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The human brain is just 2% of the body’s weight, but
20% of its metabolic load (1–3), and 10 times more
expensive per gram than muscle. On the other hand,
the brain manages to produce poetry, design space-
craft, and create art on an energy budget of ∼20 W, a
paltry sum given that the computer on which this arti-
cle is being typed requires 80W. So where in the brain
is power consumed, what is it used for, why is it so ex-
pensive relative to other costs of living, and how does it
achieve its power efficiency relative to engineered sili-
con?Many classic papers have studied these questions.
Attwell and Laughlin (4) developed detailed biophys-
ical estimates suggesting that neural signaling and the
postsynaptic effects of neurotransmitter release com-
bined to account for 80% of the brain’s adenosine tri-
phosphate (ATP) consumption, conclusions that are
also supported by the overall physiology and anatomy
of neural circuits (5, 6). Numerous studies explored the
structural and functional consequences of this expen-
diture for limiting brain size (7) and scaling (8), efficient
wiring patterns (9), analog (graded potential) vs. digital
(spiking) signaling (10), distributed neural codes (11–
13), the distribution of information traffic along nerve
tracts and their size distribution (14–16), and computa-
tional heterogeneity and efficiency (17). Many of these
ideas have been synthesized by Sterling and Laughlin
(18) into a set of principles governing the design of
brains. Now, in PNAS, Levy and Calvert (19) propose a
functional accounting of the power budget of themam-
malian brain, suggesting that communication is vastly
more expensive than computation, and exploring the
functional consequences for neural circuit organization.

Levy and Calvert (19) build on the earlier literature
by focusing primarily on the relative power committed
to different modes of information processing in the hu-
man brain, rather than on different aspects of cellular
function. They make a key distinction between com-
munication and computation. “Communication” re-
fers, in general, to the transport of information, perhaps
encoded in some way, from one site to another without

transformation of the representation, extraction of sa-
lient features, or mapping to decisions or outcomes.
An example in the brain is the transport of visual infor-
mation, unchanged, along the optic nerve from the
eye to the central brain. “Computation,” a more sub-
tle concept, is generally understood in terms of an
input–output transformation. Levy and Calvert, build-
ing on previous work of Levy, view each neuron as
performing a “microscopic estimation or prediction”
of latent variables in its input and encoding this output
in interpulse intervals (IPIs), that is, in the relative tim-
ing of the action potentials used in signaling by most
neurons. Estimation and prediction are sufficiently gen-
eral frameworks to subsume other views of neural com-
putation (e.g., neurons as dynamical systems or logic
gates), and also to encompass the role played by sin-
gle neurons within networks charged with carrying out
a computational function. Likewise, information cod-
ing in IPIs includes other possibilities like rate codes
and pattern codes as specific cases. Thus, an example
of a “computation” by a neuron in the brain could be

Fig. 1. Computation in the brain is distributed among
specialized components communicating in networks.
Green circles denote a network of cortical areas, each
executing different functions. Orange triangles denote a
network of pyramidal cells coordinating to compute the
function of one cortical area. Levy and Calvert (19) argue
that the cost of computation by the elementary units is
dwarfed by the cost of communication between them.
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the signaling by a simple cell in V1 of the presence of a horizontal
bar in the visual input.

Employing this perspective, the authors conclude that the
biophysical processes supporting communication consume a
startling 35 times more power (ATP molecules per second in
biologically relevant units, or joules per second in physical units)
than the processes supporting computation (19). They come to
this conclusion by summing up the ATP cost to recover ionic gra-
dients from the excitatory currents per IPI involved in computation
vs. costs such as axonal resting potentials, action potentials, and
vesicle recycling involved in communication. This vast difference
formalizes findings implicit in ref. 4, whose authors showed that
action potentials and their postsynaptic effects dominate power
consumption in the brain. In another supporting line of evidence
from ref. 15, mitochondrial distributions in neurons track firing
rates and synaptic transmission so that the thickness of axons
may be largely determined by the need to supply synaptic terminals
whose use consumes 65% of the energy budget of the mammalian
brain (20). These expensive processes from refs. 4 and 15 are
describing communication, not computation, in the framework
of ref. 19. Interestingly, Levy and Calvert also estimate that 27%
of the cortical power expenditure is spent on costs associated with
synaptogenesis, such as growth via actin polymerization, mem-
brane synthesis and incorporation, and associated intracellular
transport. This interesting refinement of previous energy budgets
suggests that more than a quarter of the energy cost of owning a
brain is to facilitate ongoing learning, consistent with our qualita-
tive impression of the purpose of this organ.

In physical terms, Levy and Calvert (19) calculate that cortical
gray matter consumes about 3 W of power out of the 17 W to
20 W derived from glucose uptake in the brain (1, 2), 10% of
which remains unused under normal operation. About 3 times as
much (∼ 9W) is lost to heat, and the remainder powers the rest of
the brain. The 3-W estimate for the power consumption of gray
matter is consistent with earlier work of Lennie (21), who, using
data available two decades ago, found a different partitioning
of the energy budget suggesting that 50% of the power is de-
voted to processes that are independent of neural electrical
activity (i.e., computation and communication). The differences
arise partly from the primary biophysical data, including estimates
of the number of synapses and their success rate. The new
estimates also suggest that, on a per-neuron basis, human gray
matter uses about 2 ·10−9 W per neuron, consistent with the work
of Herculano-Houzel (22).

Levy and Calvert (19) use their results to estimate the bits of
information computed per joule, measured in terms of the mutual
information between a noisy neural integrator’s input and output.
In this definition, they find that neurons consume 108 times more
power per bit of computation than the idealized thermodynamic
bound of Landauer (23), and suggest that the large difference
arises from the cost of communication (which Landauer neglected)
and the biological imperative to compute sufficiently quickly to be
relevant for behavior. While these two constraints are certainly

relevant, future researchers will want to carefully examine assump-
tions about what constitutes computation, and the biophysical
constraints imposed by computation with living cells. In Levy
and Calvert’s analysis, the energy budget and the bits produced
per joule consumed both depend on a parameter: the average
number of input synapses to a cortical pyramidal neuron times
their success rate. They find their bits per joule estimate is maxi-
mized when this parameter is about 2,000, a number close to the
value they derive from data. This interesting result recalls earlier

In PNAS, Levy and Calvert propose a functional
accounting of the power budget of the
mammalian brain, suggesting that communication
is vastly more expensive than computation, and
exploring the functional consequences for neural
circuit organization.

efforts to, for example, use energy efficiency to understand how
neural firing should be organized (11, 13), and how information
should be partitioned across cells and structures in the brain (14,
17). The new work opens the door to more refined analyses of the
architecture of circuits in the brain and of how they partition their
computational tasks.

Levy and Calvert’s (19) results are pertinent for the interpreta-
tion of functional MRI measurements of regional brain metabolism
in terms of ongoing computation and communication. The new
data are also pertinent for studies of the evolution of the brain,
specifically, the notion that brain is expensive tissue (7) and that
metabolism has been a physiological constraint on brain architec-
ture (8, 22). The results will also interest engineers who seek to
design the next generation of low-power, intelligent computa-
tional devices. The proposed power budget of 3 W for computa-
tion and communication by gray matter is remarkably low, and,
even after accounting for 9 W apparently lost to heat, the brain
outperforms the typical laptop computer by nearly an order of
magnitude. Previous work has suggested that ubiquitous laws of
diminishing returns in the relation between information rates and
power will drive efficient brain-inspired computers toward hetero-
geneous architectures where, at each scale, the overall function
will occur through coordination between many specialized units,
each processing information at a maximally efficient rate deter-
mined by the physical substrate (17). The paper by Levy and Cal-
vert suggests that this drive to heterogeneity will have to be
balanced against the cost of network learning and communication
between the diverse components, because, although the actual
computations by each element will be relatively cheap, the com-
munication between them will be expensive (Fig. 1).
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