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ABSTRACT

tRNA-derived small RNA (tsRNA), a novel type of
regulatory small noncoding RNA, plays an impor-
tant role in physiological and pathological pro-
cesses. However, the understanding of the func-
tional mechanism of tsRNAs in cells and their role
in the occurrence and development of diseases is
limited. Here, we integrated multiomics data such
as transcriptome, epitranscriptome, and targetome
data, and developed novel computer tools to estab-
lish tsRFun, a comprehensive platform to facilitate
tsRNA research (http://rna.sysu.edu.cn/tsRFun/ or
http://biomed.nscc-gz.cn/DB/tsRFun/). tsRFun eval-
uated tsRNA expression profiles and the prognos-
tic value of tsRNAs across 32 types of cancers,
identified tsRNA target molecules utilizing high-
throughput CLASH/CLEAR or CLIP sequencing data,
and constructed the interaction networks among tsR-
NAs, microRNAs, and mRNAs. In addition to its data
presentation capabilities, tsRFun offers multiple real-
time online tools for tsRNA identification, target pre-
diction, and functional enrichment analysis. In sum-
mary, tsRFun provides a valuable data resource and
multiple analysis tools for tsRNA investigation.

INTRODUCTION

tRNA-derived small RNAs (tsRNAs) are a novel class of
functional RNA molecules that are derived from mature
tRNAs or precursor tRNAs and are aberrantly expressed
under various conditions (ultraviolet radiation, heat shock,

hypoxia, oxidative damage or viral infection) (1–4). With
the rapid advance in high-throughput sequencing technolo-
gies, many studies have reported that tsRNAs participate in
essential mechanisms of cell biology, including gene regula-
tion, transposon repression, and disease onset and progres-
sion (5–8).

The classes of tsRNA can be defined by the cleavage site
position in the mature or precursor tRNA transcript (9),
and include tRNA-derived stress-induced RNAs (tiRNAs)
(tiRNA-5 and tiRNA-3, cleaved at the anticodon loop), and
tRNA-derived fragments (tRFs) (tRF-5, cleaved at the D-
loop; tRF-3, cleaved at the T-loop; tRF-i, cleaved in the
internal region of the mature tRNA; and tRF-1, cleaved
at the 3′ end of the tRNA precursor. Supplementary Fig-
ure S1) (10–12). Early studies reported that tiRNAs are de-
rived from mature tRNAs through cleavage by angiogenin
(ANG) and that tRFs originate from cleavage of either the
mature tRNA or the tRNA precursor by Dicer or ANG
(13–15).

Many studies have found that tRFs and tiRNAs can serve
as novel biomarkers for disease diagnosis and prognosis.
Wu et al. demonstrated the diagnostic value of tRF in col-
orectal cancer (16), and Zhu et al. showed the existence of
abundant tsRNAs in exosomes and highlighted the diag-
nostic value of tsRNAs as promising biomarkers for cancer
(17). TDR-000620, a tsRNA molecule, can serve as an in-
dependent adverse prognostic factor of recurrence-free sur-
vival in triple-negative breast cancer patients (18). However,
studies of tsRNAs as novel cancer markers are still prelim-
inary due to the lack of comprehensive data resources on
analyses of the diagnostic value of tsRNAs.

Recent studies have also revealed that tsRNAs play im-
portant biological functions within cells by binding to
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diverse proteins. Goodarzi et al. revealed that tRFs can
compete for the mRNA binding sites in YBX1 to suppress
breast cancer cell growth and invasion (3). Kumar et al.
revealed that tRFs are evolutionarily conserved and asso-
ciate with AGO proteins to recognize specific RNA targets
(19). Researchers identified a large number of Argonaute-
tRF complexes in CLIP-seq data (19,20) and revealed that
tRF-5 and tRF-3 molecules can bind to Argonaute pro-
teins via seed-based canonical target recognition. Analysis
of CLASH (crossing, ligation and sequencing of chimeras)
data (21) suggested that tRF-5 and tRF-3 molecules can in-
teract with thousands of mRNAs in human cells. However,
existing CLIP-seq analysis tools are mainly aimed at inves-
tigating microRNAs (miRNAs) and their targets, ignoring
the relationship between intracellular tsRNAs and their tar-
get molecules.

MicroRNAs and tsRNAs are critical small RNAs in cells
and can regulate gene expression by targeting mRNAs, but
it remains unclear whether there are competitive or syner-
gistic relationships between them. Studies have suggested
that target genes can be repressed by both tsRNAs and
miRNAs. For example, 10% of genes targeted by AGO-
bound miRNAs were found to be also targeted by tsR-
NAs (22). The interaction network among tsRNAs, miR-
NAs and mRNAs can be supported by the ceRNA hypoth-
esis. Therefore, it is important to develop an analysis tool
to explore the regulatory networks composed of tsRNAs,
miRNAs, and mRNAs.

In this study, we developed tsRFun, a multifunctional
platform, comprising database and web-server tools, which
has the following purposes. The database contains (i) an ex-
ploration of the expression patterns and prognostic value
of tsRNAs in multiple cancer types; (ii) the identified rela-
tionships between tsRNAs and their target genes; (iii) the
constructed tsRNA, mRNA and miRNA interaction net-
works and (iv) the predicted functions of tsRNAs revealed
by enrichment analysis of tsRNA targets. The tsRFun web
server is equipped with three online tools: (i) tsRFinder,
for identifying tsRNAs and quantifying their expression
from small RNA-seq data; (ii) tsRTarget, for identifying
tsRNA targets and investigating the cooperative or com-
petitive relationships between tsRNAs and miRNAs from
AGO CLIP sequencing and CLASH/CLEAR data and (iii)
tsRFunction, for predicting the biological functional effects
of tsRNAs in 15 types of gene sets.

tsRFun provides a systematic data analysis platform to
comprehensively identify and analyse the molecular fea-
tures, expression patterns, target molecules, and interaction
networks of tsRNAs. As a whole, tsRFun integrates abun-
dant data resources and offers multiple developed analyt-
ical tools, providing reliable support for comprehensively
revealing the roles of tsRNAs in physiological and patho-
logical processes.

MATERIALS AND METHODS

Data collection and pre-processing

tsRFun integrated multiple high-throughput sequencing
datasets, namely, 10 572 small RNA-seq datasets, 381 AGO
CLIP datasets, and 24 CLASH/CLEAR data. The RNA-
seq datasets were retrieved from The Cancer Genome At-

las database (TCGA, 32 cancer types), the CLIP and
CLASH/CLEAR data were downloaded from the SRA
database. We processed the data by applying quality con-
trol filters and removing sequencing adapters by Cutadapt
(Version 2.10) (23) and fastp (Version 0.20.1) (24).

Gene annotation

Human genome sequences were obtained from the UCSC
bioinformatics website (25) (Version hg38), miRNA genes
were downloaded from the miRBase database (26) (Re-
lease 22), and tRNA sequences were downloaded from the
GtRNAdb database (27) (Release 18.1). Mature tRNA se-
quences were obtained by removing intron sequences and
adding the ‘CCA’ tail at the end of the original sequences
of the tRNAs. Fifty-nucleotide sequences downstream of
tRNAs were extracted from the reference genome based
on their genomic coordinates. The tRNA modification sites
were retrieved from RMBase (28) (Release 2.0), a database
that contains RNA modifications identified from high-
throughput sequencing datasets.

Identification of tsRNAs from small RNA-seq data

The workflow of the tsRFun platform is shown in Figure 1.
After preprocessing the sequencing data, small RNAs were
mapped to the human genome to remove exogenous RNAs.
Sequencing reads that were successfully mapped to known
RNA transcripts (mRNAs, snoRNAs, snRNAs, rRNAs,
miRNAs, or repeat sequences) were discarded. The remain-
ing reads were then mapped to precursor and mature tRNA
transcripts. We computed the P value of each position in
tRNA transcripts according to the binomial distribution
and selected the sites with significant enrichment of small
RNAs with a P value < 0.01 (29).

The distribution of sequencing reads across the tran-
scripts is assumed to be random or unbiased; therefore, the
probability (p) of fragments being located at a specific 1-nt
position in a certain transcript equals 1/(L − l + 1), where
L and l are the lengths of the target transcript and sequenc-
ing read, respectively (30). Therefore, the probability of k or
more fragments being located at a position of interest fol-
lows a binomial distribution:

P (X ≥ k) =
n∑

x = k

(
n
x

)
px(1 − p)n−x (1)

where k is the observed count of tags assigned to a given
position in the mature or precursor sequence of the tar-
get tRNA, and n is the total number of tags mapped to
the target transcript. Here, P represents the probability that
the sRNA tends to be generated at a particular position.
A low P value suggests high confidence of bona fide tsR-
NAs at a particular position in the tRNA transcript. Fi-
nally, the tsRNA candidates were classified into different
types (tiRNA-5, tiRNA-3, tRF-5, tRF-3, tRF-i and tRF-1)
according to the position of the cleavage site. Since tRNAs
are conserved across the genome and fragments with iden-
tical sequences are derived from multiple tRNAs, we uni-
formly named the identified tsRNAs considering sequence
and tRNA type (tsRNA + amino acid type + tsRNA
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Figure 1. The workflow of tsRFun. The flowchart is divided into upper and lower parts. The left of the upper part shows the process of database establish-
ment, and the right part shows the process of the online analysis tool. The lower part shows the four functional modules of the tsRFun platform and the
specific description of each module.

type + unique code). For example, tsRNA-Ala-3-0055, with
the sequence TCCCCGGCATCTCCACCA, was derived
from position 58–75 in tRNA-Ala-CGC-1–1 and tRNA-
Ala-CGC-2–1.

As we know, RNA modifications in tsRNAs can inter-
fere with adapter ligation and reverse transcription pro-
cesses during small RNA library construction and thus pre-
vent the detection of tsRNAs bearing these modifications.
Researchers have made efforts to develop special experi-
mental methods to overcome this limitation (31). Recently
Shi et al. have developed a novel method, PANDORA-
Seq (32), to efficiently remove the modifications on tRNA
and has engineered both the 5′ and 3′ ends of the library
fragments so that the linker conditions (i.e. 5′ phosphate,
3′ hydroxyl) can be met. Therefore, we specifically built a
whitelist in tsRFinder tools with the addition of high confi-
dence tsRNA results identified by PANDORA-Seq as well
as other experimental methods. If users use the data ob-

tained by these special methods to predict tsRNA, they can
judge whether the predicted tsRNAs are in the whitelist,
thereby increasing credibility. While for those researchers
who use traditional small RNA-seq library construction
method can also learn which important tsRNA molecules
may be missed in their data.

In addition, due to the presence of chemical modifica-
tions on tRNA, it can cause unexpected stops during the re-
verse transcription process, or cause mismatches. Therefore,
the obtained tsRNA may have false positives. Although
studies have investigated that the modification on tRNA has
little effect on the identified tsRNAs (33). The main rea-
son is that the modification on the tRNA will cause the re-
verse transcription to be unable to extend to the linker se-
quence at the 5′ end, and the corresponding fragment will
not be obtained in the subsequent PCR amplification step.
However, considering that chemical modification may also
cause reverse transcription pauses and generate deletion or
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mismatch on the sequencing reads, we specifically collected
the known modification sites on tRNA and designed a set of
penalty strategies accordingly. When there is a mismatch or
insertion or deletion (indel), we set different penalty strate-
gies according to whether the site is a known modification
site. For example, in normal conditions, a mismatch or indel
will subtract 1 from the total score, however, if a mismatch
or indel occurs on the chemical modification site, a score of
–0.5 is added to the total score of this site. If a perfect match
occurs on this site, a score of +1 is added to the total score.
We use the score as a parameter for users to choose, and
users can adjust the number of potential tsRNAs identified
by changing the value of the score.

Identification of tsRNA targets from CLIP and
CLASH/CLEAR data

tsRTarget specializes in predicting tsRNA targets from
CLIP-seq datasets. Many studies identified the relationship
between miRNAs and mRNAs (11), but they do not predict
the target mRNAs of tsRNAs. We designed two pipelines
of analysis strategies for different methods of the CLIP-seq
library construction (Supplementary Figure S2). In addi-
tion to the minimal binding length/strength, we also consid-
ered the evolutionary conservation of the tsRNA–mRNA
binding sites. We retrieved data from multiple alignments
of 99 vertebrate genomes with human from UCSC (12) and
adopted the bigWigAverageOverBed software (13) to calcu-
late the conservation scores of the binding sites. tsRTarget
will only report the results with the conservation score value
greater than 0.3, which increased the confidence of tsRNA
target genes.

For AGO CLIP data, we used Cutadapt (Version 2.10)
and Trim Galore software (Version 0.4.5) to remove adapter
sequences and low-quality reads. Reads of less than 14 nt
were discarded. We then collapsed reads with the same se-
quence and determined the number of each unique read.
Reads that aligned to the same strand as the source tRNA
transcripts were considered tsRNA fragments. We then ob-
tained the candidate targets that were aligned to the mR-
NAs and called peaks with the CTK protocol (Version
1.1.3), which calculates the number of overlapping CLIP
tags at each genomic position to find local maxima (34). We
used RNAhybrid (-c -b 1 -u 2 -v 2 -f 2,7 -n 40 -e -10 -m 70
-s 3utr human) (35) and BLAST (-word size 6, mismatch ≤
2, Version 2.10.1) (36) to search for pairs between candidate
tsRNAs and targets.

From the CLASH/CLEAR data, we identified the can-
didate tsRNA-target chimeras with the basic bioinfor-
matic analysis strategy developed for miRNA-targets in
the CLASH technique (21,37). First, we used Bowtie and
BLAST software programs to map the candidate chimeras
to the genome and remove fake chimeras that mapped to
other sites (Supplementary Figure S3). Next, we mapped
the reads to the tRNA reference and kept the sequences
that partially matched the tRNAs reference (matched read
of 14–40 nt and unmatched reads > 8 nt). Then, the can-
didate tsRNA-target chimeras were split into tsRNAs and
target sequences. Duplex structure predictions for the tsR-
NAs and target regions were made using RNAhybrid and
BLAST.

tsRNA survival analysis and ceRNA network analysis

tsRFun displayed the survival log-rank P values of tsRNA
molecules in the ‘tsRSurvival’ module, and Kaplan–Meier
survival plots were used to visualize the performance of tsR-
NAs in cancers. We applied two normalization methods in
this project. In each cancer data set, we evaluate the abun-
dance of tsRNA by normalizing its count number to the
total number of counts that mapped to tRNA:

RPM = 106C
N

(2)

where C represents the count number of a tsRNA, and N
represents the total number of all counts that mapped to
tRNA. As for pan-cancer analysis, referring to the research
of Galka-Marciniak et al. (38), we performed a rank-based
inverse-Gaussian transformation on the RPM value, and
then divided the results by their maximum absolute value,
eventually normalized the RPM value of each cancer to the
same range [-1,1] with a zero median.

We developed two analysis tools (‘tsRNetwork’ and ‘tsR-
Target’) for users to identify interaction networks among
tsRNAs, miRNAs, and mRNAs. First, we screened the
tsRNA-mRNA and miRNA-mRNA interaction pairs and
found a group of tsRNA–miRNA pairs that targeted the
same mRNA. Next, a hypergeometric test (18) was used
to determine whether a miRNA-tsRNA pair significantly
forms a ceRNA pair, based on the number of shared mRNA
targets that can interact with both of them. The test calcu-
lates the P value by using the following formula:

P =
∑min(K,n)

i = k

Ci
K Cn−i

N−K

Cn
N

(3)

where (i) N is the total number of mRNAs used to pre-
dict targets, i.e. the number of all human mRNAs; (ii) K is
the number of mRNAs that interact with the miRNA; (iii)
n is the number of mRNAs that interact with the tsRNA
and (iv) k is the number of common mRNAs between these
two RNAs. The function p.adjust in the stats package was
used to correct the P values, with the ‘method’ argument
set to ‘FDR’. Finally, all pairs with FDR <0.05 were con-
sidered ceRNAs and displayed on the tsRFun page. In this
study, we identified ∼10 000 ceRNA pairs from 405 CLIP-
seq datasets.

Database implementation

tsRFun was built with MySQL (Version 5.7.26), PHP (Ver-
sion 7.1.11), Apache (Version 2.4.39), and JavaScript. Sev-
eral libraries were used in the process: Bootstrap (Version
4.5.0) controls the layout and style; jQuery (Version 3.5.1)
facilitates the dynamic interactions on web pages; dataT-
able (Version 1.10.22) presents the analysis results as a data
frame with paging, filtering, and searching functions; High-
chart (Version 8.2.2) visualizes the analysis results in differ-
ent ways; and GSEA (Version 4.1.0) (39) builds the gene set
enrichment analysis. The 15 types of gene sets were down-
loaded from version 6.2 of the MSigDB database (40) (Sup-
plementary Table S1). The secondary structure of tRNA
was displayed with the forna tool of JavaScript (41). tsR-
Fun was designed for multiple browsers, including Google
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Chrome (17 and later), Firefox (10 and later), Apple Sa-
fari (6 and later), and Internet Explorer (9 and later). We
have uploaded the open-source code to Github and built
a runnable pipeline, to enable our users to perform offline
analysis with our tools.

RESULTS

Overview of the tsRFun platform

tsRFun aims to provide an online platform for tsRNA iden-
tification, target prediction, functional enrichment analysis,
as well as pan-cancer expression profiling and survival anal-
ysis of tsRNAs across 32 types of cancers. tsRFun consists
of six major components: tsRinCancer, tsRSurvival, tsR-
Network, tsRFinder, tsRTarget and tsRFunction. In this
section, we provide a complete description of the tsRFun
modules.

The tsRFun platform contains three database mod-
els (tsRinCancer, tsRSurvival, tsRNetwork) and three
web server modules (tsRFinder, tsRTarget, tsRFunction).
tsRinCancer integrates the tsRNA expression patterns of
10 572 samples from 32 cancer types. tsRSurvival evalu-
ates the prognostic value of tsRNAs in cancers by the log-
rank test and univariate cox-regression. tsRNetwork estab-
lishes the ceRNA networks among tsRNAs, miRNAs, and
mRNAs by hypergeometric tests. The tsRFinder tool can
identify existing tsRNAs in small RNA sequencing data
uploaded by users. From CLASH/CLEAR or CLIP se-
quencing data input by users, tsRTarget can identify pos-
sible tsRNA–mRNA interactions and potential tsRNA–
miRNA competition relationships, and can further con-
struct a ceRNA network with these RNAs. tsRFunction
performs target prediction and gene set enrichment analysis
on the tsRNAs that users are interested in.

Functional description of database module tsRFun

tsRinCancer. The ‘tsRinCancer’ module investigates the
tsRNA expression profiles across pan-cancers types based
on 3TB raw small RNA sequencing data. First, we prepro-
cess the raw data and identify a batch of tsRNAs with high
confidence by the tsRFinder tool. Then, tsRinCancer pro-
vides an integrated view of the tsRNAs across 32 cancer
types. tsRinCancer shows the tsRNA expression patterns
across these cancers on heatmap plots, and users can browse
the differentially expressed tsRNAs between tumour and
normal samples with boxplots (Figure 2A).

tsRSurvival. The ‘tsRSurvival’ module evaluates the prog-
nostic value of tsRNAs in pan-cancer datasets. In detail,
samples are divided into high and low expression groups
according to the mean expression level of each tsRNA
molecule. Then, the significance of overall survival is calcu-
lated by the Kaplan–Meier method and the log-rank test.
The tsRNAs with P values < 0.05 are highlighted. Users
can download the image of the survival analysis results di-
rectly from the tsRSurvival page (Figure 2B).

tsRNetwork. The ‘tsRNetwork’ builds the interaction
networks among tsRNAs, miRNAs, and mRNAs from
405 CLIP data by hypergeometric test (Figure 2C).

The ‘tsRNetwork’ module can mine the relationship be-
tween tsRNAs and their target genes from CLIP and
CLASH/CLEAR data. According to the paired region lo-
cation pattern, tsRNetwork obtains the canonical and non-
canonical binding results, and users can browse the target
genes for each tsRNA and the paired structure pattern on
the tsRNetwork page. tsRNetwork also displays the details
of tsRNAs and the target molecules, as well as the descrip-
tion of the experiment type.

Functional description of the web server module tsRFun

We developed the tRF2Cancer web server in 2016 (29). The
updated tsRFun platform features a series of improvements
and enhancements based on the original ‘tsRFinder’ tool
and provides two novel analysis tools ‘tsRTarget’ and ‘tsR-
Function’ (Table 1).

tsRFinder. The ‘tsRFinder’ module allows users to input
or upload small-RNA seq data in FASTQ/FASTA format
to conduct tsRNA identification analysis with high sensitiv-
ity. Parameters such as the number of allowed mismatches,
tsRNA length range, and P value can be specified by users
to narrow the tsRNA prediction results. The tsRNAs anal-
ysis results are shown in a table with detailed information
including the tsRNA type, tsRNA length, source tRNA in-
formation, and fragment position (Figure 3A). Users can
sort the data table by column and download the file in Excel
or CSV format. More information on the tsRNA, such as
the read sequencing distribution, visualization of the read
distribution on the source tRNA, structure of the source
tRNA, and expression pattern across 32 cancer types in
TCGA, can be found in the ‘Detail’ and ‘Express in Can-
cer’ links. In addition, tsRFun allows users to select mul-
tiple tsRNAs for further functional prediction. Moreover,
users can either copy the results to the clipboard or down-
load the file in Excel or CSV format.

tsRTarget. The ‘tsRTarget’ module allows users to input
or upload CLIP, CLASH or CLEAR data to predict poten-
tial tsRNA-target interactions based on canonical and non-
canonical seed patterns. In addition, tsRTarget constructs a
competitive endogenous RNA network with analysis results
generated from CLIP data input by users (Figure 3B).

tsRFunction. The ‘tsRFunction’ module integrates a
list of tsRNA-mRNA interactions from obtained CLIP,
CLASH, and CLEAR data, and provides a real-time func-
tional enrichment analysis feature for gene ontology anno-
tation of tsRNAs in 15types of gene sets, including GO,
KEGG, Reactome, PANTHER, etc. The default number
of highest-ranked gene set enrichment results is 20 (Figure
3C).

Comparison with other tsRNA databases and web server

There are several databases and online tools for tsRNA
investigation, including tRFdb (42), MINTbase 2.0 (43),
tRFexplorer (44), tsRBase (45), tRFtarget (46), tRFTar
(47) and tRF2Cancer (29). Among these, tRFdb was the
first tRF database with a total of 12 877 tRFs from over
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Figure 2. Introduction and usage of tsRFun data presentation. (A) tsRinCancer page for tsRNAs with a detailed expression profile across 32 types of
cancer. (B) tsRSurvival page with the prognostic values of tsRNAs in pan-cancers. (C) tsRNetwork page with detailed information of the predicted ceRNA
networks among tsRNAs, miRNAs, and mRNAs.
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Table 1. Major improvements of tsRFun compared to tRF2Cancer

Data features/functionalities tRF2Cancer tsRFun

Clear/clash data None Yes
CLIP data None Yes
Small RNA seq data format FASTA FASTA/FASTQ
tsRNA identification tRFs

(‘tRFfinder’)
tRFs and tiRNAs
(‘tsRFinder’)

tsRNA pan-cancer analysis None Yes
tsRNA targets prediction None Yes (‘tsRTarget’)
tsRNA expression profile 1000 tRFs ∼5000 tsRNAs
tsRNA and miRNA
competition relationships

None Yes

tsRNA Function enrichment None 15types of gene
sets (‘tsRFunction’)

100 small RNA libraries, but tRFdb does not store tiRNA
molecules and has not been updated since 2015. MINTbase
2.0 and tRFexplorer focuses on tsRNA expression patterns
across human cancer types. However, MINTbase 2.0 does
not contain tsRNAs derived from tRNA precursors (tRF-
1) and tRFexplorer does not include tiRNAs molecules
(tiRNA-5 and tiRNA-3) and tRF-i molecules. tRF2Cancer
only aimed to identify tRF molecules and has not been up-
dated since 2016.

Many researchers have found a large number of
Argonaute-tsRNA complexes in CLIP-seq data (19,20) and
revealed that tRF-5 and tRF-3 molecules can bind to Arg-
onaute proteins by seed-based canonical target recognition.
Hence tsRBase, tRFtarget, and tRFTar were developed to
explore tsRNAs and their targets based on CLIP-seq data.
The available web-based and independent tools described
above reflected the continuing interest in tsRNAs in the re-
search community. However, these tools do not allow users
to upload high-throughput sequencing data in FASTQ or
FASTA format to mine the unique relationships between
tsRNAs and their targets. Although direct comparison in
terms of scope, functionality, ease of use, and other param-
eters are challenging and partially subjective, we aimed to
provide at least an overview of a selection of commonly used
broader analysis tools that are available as both databases
and web servers. We thus evaluated multiple features of the
tsRNA tools and present the results sorted by the publica-
tion date (Table 2). The analysis reveals an expected pat-
tern: the recent databases have a broader scope of function-
ality than the earlier databases. The tsRFun platform pro-
vides comprehensive online analysis capability and includes
more tsRNA functional tools.

Evaluating the performance of tsRFinder and tsRTarget with
experimentally validated data and other tools

We further compared the performance of the tsRFinder
tool with that of other tsRNA identification tools. There
are two previously published programs for tsRNA predic-
tion based on high-throughput sequencing data: SPORTS
(48), and MINTmap (49). Of note, neither of them is ca-
pable of online prediction, so we downloaded their desk-
top version programs, employed the same running environ-
ment to compare the prediction capabilities of tsRFinder,
SPORTS, and MINTmap. We downloaded an independent
dataset (SRR3235777) by Seashols-Williams et al. at GEO

(50) and employed the above tools to predict the poten-
tial tsRNA molecules. The results show that SPORTS and
MINTmap tools have identified more than 6 000 tsRNAs,
while tsRFinder only identified 220 (Table 3).

Why tsRFinder get much fewer results than SPORTS
and MINTmap? The reason is that while SPORTS and
MINTmap directly report all reads aligned to tRNA,
tsRFinder performs a binomial test to all the reads mapped
to tRNA sequence, to ensure they are bona fide tsRNA in-
stead of tRNA degraded fragments. To prove this point,
we collected 17 experiment-verified tRFs from colon can-
cer datasets generated by Lee et al. as a positive control
(10), to compare the performance of these three tools. The
result shows that SPORTS and MINTmap detected over
6 000 tsRNAs but only 10 and 8 experimental confirmed
tsRNAs among them, respectively. By contrast, 10 out of
220 tsRNAs detected by tsRFinder are verified, indicating
tsRFinder has higher precision than other tools (Table 3)

Seven of the 17 tsRNA molecules validated by Lee were
not identified by tsRFinder, we then inspected the source lo-
cations and abundances of these seven tsRNAs and found
that although these tsRNAs were able to be detected in
the sequencing data, none of the abundances were suffi-
ciently high. For example, tRF-5005, derived from the 5′
end of tRNA-Gly-GCC-1–3, is 20 nt in length (Supplemen-
tary Table S2). We could detect tRF-5005 in the sequencing
dataset, but only nine reads were able to match exactly to
it. In contrast, there is a 30 nt length read also mapped to
the 5′ end of tRNA-Gly-GCC-1–3, with 3 122 in abundance
(Supplementary Table S2). tsRFinder tool holds that frag-
ments with higher abundance as tsRNA molecules. Since
Lee et al. used the clone experiment of prostate cancer cell
lines (LNCaP and C4-2), while the dataset of Seashols-
Williams et al. was obtained by large-scale sequencing of
prostate cancer cell lines (P69, M12, M2182), it is rea-
sonable that there is the inconsistency of the fragment
abundance between the two datasets, which also suggests
that tsRNAs have the characteristics of spatio-temporal
specificity. To more accurately evaluate the performance
of tsRFinder tool, we further generated simulated small
RNA-seq datasets by ART (51), which include 100 positive-
reads and 29 727 negative-reads (Supplementary Table S4).
These simulated datasets were then processed for tsRNA
identification by each of the tools, tsRFinder, MINTmap,
and SPORTS (Supplementary Table S5-S8). The results
showed that a total of 8 387 tsRNA candidates were iden-
tified by MINTmap, including only 61 true tsRNAs, with a
low precision rate of 0.73%. Similarly, SPORTS predicted
a total of 12 196 tsRNA candidates, including only 88
true tsRNAs, with a low precision rate of 0.72%. While
tsRFinder predicted only 99 tsRNA candidates, includ-
ing 81 true tsRNAs, with a high precision rate of 81.82%
(Supplementary Table S5). The above results illustrated
that tsRFinder adopted more stringent screening condi-
tions, which greatly increased the precision rate of tsRNA
predictions.

In addition, we also compared the predicted targeted
genes of tsRTarget with tRFTar tool (16) (Supplementary
Table S3). The results show that tsRTarget and tRFTar tools
have identified > 5 000 tsRNAs-target interactions, while
the overlap is 86.69% (Supplementary Figure S4). Due to
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Figure 3. Introduction and usage of tsRFun online tools. (A) tsRFinder page for the tsRNAs identification of small RNA seq data with detail type and
expression pages. (B) tsRTarget page for the tsRNAs targets prediction of CLASH/CLEAR and CLIP seq data with detail tsRNAs information, alignment,
and competitive endogenous RNA network. (C) tsRFunction page for tsRNAs function prediction.

the limited research that has verified the interaction be-
tween tsRNAs and mRNAs (17), it is difficult to evaluate
the sensitivity/specificity. We list the CLIP-Seq experiment
ID on which the prediction result is based, and show their
detailed sequence alignment between tsRNAs and mRNAs,
so that users can verify each result. We will continue to pay
attention to this field, looking for more verified target re-
lationships, to evaluate the sensitivity/specialty of tsRNA
target prediction tools.

DISCUSSION

tsRNAs are a class of newly discovered noncoding RNA
molecules that play important roles in physiological and
pathological processes. Notably, the abundance of tsRNA
molecules in cells is comparable to that of miRNAs. How-
ever, current tsRNA databases have a series of limitations,
including a lack of recent updating, incomplete data on
tsRNA types (tRFs or tiRNAs), and missing information
on the interactions between tsRNAs and their targets. Most
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Table 2. Comparison of tsRFun with existing tsRNA databases

Databases/
webserver tRFdb tRF2Cancer MINTbase 2.0 tRFexplorer tsRBase tRFtarget tRFTar tsRFun

Year of
Establishment

2015 2016 2018 2019 2020 2020 2020 2021

Comprehensive
tsRNA Expression
Profilings

No No No No No No No Yes

tsRNA Targets and
Functions
Predictions

No No No No Yes Yes Yes Yes

tsRNA Prognostic
Value Analysis

No No No No No No No Yes

tsRNA,miRNA,
mRNANetwork

No No No No No No No Yes

Number of Dataset
Sample

∼500 ∼10 000 Over 10 000 Over 10 000 Over 10 000 ∼10 000 ∼500 Over 10 000

Types of Datasets Small-
RNA
seq

Small-RNA
seq

Small-RNA
seq

Small-RNA
seq

Small
RNA-Seq,
CLASH,
and CLEAR

CLASH CLASH and
CLEAR

Small
RNA-Seq,
CLASH,
CLEAR and
CLIP-Seq

Number of
tsRNAClasses

3 4 5 5 6 3 5 6

Online Analysis
Tools

No Yes No No No No No Yes

Table 3. A list of experimentally validated tsRNAs detected by
MINTmap, SPORTS, and tsRFinder

# total detected
tsRNAs

# experimentally
confirmed
tsRNAs Precision Sensitivity

MINTmap 6 552 8 8/6 552 8/17
SPORTS 6 945 10 10/6 945 10/17
tsRFinder 220 10 10/220 10/17

importantly, online tools that can analyse the function of
tsRNAs and their targets in user-provided high-throughput
sequencing data have not been developed thus far, making
it difficult to meet the growing demand of tsRNA research.

tsRFun is currently a unique platform containing tsRNA
databases and real-time online web server tools. We im-
proved tsRFun from four perspectives (systematicity, ac-
curacy, sensitivity, and efficiency), and developed an inte-
grated systematic online analysis platform for tsRNA iden-
tification, target prediction, pan-cancer expression profil-
ing, and functional enrichment. tsRFun enables specific
tsRNA analysis from high-throughput sequencing data
based on user-selected threshold parameters. Previous re-
search approaches have attempted to identify the unified
functions and mechanisms of action from the categories
of tsRNAs. However, studies have revealed that the mem-
bers of the same class of tsRNAs may perform quite differ-
ent functions. In this project, we constructed a regulatory
network based on the relationships between tsRNAs and
their targets and then evaluated the similarity of each gene
function in the same network module to predict the func-
tion of tsRNAs. tsRFun will expand our understanding of
tsRNA functions and reveal the roles of tsRNAs in the on-
set and progression of cancers. This study performed a pan-
cancer analysis of tsRNAs in 32 cancers and identified a
batch of tsRNA molecules that are closely associated with
cancer development and progression. tsRFun integrates se-

quencing data from three aspects––transcriptomics, RNA
modification-omics, and RNA protein interactomics––to
expand large-scale studies of tsRNAs and their associated
functions from a multidimensional, high-throughput per-
spective.

tsRFinder showed stronger precision due to the bino-
mial test employed by tsRFinder to determine whether the
fragments obtained from sequencing data were real tsR-
NAs, not degraded fragments of tRNAs, while other tools
consider all sequenced fragments capable of mapping onto
tRNA transcripts as potential tsRNA molecules. Instead of
consuming much time and effort on one degraded fragment,
we believe our tool can better assist biologists in selecting
the truly meaningful tsRNAs. We have demonstrated that
tsRFinder has good sensitivity and better precision than
other tsRNA prediction tools, but we cannot give specificity
information of tsRFinder or any tsRNA prediction tools
at present. Since there is currently no accurate experimen-
tal validation negative dataset on tsRNA, therefore cannot
calculate true negatives and false negatives in the prediction
results of each tool. Currently, most of the tsRNAs in the
available databases are the results of software predictions,
and there must be a large number of false positives (tRNA
degraded fragments). Therefore, our purpose in establishing
tsRFun was to provide a batch of high confidence tsRNAs
and their expression patterns in tumours. At the same time,
we also caution researchers within the field that one can-
not consider a stretch of tsRNAs solely on the basis of se-
quencing results being able to match to a tRNA transcript.
Since we cannot prove the stronger specificity of tsRNAs
at present, we modified the description in the manuscript
as tsRFinder has good sensitivity and better precision than
other tsRNA prediction tools, and added a discussion about
specificity. In the future, as more experimentally validated
tsRNAs are discovered, we will also continuously refine the
dataset of high confidence tsRNAs and thus evaluate the
specificity of tsRFun and other tsRNAs identification tools.
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Currently, there are few online analysis tools for tsRNA
molecules. With the increase in small RNA sequencing data
(especially large-scale tumour related datasets), it is neces-
sary to develop a series of convenient and effective tools
to explore the expression distribution patterns and poten-
tial biological functions of tsRNA molecules in diseases
and cancers. Therefore, we developed the tsRFun online
platform to meet the research needs for analysis of tsRNA
molecules, including systematic identification of various
classes of tsRNAs, investigation of the expression patterns
of tsRNAs in multiple cancer types, and finding out im-
portant tsRNAs associated with cancers. In addition, this
study identified the interaction relationships between tsR-
NAs and protein-coding genes based on AGO CLIP-Seq
data and established a coexpression network to predict the
function of tsRNA molecules. In summary, this study in-
tegrates databases, computational methods, and analytical
techniques to develop an effective analytical tool for tsRNA
research, providing strong evidence for comprehensively re-
vealing the roles of tsRNA in physiological and pathologi-
cal processes.

CONCLUSION

As a novel type of regulatory small RNA, tsRNA has ex-
panded the research field of noncoding RNAs. Although
researchers’ current understanding of tsRNA is not com-
prehensive, tsRNAs play indispensable regulatory roles at
many biological levels. The tsRFun platform developed
in this study is a systematic and comprehensive platform
of tsRNAs that facilitates the investigation of known and
novel tsRNAs and predicts their functions, promising to ad-
vance subsequent studies of tsRNAs.

DATA AVAILABILITY

tsRFun is freely available at http://rna.sysu.edu.cn/tsRFun/
or http://biomed.nscc-gz.cn/DB/tsRFun/. We have de-
posited the related codes on GitHub (https://github.com/
zhlingl/tsRFun) to facilitate more users to use our tools.
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