(2008) suggested that the AOA comprise a new archaeal
phylum, the Thaumarchaeota, which was subsequently
supported by Spang et al. (2010) upon the inclusion of two
more genome sequences of members of the new phylum.

Due to the difficulty in cultivating and purifying members
of the Thaumarchaeota in laboratory cultures, pure isolates
are still rare (Könneke et al., 2005; Tourna et al., 2011) and
insights into the physiology of AOA are confined to studies
of two pure cultures (Könneke et al., 2005; Martens-
Habbena et al., 2009; Schouten et al., 2008) or are based on
enrichment cultures (de la Torre et al., 2008; Hatzenpichler
et al., 2008; Jung et al., 2011; Lehtovirta-Morley et al., 2011;
Santoro & Casciotti, 2011). ‘Candidatus Nitrosopumilus
maritimus’ SCM1 is a representative of the marine I.1a
group, which is one of the distinct lineages formed within
the phylum Thaumarchaeota. With the isolation of strain
EN76T, the first pure culture from soil and group I.1b was
obtained, which represents the second major lineage of the
Thaumarchaeota. The isolation of strain EN76T confirmed
ammonia oxidation by thaumarchaeotes in soil and ex-
panded the metabolic spectrum of AOA to include the
utilization of urea and organic substrates (Tourna et al.,
2011). These findings demonstrate the importance of pure
cultures to the investigation of growth requirements, and
will also help in future cultivation and purification
experiments of other members of the Thaumarchaeota.

The open ocean, marine sediments and soil contain large
numbers of microbes, with approximately 1.261029,
2.961029 and 2.661029 cells, respectively (Kallmeyer
et al., 2012; Whitman et al., 1998). Molecular surveys
based on amoA or 16S rRNA gene sequences have shown

that members of the Thaumarchaeota make up a large
fraction of the microbial biomass in all three habitats
(Bates et al., 2011; Karner et al., 2001; Leininger et al.,
2006). With up to 20 % of the picoplankton in the marine
environment (Karner et al., 2001), up to 80 % of the
microbiota in certain horizons of marine sediments
(Durbin & Teske, 2010; Jorgensen et al., 2012) and up to
1 % of the total microbiota in soil (Bates et al., 2011;
Leininger et al., 2006), the total abundance of thaumarch-
aeotes seems to be comparable to that of other highly
abundant bacterial phyla, even to that of the ubiquitous
Proteobacteria. Based on their large numbers in many
environments and their ability to perform the first and
rate-limiting step in nitrification, the oxidation of ammo-
nia to nitrite, members of the Thaumarchaeota are now
considered to play a major role in the global nitrogen cycle
(Alves et al., 2013; Di et al., 2009; Erguder et al., 2009;
Gubry-Rangin et al., 2010; Hatzenpichler, 2012; Jia &
Conrad, 2009; Nicol & Schleper, 2006; Offre et al., 2009;
Prosser & Nicol, 2012; Schauss et al., 2009; Schleper &
Nicol, 2010; Stahl & de la Torre, 2012; Stieglmeier et al.,
2014a; Wuchter et al., 2006; Xia et al., 2011; Zhalnina et al.,
2012). Several factors have been suggested as drivers of
environmental adaptation and niche selection of thau-
marchaeotes, such as pH and ammonia concentration
(reviewed by Prosser & Nicol, 2012). For example,
‘Candidatus Nitrosopumilus maritimus’ SCM1 and other
marine members of the Thaumarchaeota have been shown
to have a higher affinity to ammonia than cultivated
ammonia-oxidizing bacteria (AOB), and all strains in pure
culture or enrichment are adapted to low concentrations of
ammonia (Horak et al., 2013; Martens-Habbena et al.,
2009; Prosser & Nicol, 2012). However, thaumarchaeotes
are widespread in diverse habitats, exposed to wide ranges
of pH and ammonia concentration, and recent studies
suggest that they almost certainly harbour a broader range
of physiological and/or metabolic properties than is cur-
rently known (Alves et al., 2013; Durbin & Teske, 2010;
Jorgensen et al., 2012; Muller et al., 2010; Mussmann et al.,
2011). In order to understand their ecological impact, it
is important to identify and characterize in detail the
metabolic functions and physiological versatility of more
representatives of these archaea.

Although AOA have been studied intensively in the last
decade (reviewed by e.g. Nicol & Schleper, 2006; Stahl & de
la Torre, 2012; Stieglmeier et al., 2014a), there are presently
no validly published names of species, genera or higher
ranks within the phylum Thaumarchaeota. Here, we extend
the original characterization of strain EN76T (Tourna et al.,
2011), with a special focus on its ultrastructure and growth
improvements, and formally propose the species Nitro-
sosphaera viennensis sp. nov. and propose to assign this
species as the type species of the genus Nitrososphaera gen.
nov. The genus Nitrososphaera is the type of the family
Nitrososphaeraceae fam. nov. and the order Nitroso-
phaerales ord. nov., which is in turn the type of the class
Nitrososphaeria classis nov.
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Methods
Sample source and culture conditions. Sample source and isolation

strategy for strain EN76T were described previously by Tourna et al.
(2011). In brief, strain EN76T was isolated from Viennese garden soil
(48u 139 48.720 N 16u 219 28.930 E) by transferring 5 g soil into

50 ml freshwater medium (FWM) containing (l21) 1 g NaCl, 0.4 g
MgCl2 . 6H2O, 0.1 g CaCl2 . 2H2O, 0.2 g KH2PO4, 0.5 g KCl, 1 ml trace
element mixture, 1 ml vitamin solution and 7.5 mM ferric sodium EDTA,

0.5 mM NH4Cl as energy source and 2 mM NaHCO3 as carbon source.
Additionally 0.1 mM NaNO2 was supplied to the cultures. The medium
was adjusted to pH 7.5 and cultures were incubated at 37 uC in the dark

without shaking. Supplementation with antibiotics (carbenicillin,
streptomycin) and filtration of the cultures (0.45 mm pore size) were
applied to reduce bacterial and fungal contaminants. Growth was

followed by measuring ammonium consumption and nitrite production
photometrically. Additionally, light microscopy and quantitative PCR
were used as described previously (Tourna et al., 2011).

The purified strain EN76T was routinely cultured in 20 ml FWM in
sterile 30 ml polystyrene screw-capped containers (VWR; catalogue
no. 216-2637) supplemented with 1 mM NH4Cl, 2 mM NaHCO3,

0.1 mM sodium pyruvate and 100 mg antibiotics ml21 (kanamycin,
streptomycin or ofloxacin in MilliQ water). The medium was
buffered with HEPES/NaOH to pH 7.5. Larger volumes were cultured

in glass bottles and shaken (150 r.p.m.) in darkness.

Physiological characterization and multivariate optimization

of growth conditions. To determine optimal growth parameters as

well as the effect of different nitrogen and carbon substrates on the
growth of EN76T, the strain was cultivated in closed batch in 20 ml
FWM containing 100 mg antibiotics ml21 as described above. Sub-

strates were dissolved in MilliQ water and sterile filtered (0.2 mm)
before usage. Table 1 gives an overview of tested substrates.

In order to investigate optimal growth conditions for EN76T, a design
of experiments (DoE) strategy was applied, using the factors
temperature, pyruvate concentration and ammonium concentra-

tion. Based on our preliminary knowledge of the strain’s growth
requirements (Tourna et al., 2011), the range for each factor (design
space) was set as follows: 37–47 uC, 0.1–1.5 mM sodium pyruvate and

1–4 mM NH4Cl. As nitrite production was shown to follow biomass
production (Tourna et al., 2011), it was used to calculate the growth
rate (m) and maximum growth rate (mmax), which were eventually used

to develop the model (Design-Expert 8 software; Stat-Ease Inc.).
Experiments were conducted in triplicate, except for the centre points
of the initial two-level factorial screening design, which were set up in
fivefold replicates. The two-level factorial design was applied in order to

screen the design space rapidly. Due to a low model significance of data
obtained from the initial two-level factorial screening design space, an
augmented matrix was used in order to account for putative interactions

of individual factors. Thus, the two-level factorial design space was
extended by using a face-centred augmented matrix. Eventually, data
points of all experiments (n551) were used to establish a response

surface model (RSM). Data were analysed with the software Design-
Expert 8. ANOVA, based on a stepwise regression elimination
procedure, was used to develop the model. The desirability approach,

as described elsewhere (Derringer & Suich, 1980), was used to maximize
m or mmax (variable) based on variation of quantitative factors, here
c(ammonium), c(pyruvate) and temperature (within the design space). A

score is given to each quantitative factor setting that can be used to
maximize the variable. In this approach, desirability between 0 and 1
(corresponding to 0–100 %) can be assigned to a variable for

optimization; factors identified as being outside a certain desirability
function will not be considered for model generation. To verify the
calculated optimal growth conditions identified by the established RSM

model design space, one additional growth experiment (fivefold-
replicated closed-batch cultures) was performed (Fig. 1a).

For the cultivation of strain EN76T under reduced oxygen concen-
trations, serum bottles were sealed with rubber stoppers. Therefore,
the effect of black butyl (Glasgerätebau Ochs), grey butyl (Sigma
Aldrich), blue butyl (Dunn Labortechnik), red isoprene (Sigma
Aldrich), grey natural (Carl Roth) and grey–blue natural (VWR)
rubber stoppers on the growth of strain EN76T was tested (Table S1,
available in the online Supplementary Material).

Microscopy. For negative staining, cells were fixed with 2.5 %
glutaraldehyde in 16 PBS, transferred to carbon-coated copper grids
(200 mesh) and stained with 0.5 % uranyl acetate for 2 min as de-
scribed previously (Tourna et al., 2011). Images were recorded with a
megaview III camera (SIS) attached to a Philips EM 208 transmission
electron microscope (FEI) operated at 70 keV.

For scanning electron microscopy (SEM), poly-L-lysine-coated glass
slides were added to the culture from early to late exponential phase.
Attached cells were fixed for 2 h at room temperature with 2 %
glutaraldehyde and 2 % formaldehyde in 0.06 6 PHEM buffer (buffer
based on PIPES, HEPES, EGTA and MgCl2; J. Montanaro and N.
Leisch, unpublished). The cells were post-fixed with 1 % osmium
tetroxide for 2 h at room temperature followed by dehydration in a
graded ethanol series. After immersion in pure acetone, the slides
were critical-point-dried with a CPD 300 unit (Leica). The slides were
then mounted on stubs, gold-coated with an AGAR B7340 sputter-
coater and imaged using an XL20 instrument (Philips) running the
Microscope control program (version 7.00; FEI).

For the preparation of ultrathin sections, cells were grown in 1 l FWM
supplemented with 3 mM NH4Cl and 0.15 mM sodium pyruvate until
the late exponential growth phase. Cells were harvested by centrifu-
gation and fixed as mentioned above for SEM preparation. After
fixation, cells were washed twice in 100 mM PHEM buffer and covered
with 1 % agar. Cells were post-fixed for 1 h in osmium tetroxide (1 %),
washed three times (16PHEM; J. Montanaro and N. Leisch, un-
published), dehydrated in a graded ethanol series and embedded in
resin with acetonitrile as solvent. Polymerization was achieved by
incubating the resin blocks for 1 h at 40 uC and for 48–72 h at 60 uC
(Leisch et al., 2011). An Ultracut S (Leica) was used to produce
ultrathin sections (70 nm), which were then transferred to copper grids
(300 mesh). They were post-stained with uranyl acetate and lead citrate
before visualization on a Zeiss 902 instrument equipped with an
Olympus SharpEye camera at an accelerating voltage of 80 keV and a
Libra120 instrument (Carl Zeiss) equipped with a slow-scan CCD
camera (Tröndle) at an accelerating voltage of 120 keV. Images were
post-processed with Adobe Photoshop CS5.

To determine the general morphology and properties of the potential
S-layer protein of EN76T, negative staining of purified S-layer sheets
as well as freeze-fracturing/freeze-etching was performed. If not
otherwise mentioned, freeze-etching was carried out as described
previously (Klingl et al., 2011; Rachel et al., 2010). The purification of
S-layer proteins was done by breaking the cells by sonication,
differential centrifugation and extraction of lipids, using a MES buffer
system (Klingl, 2011; Veith et al., 2009). Subsequent negative staining
of S-layer sheets for transmission electron microscopy (TEM) was
performed as described previously (Rachel et al., 2010). For the
investigation of freeze-etching replicas and purified S-layer proteins, a
JEOL JEM 2100 TEM, equipped with a fast scan 2k62k CCD camera
F214 (TVIPS), was used at an accelerating voltage of 120 kV. Image
analyses, correlation averaging and determination of S-layer sym-
metry and lattice constants of negatively stained S-layer proteins as
well as freeze-etching replicas was performed with the ANIMETRA

CRYSTALS software package (release 1.1; Animetra).

Lipid analyses. Intact polar lipids and glycerol dibiphytanyl glycerol
tetraether (GDGT) were analysed previously and described by
Sinninghe Damsté et al. (2012).
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DNA isolation and phylogenetic analyses. Isolation of DNA from

the enrichment culture of strain EN76T and 454 pyrosequencing on a

454/FLX-Titanium sequencer (Roche) have been described in detail

previously (Tourna et al., 2011). The genome sequence was assembled

and annotated on the MicroScope platform (Vallenet et al., 2006,

2009). The 16S rRNA, amoA and amoB gene sequences of EN76T have

been deposited previously in GenBank under accession numbers

FR773157, FR773159 and FR773160, respectively (Tourna et al.,

2011). Phylogeny reconstruction of archaeal 16S rRNA genes was

based on the alignment of 1202 bp gene fragments with four

independent methods: CLUSTAL W (Thompson et al., 1994), MUSCLE

(Edgar, 2004), MAFFT (Katoh et al., 2005; Katoh & Toh, 2010), and T-

Coffee (Di Tommaso et al., 2011). The final consensus multiple

sequence alignment of the four methods was calculated with

MergeAlign (Collingridge & Kelly, 2012). After manual curation,

hypervariable positions that could not be aligned unambiguously

were excluded. Maximum-likelihood phylogenetic trees and boot-

strap support values were calculated with RaxML VI-HPC

(Stamatakis, 2006; Stamatakis et al., 2008) based on the GTR model

with invariable sites and gamma site rate variation (GTR+I+G).

Table 1. Effect of substrates on growth of strain EN76T

The effect of various substrates on growth of EN76T was evaluated compared with a chemolithoautotrophic culture supplemented with 1 mM

ammonium and 2 mM bicarbonate (default culture). Growth is scored as: ++, positive effect; +, similar to default culture; +/2, negative effect;

2, total inhibition of growth. All incubations were performed at least in duplicate. The table is an extended version of Table S1 of Tourna et al.

(2011). The default ammonium concentration added to cultures was 1 mM (if not stated otherwise) and the default pyruvate concentration added

to cultures was 0.5 mM (if not stated otherwise).

Substrate Substrate added Growth

Ammonium Pyruvate

Carbon compounds

Bicarbonate .2 mM (up to 10 mM) Yes No +

Organic acids (TCA cycle)

Acetate (0.05–2 mM) Yes No +

Citrate, succinate, fumarate, malate (0.1–0.5 mM) Yes No +

Pyruvate (0.05–10 mM) Yes Yes ++

Pyruvate (0.5 mM) No Yes 2

Oxaloacetate (0.5 mM) Yes No ++

a-Ketoglutarate (0.5 mM) Yes No ++

Glyoxylate (0.5 mM) Yes No ++

Sugars and sugar alcohols

Glucose, fructose, lactose, arabinose, sucrose, galactose, mannose (0.5–1 mM) Yes No +

Ribose (0.5 mM) Yes No 2

Glycerol (0.1 %, v/v) Yes No 2

Complex organic compounds

Peptone, yeast extract (0.05 %, w/v) Yes No 2

Nitrogen compounds

Ammonium

0.5–3 mM Yes No +

0.5–15 mM Yes Yes ++

Urea

0.5–1 mM No No +

0.5 mM No Yes ++

Amino acids

L-Alanine, D-alanine, L-glutamine, L-aspartic acid (0.1 g l21) Yes No 2

L-Glutamic acid, D-glutamic acid (0.1 g l21) Yes No +

Amino acid mixture (1 mM), Casamino acids (0.05 %, w/v) Yes No 2

Amines

Trimethylamine, ethanolamine (1 mM) No No +/2

Methanolamine (1 mM) No No 2

Methylamine (0.5 mM) Yes No +/2

Nitrate (1 mM) No Yes 2

Taurine

0.25–0.5 mM Yes No +

0.25–0.5 mM Yes Yes ++

Nucleobases

Pyrimidine, purine (0.1–1 mM) Yes No +/2

Cytidine (0.1–1 mM) Yes No +
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CLUSTAL W, MUSCLE, MAFFT and RaxML analyses were performed

through the CIPRES Science Gateway version 3.3 (Miller et al., 2010).

Storage. Cells of strain EN76T were harvested, suspended in 40 %

(v/v) glycerol and stored at 280 uC. Growth could be restored after

preservation for 12 months by carefully thawing cells on ice and

removing the glycerol by centrifugation of cells prior to inoculation

into fresh medium.

Results and Discussion

Metabolism

Strain EN76T is a mesophilic and neutrophilic organism,
growing at 28–47 uC and pH 6–8.5 (Tourna et al., 2011). It
produces energy by oxidizing ammonia aerobically to
nitrite (Fig. 1a). Strain EN76T grows equally well on urea as
an energy source, with production of about 2 mmol nitrite
per mol urea (Tourna et al., 2011). In contrast to ‘Can-
didatus Nitrosopumilus maritimus’ SCM1 (group I.1a),
strain EN76T and its close relative ‘Candidatus Nitro-
sosphaera gargensis’ Ga9.2 (both associated with group
I.1b) possess genes encoding urease and urea transporters
(Spang et al., 2012; Stieglmeier et al., 2014a; Tourna et al.,
2011; Walker et al., 2010) and, accordingly, growth on urea
has also been demonstrated in enrichment cultures of
‘Candidatus Nitrososphaera gargensis’ Ga9.2 (Spang et al.,
2012). Genes for urea utilization were recently also found
in metagenomic analyses of marine group I thaumarch-
aeotes from Arctic and meso-/bathypelagic waters and
marine sediments, indicating that urea is a more wide-
spread energy (and perhaps also carbon) source for AOA

(Alonso-Sáez et al., 2012; Park et al., 2012) than was
previously appreciated. The NO scavenger carboxy-PTIO
[2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-
oxyl-3-oxide] (Amano & Noda, 1995) has been shown to
inhibit growth and nitrite production of both strain
EN76T (Shen et al., 2013) and ‘Candidatus Nitroso-
pumilus maritimus’ SCM1 (Yan et al., 2012), indicating
an important role for NO in their energy metabolism.
In addition, hydroxylamine is probably an intermediate
during the oxidation of ammonia to nitrite, as shown
for AOB [Arp & Stein (2003) and references therein;
Hooper & Terry (1979)], and recently also shown for the
marine AOA ‘Candidatus Nitrosopumilus maritimus’
SCM1 (Vajrala et al., 2013). Strain EN76T tolerated am-
monium concentrations up to 15 mM and nitrite con-
centrations up to 10 mM, as reported previously (Tourna
et al., 2011). Thus, EN76T is less sensitive to high ammo-
nium and nitrite concentrations than, for example, its
close relative ‘Candidatus Nitrososphaera gargensis’ Ga9.2
and the marine strain ‘Candidatus Nitrosopumilus mari-
timus’ SCM1 (Hatzenpichler et al., 2008; Könneke et al.,
2005). The strain produces nitrous oxide (N2O) in
amounts comparable to those of AOB under oxic condi-
tions (4.6±0.6 amol N2O cell21 h21). However, in con-
trast to AOB, N2O production does not increase under
reduced oxygen levels, and might occur via a hybrid
formation mechanism (Stieglmeier et al., 2014b).

Strain EN76T is a mixotrophic organism that requires
organic acids (e.g. pyruvate, oxaloacetate, a-ketoglutarate
or glyoxylate) to stimulate growth (Table 1; Tourna et al.,
2011). Other organic substrates, such as sugars or amines,
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Fig. 1. (a) Growth curve of a culture of strain EN76T grown at 42 6C with 2 mM NH4Cl and 1 mM pyruvate. Cell counts,
ammonium consumption and nitrite production were used to follow growth. Data represent mean values of triplicate cultures
with standard deviations plotted (sometimes smaller than symbols). (b) Acceleration of growth of strain EN76T since purification
of the strain in 2010 (Tourna et al., 2011). The cultivation conditions were as follows: July 2010 and November 2010, 37 6C,
1 mM NH4Cl, 1 mM pyruvate; March 2013, 37 6C, 1 mM NH4Cl, 0.1 mM pyruvate; July 2013, 42 6C, 1 mM NH4Cl, 0.8 mM
pyruvate; November 2013, 42 6C, 2 mM NH4Cl, 1 mM pyruvate. Nitrite production was used to follow growth. Data represent
mean values of replicated cultures (three to five replicates) with standard deviations plotted (sometimes smaller than symbols).
Data points previously published in Fig. 3(b) of Tourna et al. (2011) (i.e. July 2010) were included in the figure.
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did not have a positive effect on growth of EN76T (Table
1). Growth stimulation by organic acids has recently also
been reported for the marine strain ‘Candidatus Nitroso-
pumilus maritimus’ SCM1 (Stahl & de la Torre, 2012;
Urakawa et al., 2011). Comparative genomic analyses of
strain EN76T, ‘Candidatus Nitrosopumilus maritimus’
SCM1 (Walker et al., 2010) and ‘Candidatus Nitroso-
sphaera gargensis’ Ga9.2 (Spang et al., 2012) revealed the
presence of genes encoding transporters for amino acids,
sulfonates (e.g. taurine) and glycerol in all three strains (P.
Offre, M. Kerou, A. Spang and C. Schleper, unpublished).
In addition, EN76T encodes putative nucleobase transpor-
ters. Therefore, different amino acids, taurine, glycerol
and nucleobases were tested in various concentrations as
possible substrates for EN76T (Table 1). However, none of
the above-mentioned compounds had a positive effect on
growth under the conditions tested. Instead, glycerol,
several amino acids and nucleobases inhibited growth.

Strain EN76T was initially described to grow optimally in
FWM supplemented with 1 mM pyruvate and 1 mM
NH4Cl at 37 uC and pH 7.5 (Tourna et al., 2011), with a
doubling time of approximately 45 h (based on cell
counts). However, the generation time of strain EN76T

decreased progressively from 45 to 27.5 h during continu-
ous cultivation and growth optimizations over 3 years (Fig.
1b). In order to reassess the optimal growth conditions and
possible interactions between the three known factors that
influence growth rate (i.e. temperature and ammonium
and pyruvate concentrations) comprehensively, we used a
DoE screening and optimization strategy (Box & Draper,
1987; Box & Lucas, 1959; Rittmann & Herwig, 2012). As an
example for the output of those experiments, the RSM
shown in Fig. S1 illustrates the effect of temperature and
pyruvate concentration on the maximum specific growth
rate (mmax) at a constant ammonium concentration of
2.5 mM. Based on the DoE data and the calculated model
obtained after varying temperature, ammonium and
pyruvate concentrations, we predicted the optimal growth
conditions of EN76T (see Table S2). The highest maximum
specific growth rate (mmax 0.024 h21) should be reached at
41.83 uC, 1.05 mM pyruvate and 2.59 mM NH4Cl (with a
desirability of 84 %). This corresponds to a generation time
of 29.0 h. In order to verify mmax and the generation time
predicted by the RSM experimentally, we grew the strain at
42 uC, 1 mM pyruvate and 2 mM NH4Cl and obtained a
maximum specific growth rate (mmax) of 0.023 h21 and a
generation time of 30.1±0.6 h (based on nitrite production).
Similar values for growth rate and generation time were
obtained using cell counts of EN76T for the calculation (mmax

0.026 h21; generation time 27.5±6.5 h). These experiment-
ally determined values are close to the generation time (29.2 h)
and a maximum specific growth rate (mmax 0.024 h21)
predicted by the model equation under the tested conditions
(Table S2). The model equation was additionally verified by
recalculating the generation time reported by Tourna et al.
(2011). The generation time based on the previously used
growth conditions was calculated as 42.0±2.7 h, which is

close to the initial experimental determination of 45 h
(Tourna et al., 2011). Enrichment cultures of the closely
related strain ‘Candidatus Nitrososphaera gargensis’ Ga9.2
have been reported to grow at 46 uC with an ammonium
concentration of 1 mM (Hatzenpichler et al., 2008).

Given that thaumarchaeotes have been shown to be light-
sensitive (French et al., 2012; Merbt et al., 2012), strain
EN76T was incubated in the dark. When cultivated in larger
volumes (.100 ml), cultures were shaken at 150 r.p.m.
Although the strain grows aerobically [21 % (v/v) O2 in the
gas phase], it can grow at oxygen concentrations as low as
3 % (v/v) O2 in the gas phase (Stieglmeier et al., 2014b).

Tests of various rubber stoppers indicated that growth of
EN76T was inhibited completely by black butyl and red
isoprene rubber stoppers, although it tolerated grey and
blue butyl rubber stoppers, as well as grey natural rubber
stoppers (Table S1). Inhibition of the activity of methano-
trophic bacteria by black butyl rubber stoppers has been
reported previously (Ettwig et al., 2009).

EN76T is not affected by water-soluble antibiotics like
kanamycin, streptomycin, carbenicillin, ampicillin (Tourna
et al., 2011) and ofloxacin, but is inhibited by antibiotics
that are soluble in ethanol or DMSO (e.g. chlorampheni-
col). Recently, the effects of nitrification inhibitors (e.g.
nitrapyrin, allylthiourea and dicyandiamide) and the anti-
biotic sulfathiazole, which are commonly used in agricul-
ture and livestock production, on the AOA strain EN76T

and a strain of the ammonia-oxidizing bacterium Nitro-
sospira multiformis have been tested (Shen et al., 2013).
Nitrapyrin had a stronger inhibitory effect on EN76T

compared with the bacterium, whereas dicyandiamide, the
copper chelators allylthiourea and amidinothiourea and
the antibiotic sulfathiazole had a weaker inhibitory effect
on EN76T (Shen et al., 2013).

Morphology

The irregular coccoid cells of strain EN76T had a diameter of
0.78±0.13 mm (n516) and usually occurred as single cells,
although clusters comprising several cells were sometimes
observed. Cells were motile and possess archaella (archaeal
flagella that are homologous to type IV pili; Jarrell &
Albers, 2012) with a diameter of 12.0±1.8 nm (Fig. 2g, h).
Genes encoding Crenarchaeota-like type-2 flagellins and
Euryarchaeota-like chemotaxis proteins (Fig. S2) were found
in the genome of EN76T, supporting the conclusion that
EN76T is probably motile. Crenarchaeota-like type-2 fla gene
clusters have been found in ‘Candidatus Nitrososphaera
gargensis’ Ga9.2 and the group I.1a-related strain ‘Can-
didatus Nitrosoarchaeum limnia’ SFB1, but not in the
genome of ‘Candidatus Nitrosopumilus maritimus’ SCM1
(Blainey et al., 2011; Spang et al., 2012; Walker et al., 2010).
In addition, pili with a diameter of 6.4±1.3 nm were
observed (not shown). The diameters of both appendages
are within the size ranges described for other archaea (Klingl
et al., 2013).
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In order to investigate the ultrastructure of EN76T,
ultrathin sections of chemically fixed and embedded cells
were prepared (Fig. 2c–f). Cells often contained one or
two electron-dense particles with a size of 87±15 nm (Fig.
2f). Similar electron-dense particles present in anaerobic
ammonium-oxidizing (anammox) bacteria have been
shown to be enriched in iron and were proposed to con-
stitute bacterioferritins, which are known as iron storage
proteins (Andrews et al., 2003). Furthermore, the genome
of EN76T carries genes for proteins belonging to the
ferritin/Dps domain proteins (Nvie_002890, Nvie_017250,
Nvie_020180, Nvie_028750, Nvie_029390), which have also
been identified in genomes of other members of the
Thaumarchaeota (Spang et al., 2012). Dps proteins are
known to protect cells against oxidative stress by binding
iron (Haikarainen & Papageorgiou, 2010). These findings
suggest that the electron-dense particles present in strain
EN76T may have a role in iron storage and cellular
protection. Tubule-like structures were also identified in
cells of strain EN76T (Fig. 2f), and may have a cytoskeletal
function, as proposed previously for the hexagonal long
tubule-like structures found inside the anammoxosome
of anammox bacteria (Lindsay et al., 2001; van Niftrik
& Jetten, 2012). Although genomes of members of the

Thaumarchaeota encode an FtsZ homologue, it is unlikely
that the tubule-like structures are formed by this protein,
because the marine strain ‘Candidatus Nitrosopumilus
maritimus’ SCM1 was shown to recruit the Cdv mech-
anism primarily during cell division (Pelve et al., 2011).
Small inclusions of less electron-dense material (compared
with the cytoplasm) were observed in cells of strain EN76T

(Fig. 2d), which might be polyphosphate or glycogen
storage granules, for example (Klingl et al., 2013). Strain
EN76T possesses a clearly discernible area within the
cytoplasm (Fig. 2d, e). So far, we could not identify a lipid
or proteinaceous layer surrounding this area, which is
characteristic for intracellular microcompartments found
in bacteria. Large intracellular compartments, such as the
carboxysome and anammoxosome, have been described in
several bacteria (Erbilgin et al., 2014; Shively et al., 1973;
van Niftrik et al., 2004). However, compartmentalization
has been reported in only few archaea, e.g. a two-membrane
system in the crenarchaeotal genus Ignicoccus (Huber et al.,
2000) and in the euryarchaeote Methanomassiliicoccus
luminyensis (Dridi et al., 2012). Larger intracellular particles
like polyhydroxyalkanoate granules have been found in
halophilic archaea (Fernandez-Castillo et al., 1986). Raman
spectroscopy analyses have indeed shown that strain EN76T

(a) (c)

(f) (g)(h)(d) (e)

(b)

IC

IC

IP

IP

Fig. 2. Ultrastructure of cells of strain EN76T. (a) Phase-contrast image; bar, 5 mm. (b) Scanning electron micrograph of several
cells depicting the irregular coccoid shape; bar, 100 nm. (c–f) TEM images of ultrathin sections of chemically fixed cells of strain
EN76T. (c) Overview displaying the irregular cell shape; bar, 1 mm. (d) Magnified cell showing intracellular features including a
clearly discernible area [potential intracellular compartment (IC)] and incorporations (IP). The inset (e) illustrates the cell
membrane, pseudo-periplasm and S-layer at higher magnification; bars, 100 nm. (f) Potential intracellular compartment (IC),
tubule-like structures (white arrows) and electron-dense particles (black arrows) are highlighted; bar, 100 nm. (g, h)
Transmission electron micrographs of a cell with an archaellum; inset (h) shows the magnified archaellum. Bars, 100 nm.
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also synthesizes polyhydroxyalkanoates (Spang et al., 2012).
Further analyses will be necessary to show whether this
region is separated by a membrane or proteinaceous layer
from the cytoplasm, and to identify the function of this
potential intracellular microcompartment.

S-layer proteins are one, or even the only, cell-wall com-
ponent of several archaea and bacteria (Rachel et al., 1997).
The S-layer usually consists of a single type of protein
arranged in a regular lattice pattern, probably driven by
entropic processes (Eichler, 2003; Sleytr et al., 2001, 2007).
Depending on the arrangement, these pseudocrystalline
areas depict highly ordered opaque p1- or p2-symmetry,
square p4-symmetry or sixfold p3- or p6-symmetry. TEM
analyses of both freeze-etching replicas (Fig. 3a) and
negatively stained S-layer sheets (Fig. 3b) of cells of strain
EN76T showed a regular pattern of a two-dimensional
protein crystal with 6-fold symmetry. By further analysing
the images with ANIMETRA CRYSTALS, distinction between
p3- and p6-symmetry could be achieved. Correlation
averaging of electron micrographs of both freeze-etched
cells (Fig. 4a) and purified S-layer sheets (Fig. 4c) revealed
an unexpected p3-symmetry of the S-layer protein. The
relief illustration of the image in Fig. 4(a), shown in Fig.
4(b), revealed that the unit cell of the S-layer consists of a
trimer of protein trimers. Additionally, the triangular
shape of the pores between the protein trimers can be seen,
which could function as a molecular sieve, separating
the surrounding medium from the pseudo-periplasm,
located between the S-layer and the cytoplasmic membrane
(reviewed by Sleytr et al., 1993). Determination of the
lattice constants after correlation averaging yielded slightly
differing values for the two preparation methods, with
21.1 nm for freeze-etching and 20.2 nm for negative
staining. This could be caused by the preparation itself,
by calculation errors or by the initial choice of the reference
area for correlation averaging. The range of lattice values
obtained here is, nevertheless, in the same range as those
for other p3-symmetry S-layers reported for members of
the Sulfolobales, which are all around 21 nm (König et al.,
2007; Veith et al., 2009). Up to now, p3-symmetry was

thought to be unique to the order Sulfolobales, given that
all investigated species from this group had this symmetry
and a consistent lattice value (Baumeister & Lembcke,
1992; Deatherage et al., 1983; Grogan, 1996; Klingl et al.,
2013; König et al., 2007; Lembcke et al., 1991, 1993;
Prüschenk & Baumeister, 1987; Prüschenk et al., 1987;
Taylor et al., 1982; Veith et al., 2009). Thus, the occurrence
of p3-symmetry in the thaumarchaeote EN76T excludes
this characteristic as a taxonomic marker for the order
Sulfolobales (Klingl et al., 2011; König et al., 2007).

As described previously (Sinninghe Damsté et al., 2012), the
intact polar lipids of cells of strain EN76T consist of GDGTs
bound to the polar head groups monohexose, dihexose,
trihexose, phosphohexose or hexose-phosphohexose.
Crenarchaeol and its regioisomer, both GDGTs with
one cyclohexane and four cyclopentane rings (Sinninghe
Damsté et al., 2002), were the major core lipids (80 %;
Sinninghe Damsté et al., 2012). So far, crenarchaeol has been
found exclusively in members of the Thaumarchaeota.

(a) (b)

Fig. 3. Electron micrographs of a freeze-etching replica (a) and a
negatively stained purified S-layer sheet (b) of a cell of strain
EN76T. Bars, 200 nm.
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Fig. 4. Determination of S-layer symmetry of EN76T. (a)
Correlation averaging of the freeze-etched S-layer from Fig. 3(a),
showing the protein subunits (white areas) and pores (grey and
black areas). (b) Relief reconstruction of the averaged image from
(a). The crystal unit cell probably consists of a trimer of protein-
trimers, of which one is indicated (1–3). Elevated areas are
labelled violet and red and depths are labelled yellow, revealing a
triangular cavity or pore (P). (c) Correlation averaging of the
negatively stained S-layer from Fig. 3(b). Similar to (a), the proteins
are represented by white and light-grey areas and uranyl acetate-
filled cavities by dark-grey and black areas. (d) and (e) show the
determination of S-layer symmetry of the unit cells in (a) and (c),
respectively. The images were tilted by increments of 56 and the
correlation with the original, untilted image (set as 1) is plotted
against the tilting angle.
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Phylogenetic analyses

Initial phylogenetic analyses of 16S RNA gene sequences
from environmental studies placed the ‘mesophilic archaea’
(i.e. Thaumarchaeota), closely related to strain EN76T, as
a deep-branching group of the Crenarchaeota (DeLong,
1992; Fuhrman et al., 1992). However, later analyses based
on full rRNA gene sequences, concatenated ribosomal
protein sequences and full-genome sequence comparisons
provided strong evidence that these mesophilic and aerobic
AOA represent a distinct phylum, the Thaumarchaeota
(Brochier-Armanet et al., 2008; Spang et al., 2010). Members
of this phylum encode a specific set of information-
processing genes that is distinct from those in the phyla
Crenarchaeota and Euryarchaeota, as well as in the proposed
phylum ‘Korarchaeota’ (Brochier-Armanet et al., 2008;
Spang et al., 2010) and in other currently proposed phyla
(Brochier-Armanet et al., 2011; Rinke et al., 2013; Spang
et al., 2013). Strain EN76T is affiliated with group I.1b of the
Thaumarchaeota (also known as the ‘soil group’) based on
16S rRNA gene phylogeny (Fig. 5), also showing a consistent
phylogenetic clustering based on concatenated AmoAB
protein sequences (Tourna et al., 2011). ‘Candidatus Nitro-
sosphaera gargensis’ Ga9.2 shares 97 % 16S rRNA gene
sequence identity with strain EN76T (Tourna et al., 2011).
‘Candidatus Nitrosopumilus maritimus’ SCM1 is currently
the only described pure culture of the second major group
within group I.1a of the Thaumarchaeota (Könneke et al.,
2005; Walker et al., 2010), and shares 85 % 16S rRNA gene
sequence identity with strain EN76T. However, the name
‘Nitrosopumilus maritimus’ has not been validly published
and does not have standing in nomenclature. Based on 16S
rRNA gene sequence identity, Thermofilum pendens Hrk 5
(81 % 16S rRNA gene sequence identity) and Methano-
thermus fervidus DSM 2088T (79 %) represent the closest
related cultivated strains of species with validly published
names from the phyla Crenarchaeota and Euryarchaeota,
respectively (Fig. 5). Strain EN76T has a DNA base com-
position of 52.7 mol% G+C (Tourna et al., 2011), which is
similar to that of ‘Candidatus Nitrososphaera gargensis’
Ga9.2 (48.4 mol%) and higher than that of group I.1a
strains such as ‘Candidatus Nitrosopumilus maritimus’
SCM1 (34.2 mol%), ‘Candidatus Nitrosoarchaeum koreen-
sis’ MY1 (32.7 mol%) and ‘Candidatus Nitrosoarchaeum
limnia’ SFB1 (32.4 mol%) (Blainey et al., 2011; Kim et al.,
2011; Spang et al., 2012; Walker et al., 2010). In conclusion,
groups I.1a and I.1b differ greatly in their G+C content and
form two highly supported distinct phylogenetic lineages
based on both 16S rRNA and amoA gene sequences (Fig. 5).

Description of Nitrososphaera gen. nov.

Nitrososphaera (Ni.tro.so.sphae9ra. N.L. adj. nitrosus full of
natron; here intended to mean nitrous; L. fem. n. sphaera a
ball, sphere; N.L. fem. n. Nitrososphaera the sphere pro-
ducing nitrite).

Mesophilic to moderately thermophilic, acidophilic to neutro-
philic, aerobic, autotrophic or mixotrophic, ammonia-oxidizing

organisms. Cells are irregular coccoid. The major lipid is
crenarchaeol and its regioisomer. The type species is
Nitrososphaera viennensis.

Description of Nitrososphaera viennensis sp. nov.

Nitrososphaera viennensis (vi.en.nen9sis. N.L. fem. adj.
viennensis from Vienna, where the type strain was isolated
and characterized).

Irregular cocci with a diameter of 0.78±0.13 mm. Occur as
single cells and as clusters of several cells. Cells exhibit
archaella (12.0±1.8 nm) and archaeal pili (6.4±1.3 nm) as
cell appendages, and clearly discernible areas of high and low
electron density and tubule-like structures in the cytoplasm.
Cells possess an S-layer with p3-symmetry. Grows at pH 6–
8.5, with an optimum at pH 7.5. The temperature optimum
is 42 uC; grows at 28–47 uC. Energy is produced by oxidizing
ammonia to nitrite with oxygen as electron acceptor. Optimal
NH4Cl concentration for growth is 2.6 mM, but concentra-
tions up to 15 mM are tolerated. Nitrite concentrations up to
10 mM are tolerated. Urea can be used as substrate. N2O
is formed as a side product during ammonia oxidation.
Mixotrophic growth is observed with bicarbonate and small
carboxylic acids, i.e. pyruvate, a-ketoglutarate, oxaloacetate or
glyoxylate, as carbon sources. The following substrates have a
negative effect or inhibit growth under the conditions tested:
ribose, glycerol, peptone, yeast extract, L-alanine, D-alanine, L-
glutamine, L-aspartic acid, an amino acid mixture, Casamino
acids, methylamine, trimethylamine, ethanolamine, metha-
nolamine, nitrate, pyrimidine and purine.

The type strain, EN76T (5DSM 26422T5JMC 19564T), was
isolated from a garden soil in Vienna, Austria. The DNA
base composition of the type strain is 52.7 mol% G+C.

Description of Nitrososphaeraceae fam. nov.

Nitrososphaeraceae (Ni.tro.so.sphae.ra9ce.ae. N.L. fem. n.
Nitrososphaera type genus of the family; L. suff. -aceae
ending to denote a family; N.L. fem. pl. n. Nitroso-
sphaeraceae the family of the genus Nitrososphaera).

The description is the same as for the genus Nitrososphaera.
The type genus is Nitrososphaera.

Description of Nitrososphaerales ord. nov.

Nitrososphaerales (Ni.tro.so.sphae.ra9les. N.L. fem. n.
Nitrososphaera type genus of the order; N.L. suff. -ales
ending to denote an order, N.L. fem. pl. n. Nitroso-
sphaerales the order of the genus Nitrososphaera).

The name Nitrososphaerales refers to the former group I.1b
(or ‘soil group’) within the phylum Thaumarchaeota.
Cultivated organisms of this order have an irregular coccoid
cell shape and occur predominantly in terrestrial ecosystems.
By contrast, cells of all known organisms affiliated with
group I.1a (order ‘Nitrosopumilales’) are rod-shaped. The
order Nitrososphaerales comprises a highly supported distinct
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phylogenetic group based on 16S rRNA gene phylogeny (Fig.
5). The 16S rRNA genes of all members share ¢90 %
sequence identity, as do all members of other phylogeneti-
cally well-defined groups, e.g. the tentative orders ‘Nitro-
sopumilales’ (represented by ‘Candidatus Nitrosopumilus
maritimus’ SCM1; Könneke et al., 2005), ‘Nitrosotaleales’
(represented by ‘Candidatus Nitrosotalea devanaterra’ Nd1;
Lehtovirta-Morley et al., 2011) and ‘Nitrosocaldales’ (repre-
sented by ‘Candidatus Nitrosocaldus yellowstonii’ HL72; de

la Torre et al., 2008). The names of these orders are currently
not validly published, given the lack of representative
organisms in pure culture, or depositions in culture
collections. The type genus is Nitrososphaera.

Description of Nitrososphaeria classis nov.

Nitrososphaeria (Ni.tro.so.sphae9ri.a. N.L. fem. n.
Nitrososphaera the type genus of the type order of the

‘Candidatus Nitrosopumilus maritimus’ SCM1 (CP000866)

‘Candidatus Nitrosopumilus sediminis’ AR2 (CP003843)

‘Candidatus Nitrosopumilus koreensis’ AR1 (CP003842)

‘Candidatus Nitrosopumilus salaria’ BD31 (AEXL02000090)

‘Candidatus Nitrosopumilus’ sp. NM25 (AB546961)

‘Candidatus Nitrosoarchaeum limnia’ SFB1 (AEGP01000029)

‘Candidatus Nitrosoarchaeum limnia’ BG20 (AHJG01000224)

‘Candidatus Nitrosoarchaeum koreensis’ MY1 (AFPU01000001)

‘Candidatus Cenarchaeum symbiosum’ A (U51469)

‘Candidatus Nitrosotalea devanaterra’ Nd1 (JN227488)

Fosmid clone W4-93a (JQ085821)

Fosmid clone 4B7 (U40238)

Fosmid clone 29i4 (AJ496176)

Fosmid clone AD1000-23-H12 (EU686635)

Fosmid clone 19k20 (JQ768056)

Fosmid clone 54d9 (AJ627422)

Fosmid clone 45-H-12 (AB201308)

Clone N67a_76 (EF645850)

Clone SAGMA-A (AB050205)

Clone LAR_Cren_59 (EU309867)

Clone SCA1173 (U62818)

Clone SCA1166 (U62816)

Clone SCA1175 (U62819)

Clone pGrfA4 (U59968)

Clone pSL12 (U63343)

Clone SAGMA-10 (AB050240)

Nitrososphaera viennensis EN123 (FR773158)

‘Candidatus Nitrosocaldus yellowstonii’ HL72 (EU239960)

‘Candidatus Caldiarchaeum subterraneum’ (BA000048)

‘Candidatus Korarchaeum cryptofilum’ OPF8 (CP000968)

Thermofilum pendens Hrk 5 (CP000505)

Desulfurococcus kamchatkensis 1221nT (CP001140)

Fervidicoccus fontis Kam940T (CP003423)

Caldisphaera lagunensis DSM 15908T (CP003378)

Sulfolobus solfataricus P2 (AE006641)

Methanothermus fervidus DSM 2088T (CP002278)

Archaeoglobus fulgidus DSM 4304T (AE000782)

Methanosarcina acetivorans C2AT (AE010299)

‘Candidatus Nanoarchaeum equitans’ Kin4-M (NC_005213) ‘Nanoarchaeota’

‘Korarchaeota’

‘Aigarchaeota’

Nitrososphaera viennensis EN76T (FR773157)

‘Thaumarchaeota-associated group’

0.05

Nitrososphaeraceae
(family)

Nitrososphaerales
(order)

Nitrososphaeria
(class)

Thaumarchaeota

Nitrososphaera
(genus)

Nitrososphaera sp. JG1 (JF748724)

‘Candidatus Nitrososphaera gargensis’ Ga9.2 (CP002408)

Euryarchaeota

Crenarchaeota

Fig. 5. Maximum-likelihood 16S rRNA gene phylogeny of the Thaumarchaeota and representative strains of the
Crenarchaeota, Euryarchaeota and other proposed archaeal phyla. The tree depicts Nitrososphaera viennensis EN76T

(bold), the marine pure culture ‘Candidatus Nitrosopumilus maritimus’ SCM1, organisms from laboratory or natural enrichment
cultures (labelled Candidatus) and a selection of environmental sequences representing major uncultured lineages. Proposed
phyla and uncharacterized archaeal lineages are placed in quotes. Phylogeny reconstruction was based on 1202-bp 16S
rRNA gene fragments and calculated with RaxML VI-HPC using the GTR+I+G model. Bootstrap support values (1000
replicates) are indicated by circles: filled, ¢90 %; shaded, ¢80 % but ,90 %; open, ¢70 % but ,80 %. Some branching
points are not well supported in the displayed tree, such as the lineages of ‘Candidatus Caldiarchaeum’ and ‘Candidatus

Korarchaeum’. The former was affiliated rather with Thaumarchaeota in more comprehensive phylogenetic calculations (see
e.g. Eme et al., 2013).
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class; N.L. suff. -ia ending to denote a class, N.L. neut. pl.
n. Nitrososphaeria the class of the order Nitrososphaerales).

Cultivated strains within this class possess genes of both
FtsZ- and Cdv-based cell division systems and have a
topoisomerase IB. Similar to euryarchaeal strains, but in
contrast to crenarchaeal strains, they have DNA polymerases
B and D, eukaryote-like histones (H3/H4) and only one
copy of the proliferating cell nuclear antigen and lack genes
for RNA polymerase G (Brochier-Armanet et al., 2011;
Spang et al., 2010). Crenarchaeol is the major core lipid and
is not known to occur in any other bacterial or archaeal
phylum (Pitcher et al., 2010; Schouten et al., 2008; Sinninghe
Damsté et al., 2002, 2012). Additionally, genes encoding an
ammonia monooxygenase have been found exclusively
in all lineages within the class, among all archaeal taxa
described, and might therefore be considered a distinctive
feature. So far, all investigated genomes of members of this
class contain genes encoding key enzymes of the 3-
hydroxypropionate/4-hydroxybutyrate pathway, including
acetyl-CoA carboxylase, 4-hydroxybutyryl-CoA dehydratase
and methylmalonyl-CoA mutase, suggesting that members
of the phylum Thaumarchaeota might assimilate their
cellular carbon via a modified version of this pathway
(Berg et al., 2007; Blainey et al., 2011; Kim et al., 2011;
Mosier et al., 2012a, b; Park et al., 2012; Spang et al., 2012;
Walker et al., 2010). The class comprises a highly supported
monophyletic lineage in the 16S rRNA gene phylogeny of
the Archaea (Fig. 5). The type order is Nitrososphaerales.
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Hatzenpichler, R., Richter, A., Nielsen, J. L., Nielsen, P. H., Müller, A.
& other authors (2011). Thaumarchaeotes abundant in refinery

nitrifying sludges express amoA but are not obligate autotrophic

ammonia oxidizers. Proc Natl Acad Sci U S A 108, 16771–16776.

Nicol, G. W. & Schleper, C. (2006). Ammonia-oxidising Crena-

rchaeota: important players in the nitrogen cycle? Trends Microbiol
14, 207–212.

Nunoura, T., Takaki, Y., Kakuta, J., Nishi, S., Sugahara, J., Kazama,
H., Chee, G. J., Hattori, M., Kanai, A. & other authors (2011). Insights
into the evolution of Archaea and eukaryotic protein modifier

systems revealed by the genome of a novel archaeal group. Nucleic

Acids Res 39, 3204–3223.

Ochsenreiter, T., Selezi, D., Quaiser, A., Bonch-Osmolovskaya, L. &
Schleper, C. (2003). Diversity and abundance of Crenarchaeota in
terrestrial habitats studied by 16S RNA surveys and real time PCR.

Environ Microbiol 5, 787–797.

Offre, P., Prosser, J. I. & Nicol, G. W. (2009). Growth of ammonia-
oxidizing archaea in soil microcosms is inhibited by acetylene. FEMS

Microbiol Ecol 70, 99–108.

Park, S. J., Kim, J. G., Jung, M. Y., Kim, S. J., Cha, I. T., Ghai, R., Martı́n-
Cuadrado, A. B., Rodrı́guez-Valera, F. & Rhee, S. K. (2012). Draft

genome sequence of an ammonia-oxidizing archaeon, ‘‘Candidatus
Nitrosopumilus sediminis’’ AR2, from Svalbard in the Arctic Circle.

J Bacteriol 194, 6948–6949.
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Rachel, R., Pum, D., Šmarda, J., Šmajs, D., Komrska, J., Krzyzánek,
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