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Abstract In biological contexts as diverse as development, apoptosis, and synthetic microbial

consortia, collections of cells or subcellular components have been shown to overcome the slow

signaling speed of simple diffusion by utilizing diffusive relays, in which the presence of one type of

diffusible signaling molecule triggers participation in the emission of the same type of molecule.

This collective effect gives rise to fast-traveling diffusive waves. Here, in the context of cell

signaling, we show that system dimensionality – the shape of the extracellular medium and the

distribution of cells within it – can dramatically affect the wave dynamics, but that these dynamics

are insensitive to details of cellular activation. As an example, we show that neutrophil swarming

experiments exhibit dynamical signatures consistent with the proposed signaling motif. We further

show that cell signaling relays generate much steeper concentration profiles than does simple

diffusion, which may facilitate neutrophil chemotaxis.

Introduction
Prototypical diffusive signaling – in which individual cells communicate with neighbors by releasing

diffusible molecules into the extracellular medium – is a relatively slow process. Signaling molecules

undergoing random walks in the extracellular medium have a root mean square displacement that

grows like the square root of both the time since emission, t, and the signaling molecule diffusivity,

D. It follows that the distance an individual cell can signal also grows like the square root of time.

Thus, for thousands of cells coordinating actions over millimeters, simple diffusive signaling with

small molecules (D » 10�10 m2/s) takes hours. These length and times scales are incommensurate with

observed behavior in developmental biology (Chang and Ferrell, 2013; Cheng and Ferrell, 2018;

Vergassola et al., 2018), immune response (Reátegui et al., 2017), and microbial consortia

(Parkin and Murray, 2018), in which cells exchanging diffusible molecules coordinate activity over

millimeters in tens of minutes.

Indeed, when many cells collectively integrate environmental cues and participate in the signal-

ing, they can propagate diffusive waves with a fixed speed, v, in the asymptotic limit. This effect and

its analogs have long been studied in the context of excitable media (Keener and Sneyd, 2009;

Keener, 1987; Muratov, 2000) and observed in biological phenomena as diverse as natural cell sig-

naling circuits (Noorbakhsh et al., 2015; Pálsson and Cox, 1996; Kessler and Levine, 1993;

Gelens et al., 2014), synthetic cell signaling circuits (Parkin and Murray, 2018), apoptosis

(Cheng and Ferrell, 2018), range expansions (Tanaka et al., 2017; Fisher, 1937;

Kolmogorov et al., 1937; Barton and Turelli, 2011; Gandhi et al., 2016; Birzu et al., 2018), and

development (Chang and Ferrell, 2013; Vergassola et al., 2018; Muratov and Shvartsman, 2004;

Nolet et al., 2020). In this way, small groups of cells can transmit signals more quickly than simple

diffusion allows by recruiting the help of their neighbors.
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While diffusive waves have been observed in a variety of biological processes, they have also

been experimentally probed in a variety of spatial contexts – in quasi-1D tubes (Cheng and Ferrell,

2018; Chang and Ferrell, 2013; Nolet et al., 2020), in quasi-2D droplets and chambers

(Nolet et al., 2020; Afanzar et al., 2020), on 2D surfaces in fly eggs (Vergassola et al., 2018), and

on substrates of finite thickness (Parkin and Murray, 2018; Pálsson and Cox, 1996). And while the

phenomenology of diffusive waves has been studied for years, in the context of cell signaling it is

less well-understood how the propagation and initiation of such waves are affected by the dimen-

sionalities of the cellular distribution and the diffusive environment – or even how to identify the sys-

tem dimensionality – as previous modeling work has largely assumed quasi-1D dynamics

(Kessler and Levine, 1993; Meyer, 1991; Gelens et al., 2014; Vergassola et al., 2018). Also

unclear is how robust the resulting signaling dynamics are to underlying biological details, such as

the shape of the function governing cell activation and signaling molecule emission.

Here, we revisit the propagation and initiation of diffusive waves in the context of cell signaling.

Through a comprehensive study of single-component relays — in which cells measure the local con-

centration of a signaling molecule and participate in the emission of the same molecule — we show

that the asymptotic wave dynamics of diffusive relays are governed by simple scaling laws. In some

system dimensionalities, these scaling laws are identical to famous results from the 20th century

(Fisher, 1937; Kolmogorov et al., 1937; Luther, 1906); in other system dimensionalities, we show

that these well-known scaling laws can be drastically altered. For example, cells confined to two (or

one) dimensions with signaling molecule diffusion in three (or two) dimensions give rise to a diffusive

wave whose speed has no dependence on D: a wave driven by diffusion whose speed does not

depend on the rate of diffusion. In contrast to the dramatic effect of system dimensionality, these

scaling laws are insensitive to many biological details, including the functional form of cellular activa-

tion — the dependence of signaling molecule emission rate on the local concentration. We addition-

ally account for other phenomena – molecule decay, pulsed emission, and the discreteness of cells –

that do affect the asymptotic wave dynamics; in so doing, we provide an intuitive rubric for deter-

mining under what conditions these effects alter the wave propagation speed.

In our studies of wave initiation, we systematically examine under what conditions a group of cells

can trigger the formation of a diffusive wave. Here again, our results provide predictive relationships

between biophysical inputs and the resulting dynamics, which are at once dramatically affected by

dimensionality and largely insensitive to the details of activation and cellular uptake.

Finally, we show that neutrophil swarming experiments (Reátegui et al., 2017) display dynamics

consistent with our model. In this context, our results elucidate a potential design principle of diffu-

sive relays: they create large concentration gradients. Whereas simple diffusion of a signaling mole-

cule from a central source creates a shallow concentration profile that falls off like expð�r2=4DtÞ,
relays give rise to steep concentration profiles with gradients that quickly propagate outward and

decay only modestly inside the wave front. As such, for cells like neutrophils – which use a small mol-

ecule, leukotriene B4 (LTB4), as an intercellular signaling molecule and chemoattractant (4, 18, 19) –

relays may provide a method for cells to collectively generate large, continous chemical gradients

that may serve to guide directional migration; the continuous gradients generated by single-compo-

nent relays contrast with the pulse trains of chemotactic cues observed in, for example, Dictyoste-

lium discoideum (Kessler and Levine, 1993; Pálsson and Cox, 1996).

Results

Model construction
We begin by considering a static group of cells uniformly distributed in two dimensions –

for example, atop a solid surface – and described by an area density � (Figure 1A). We assume a

cell at position r senses the local concentration of a signaling molecule, cðr; tÞ, and participates in

the emission at a concentration-dependent rate af ðcÞ with a the maximum rate and f ðcÞ a dimension-

less function. Once secreted into the extracellular medium, the signaling molecules diffuse with diffu-

sivity D. Treating the cells and signaling molecule concentration in the continuum limit – we discuss

the validity of doing in the next section and in Appendix 6: Assessing the validity of a continuum

analysis – gives rise to a single equation that governs the time evolution of cðr; tÞ:
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qc

qt
¼Dr2cþ a�dðzÞf ðcÞ (1)

where the Dirac delta function dðzÞ accounts for the fact that the cells are confined to the plane. The

source function f ðcÞ is in general a complicated non-linear function of c. It can include uptake,

release, and cell-induced degradation of the signaling molecule – or any other process proportional

to the local cell density. We will consider this general case shortly. To start, we consider a simple

case in which cells measure the local signaling molecule concentration, c, and participate in the emis-

sion only if c exceeds a threshold concentration, Cth. In such a case, the activation function f ðcÞ is

well described by a Heaviside step function Q½c�Cth� and the concentration dynamics obey

qc

qt
¼Dr2cþ a�dðzÞQ½c�Cth�: (2)

Additionally, while we at first consider cells scattered in a two-dimensional plane, one can study

the signaling dynamics of cells in a one-dimensional channel or a three-dimensional environment

with similar analyses. Below, we discuss the connections between the cell signaling dynamics in all

these scenarios, and all are treated in depth in Appendix 2: Asymptotic wave ansatz.

Asymptotic wave dynamics
Our first step in understanding diffusive signaling relays is to solve for the asymptotic dynamics of

Equation (2). Since such relays involve cells signaling their neighbors, which then signal their own

neighbors, one can imagine that diffusive relays give rise to diffusive waves. We therefore make the

ansatz that the concentration cðr; tÞ ¼ cðr; z; tÞ can be described by an outward-traveling wave of the

form cðr; z; tÞ ¼ cð~r ¼ r � vt; zÞ (Fisher, 1937; Kolmogorov et al., 1937; Tanaka et al., 2017). Here, ~r

is the distance from the wave front – negative when inside the wave front, positive when beyond –

and v is the wave speed. In essence, we wish to examine the wave from the perspective of an

observer moving at the wave front. With Cth � cð~r ¼ 0; z ¼ 0Þ and r � D=v, we take Equation (2) and

arrive at the following equation governing asymptotic behavior:

c >Cth
v
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Figure 1. Asymptotic relay dynamics of cells in 2D with diffusion in 2D. (A) Schematic illustrating the diffusive relay motif. Cells (pink with purple

nucleus) release a signaling molecule that diffuses (blue clouds). They do so when the local concentration exceeds a threshold, Cth. This gives rise to a

diffusive wave with wave speed v. (B) Snapshot concentration profiles. Asymptotic theory (Equation (6), black lines) and numerical simulation of

Equation (2) (red dots, details of the numerical methods can be found in Materials and methods) are in good agreement and show outward-

propagating waves. Here, D ¼ 10
�10 m2/s, v ¼ 2 mm/s, and hCth=a� ¼ D=v2. Numerical simulations assume that a cell colony of size ri ¼ 4D=v (dashed

vertical line) centered at the origin starts signaling t ¼ 0. (C) Numerical wave speed as measured at t ¼ 100D=v2 (markers) agrees well with theory

(Equation (5), black line) as we independently vary D (circles) and hCth=a� (diamonds) relative to the panel B values (red circle and diamond).
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þ q
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þ v
qc

q~r
þ a�dðzÞQ½�~r�:

(3)

Since we consider r�D=v, we may ignore the Dðqc=q~rÞ=r term due to the dominance of vqc=q~r.

This is effectively the same as ignoring the curvature of the wave front and has the effect of reducing

our asymptotic analysis of cells in two dimensions into an asymptotic analysis of cells in one dimen-

sion (Tanaka et al., 2017). The asymptotic dynamics of cells distributed in three spatial dimensions

allow for a similar manipulation (see Appendix 2: Asymptotic wave ansatz).

We wish to find a solution to Equation (3) for various diffusive – that is, extracellular – environ-

ments. In doing so, we hope to solve for the spatial dependence of the concentration profiles cð~r; zÞ
as well as a relationship that will tell us how the signaling dynamics – in this case, the wave speed v –

depend on the biophysical system parameters like the cell density, �; the concentration threshold,

Cth; and the signaling molecule emission rate, a.

But first, we note that Equation (3) provides two quantities of value: a natural length scale D=v

and a natural time scale D=v2. For a small diffusing molecule with D » 10�10 m2/s and a wave speed

of v» 1 mm/s – approximately the numbers relevant for several experimental systems (Cheng and

Ferrell, 2018; Chang and Ferrell, 2013; Parkin and Murray, 2018; Vergassola et al., 2018;

Pálsson and Cox, 1996) including, as we show below, neutrophil swarming (Reátegui et al., 2017) –

we recover D=v» 100 mm and D=v2 » 100 s. We have already used the natural length scale D=v to

derive Equation (3) and to show that cells in 2D have the same asymptotic dynamics as cells in 1D

or 3D, and we can use these scales to further justify several other approximations we have made so

far. For instance, the approximation that the out-of-plane cell density can be described by dðzÞ is

valid when the cell size H � D=v; similarly, decay of the signaling molecule can be neglected for a

decay rate g � ðD=v2Þ�1 while pulsed emission gives rise to the same asymptotic wave speed if the

width of the pulse t satisfies t � D=v2. Finally, we note that the use of Equation (2) as a starting

point is justified when the mean distance d between neighboring cells satisfies dv=4D � 1. A thor-

ough, mathematical discussion of all the above, including a demonstration of why D=v and D=v2 are

the appropriate scales, is presented in Appendix 2: Asymptotic wave ansatz.

When the extracellular medium thickness h � D=v, diffusion of the signaling molecule is effec-

tively two-dimensional as we can take q
2c=qz2 ! 0 and dðzÞ ! 1=h. In this limit, Equation (3)

becomes

h�D=v : 0 ¼D
q
2c

q~r2
þ v

qc

q~r
þ a�

h
Q½c�Cth�

¼D
q
2c

q~r2
þ v

qc

q~r
þ a�

h
Q½�~r�

(4)

which we can solve to find the asymptotic dynamics of cells in 2D (1D, 3D) with effective signaling

molecule diffusion in 2D (1D, 3D) – the thin extracellular medium limit (Figure 1). This corresponds

to the long-pulse, long-decay time limit of the model constructed by Kessler and Levine, 1993 and

is similar to the model considered by Meyer, 1991. Adding signaling molecule decay to Equation (4)

would yield a model first considered by McKean, 1970 in the context of nerve impulse propagation.

Before solving Equation (4) exactly, we make two crucial observations from which we can derive

the functional form of the wave speed, v. First, because the source (furthest right) term in Equa-

tion (4) is proportional to a�=h, all concentrations in the problem, including Cth, are proportional to

a�=h. As the non-source terms in Equations (4) and (1) are linear, the only role a�=h serves is to set

the concentration scale of the dynamics. Thus, Cth, a, �, and h combine to give us a single model

parameter to describe the threshold concentration, hCth=a�, which has units of time (measured in s).

Second, the only other parameter in the problem besides v – which we want to calculate – is the dif-

fusion constant, D, which has units of length squared divided by time (measured in m2/s). Thus, the

only combination of these two parameters that will give a speed (measured in m/s) is ða�D=hCthÞ1=2.
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By this simple dimensional analysis argument, the wave speed v can only be v ¼ aða�D=hCthÞ1=2 for

some constant a. Formally, the above procedure is equivalent to non-dimensionalizing Equation (4),

as discussed in Appendix 2: Asymptotic wave ansatz.

By the same reasoning, any activation function f ðcÞ – a Heaviside step function, a Hill function, or

even a bistable function – that can parameterized by a single concentration Cth and emission rate a

must give the same scalings if it has a traveling wave solution. While we focus on positive activation

functions in this work, we emphasize that if signaling molecule degradation is dominated by cell-

induced processes like uptake, then signaling molecule degradation is also proportional to the cell

density and the resulting (presumably bistable) production curve will yield dynamics that are also

beholden to this scaling law.

One can confirm this scaling law for Heaviside activation by solving Equation (4) for ~r>0 and ~r<0,

then matching boundary conditions at ~r ¼ 0. This analysis indeed reveals that

h�D=v : Cth ¼ a�D=hv2 ¼) v¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a�D=hCth

p

(5)

while

h�D=v : cð~rÞ ¼ �a�~r=hvþ a�D=hv2 ~r� 0

a�De�~rv=D=hv2 ~r� 0:

(

(6)

The concentration of signaling molecule thus grows linearly in the distance inside the wave front

and decays exponentially in the distance beyond the wave front. We compare numerical simulations

of Equation (2) (see Materials and methods for details) with the above asymptotic formulae for wave

speeds and concentration profiles in Figure 1B/C. For r�D=v, the asymptotic formulae describe

well both the concentration profile and the wave speed.

The wave speed relationship given in Equation (5) is analogous to the Fisher-Kolmogorov wave

speed (Fisher, 1937; Kolmogorov et al., 1937; Gelens et al., 2014) – with hCth=a� replacing the

doubling time as the characteristic time scale in the problem – and has been discussed in beautiful

previous work (Gelens et al., 2014; Meyer, 1991), starting with Luther, 1906. Amazingly, Luther’s

formula, which posits the scaling relation v~
ffiffiffiffi

D
p

, holds even in scenarios beyond those considered

here; for instance, waves driven by oscillatory activation dynamics – as are relevant for intercellular

signaling in Dictyostelium discoideum (Kessler and Levine, 1993; Pálsson and Cox, 1996) and

developmental trigger wave propagation (Gelens et al., 2014; Chang and Ferrell, 2013) – are sub-

ject to this same scaling. One can understand this through simple dimensional analysis. These more

complex scenarios add signaling molecule decay and a periodically modulated source function to

the above model. Thus, to our set of parameters, D (measured in m2/s) and hCth=a� (measured in s),

we add a modulation time t (measured in seconds) and decay rate g (measured in 1/s). As D is the

only parameter involving a length scale, it must be that v~
ffiffiffiffi

D
p

even in these more complex

scenarios.

By way of contrast, Vergassola et al., 2018 have shown that an unconventional scaling of v ~D3=4

can result from time-dependent dynamics of the source term at the wave front, a phenomenon that

breaks our assumption that all cells obey the same time-independent source function f ðcÞ. Similarly,

as we will now show, the dimensionality of the system can also have a dramatic effect on wave speed

scaling laws.

Next, we consider a thick extracellular medium for which h � D=v. Such a configuration is relevant

for signaling in bacterial consortia atop thick, permeable substrates (Parkin and Murray, 2018) or

anywhere that a lower dimensional tissue abuts a thick and permeable extracellular environment as

can be found, for example, in the retina. Here, the signaling molecules can diffuse out of plane

(Figure 2A). Because the cells sit atop a solid boundary, signaling molecules can only diffuse in the

upper half of the plane and the source term in Equation (3) acquires a factor of two to account for

this boundary condition:
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h�D=v : 0 ¼D
q
2c

q~r2
þ q
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þ v
qc

q~r
þ

2a�dðzÞQ½c�Cth�
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q
2c

q~r2
þ q

2c

qz2

� �

þ v
qc

q~r
þ

2a�dðzÞQ½�~r�:

(7)

Effectively, we have cells in 2D with diffusion in 3D. We note that this case is asymptotically equiv-

alent to cells in 1D emitting into a semi-infinite 2D environment. Thus, comparing to Equation (6),

we can see that the asymptotic dynamics are not determined by the dimension of the cell distribu-

tion or the diffusive environment, but by the difference in dimension between them.

The same dynamics hold for cells on a curved surface (such as epithelia) as long as the length

scale of the curvature and the thickness of the extracellular medium are both large compared to

D=v. If the length scale of the curvature is large compared to D=v, but the extracellular medium is

thin compared to D=v, then the dynamics will be of cells in a 2D plane with diffusion in 2D. Similarly,

cells on the surface of a tube with diffusion in the tube’s interior will interpolate between these two

limits: when the radius of the tube is large compared to D=v, the dynamics will be of cells in 2D and

diffusion in 3D; when the radius of the tube is small compared to D=v, the dynamics will be of diffu-

sion and cells in 1D.

Examining Equation (7) as we did Equation (4) reveals that every concentration in a thick extra-

cellular medium is proportional to a�. Thus, we have two independent parameters in Equation (7):

Cth=a� (measured in s/m) and D (m2/s). The only combination of these parameters that will give a

wave speed (measured in m/s) is a�=Cth. It therefore must be the case that v ¼ aa�=Cth with a a con-

stant – a wave driven by diffusion whose wave speed is independent of the rate of diffusion. We

again stress that this is true for any activation function that has a traveling wave solution and can be

parameterized by a single concentration Cth and a single emission rate a. (For Hill function activation,

a» 2=p for n � 2, see Appendix 5: Asymptotic wave dynamics with Hill function activation.) Thus, the

scaling laws governing the asymptotic dynamics are insensitive to the details of single-cell activation.

(!)
c >Cth

A

(!)

C

B

r v/D25 50

5

10

c(
r  )

/
C

th

-12 -10

2

4

0 5
 Cth/a½ (105 s/m),

v
 (
¹
m

/
s)

side view

v

log10(D s/m2),

6

t   = 20 D/v2 40 D/v2 60 D/v2

(!)
t  

Figure 2. Asymptotic relay dynamics with cells in 2D and diffusion in 3D. (A) Schematic of cells (pink with purple nucleus) performing a diffusive relay in

which signaling molecules (blue clouds) can diffuse out-of-plane. Here, such relays give rise to a diffusion-constant-independent wave speed, v. (B)

Snapshot concentration profiles of the signaling molecule show good agreement between numerical simulation of Equation (2) (blue dots, details of

numerical methods can be found in Materials and methods) and asymptotic theory (Equation (9), black lines). Here, D ¼ 10
�10 m2/s and v ¼ 2 mm/s

with Cth=a� ¼ 2=pv. The initial signaling colony is of size ri ¼ 4D=v (dashed vertical line). (C) Numerical wave speed as measured at t ¼ 100D=v2

(markers) agrees well with theory (Equation (8), black line) as we independently vary D (circles) and Cth=a� (diamonds) relative to the panel B values

(blue circle and diamond). As predicted, v is indeed D-independent in this system.
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It is worth reflecting on the fact that some system geometries give a wave whose speed is diffu-

sion constant-independent. This finding implies that, at least in some contexts, the size of the signal-

ing molecule has little to do with the resultant cell signaling speed. We note that this is in contrast

with the more standard wave speed scaling in Equation (5), in which smaller (lower molecular

weight, higher D) signaling molecules result in a faster wave, all else equal.

A full solution of Equation (7), obtained in Appendix 2: Asymptotic wave ansatz by combining a

partial Fourier transform in the z-dimension and the methods used to solve Equation (4), yields

h�D=v : Cth ¼ 2a�=pvv¼ 2a�=pCth (8)

and

h�D=v : cð~rÞ» 2a� �~r=pvDð Þ1=2 ~r��D=v

a� D=p~rv3ð Þ1=2e�v~r=D ~r�D=v:

(

(9)

So for cells in a thick extracellular medium, the concentration grows like the square root of the

distance inside the wave front and decays exponentially beyond the wave front. As with the 2D diffu-

sive environment, we verify these relationships numerically (Figure 2B/C, see Materials and methods

for details of the numerical simulations). We see that the wave speed is indeed D-independent over

two orders of magnitude in the diffusion constant.

The diffusive relay signaling motif therefore gives rise to diffusive information waves for which

Equation (5) and Equation (8) provide predictive relationships between wave speed, threshold con-

centration, cell density, extracellular medium thickness, and emission rate for a variety of system

dimensionalities. Similarly, Equation (6) and Equation (9) provide quantitative functional predictions

of the concentration profiles generated by diffusive relays. By dimensional analysis, these scaling

laws are insensitive to the details of activation. Nonetheless, other details – signaling molecule

decay, pulsed emission, discreteness of cells – can alter these robust scaling laws (Keener, 2000;

Dieterle P and Amir A, 2020. Manuscript in preparation). We explicitly discuss these corrections in

the appendices (see Appendix 3: Pulsed emission and decay and Appendix 6: Assessing the validity

of a continuum analysis), where we also discuss the dynamics of cells in 1D with 3D diffusion and the

properties of waves in an arbitrary extracellular medium thickness. Both signaling molecule decay

and pulsed emission decrease the steepness of the concentration gradient inside the wave front,

and both decrease the wave speed. We emphasize that, in all cases, the asymptotic dynamics are

not determined by the dimension of the diffusive or cellular environment, but by the difference in

dimension between the two.

Signaling wave initiation
Armed with a knowledge that diffusive relays birth diffusive waves, we now ask whether such waves

are always initiated. As with the asymptotic dynamics, wave initiation depends on the system

dimensionality. Here, however, the dimensionality of the diffusive environment alone determines

qualitative behavior. Much previous work in chemical waves and excitable media has shown that a

delicate interplay of activation, repression, and diffusion can give rise to a host of dimension-depen-

dent wave initiation phenomena (Foerster et al., 1989; Weise and Panfilov, 2011); our task here is

to study the dimension-dependent dynamics of concentration build up in single-component relays.

To begin, we consider an ‘initiating colony’ of radius ri in which cells emit a diffusible signaling

molecule with rate a (Figure 3A). The surrounding cells respond by emitting the same signaling mol-

ecule according to some activation function, f ðcÞ. Here, we take f ðcÞ to be a Hill function of degree n

(Figure 3B).

In one- and two-dimensional diffusive environments, a continuously emitting source leads to a

diverging concentration throughout the space. However, in three-dimensional diffusive environ-

ments, a continuously emitting source gives rise to a steady-state concentration with 1=r tails

(Krapivsky et al., 2010).

We therefore expect that an initiating colony of cells, regardless of its radius ri (in fact, even if it

consists of a single cell – see Appendix 7: Initiation dynamics), will be able initiate a diffusive wave in

one- and two-dimensional environments; meanwhile, a colony in a three-dimensional environment

may fail to initiate a diffusive wave. This is indeed what we observe.
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Figure 3. Wave initiation dynamics. (A) Schematic demonstrating wave initiation. Cells within some initial signaling volume of radius ri begin signaling

at some rate a. The signaling wave is initiated when the concentration at nearby cells exceeds the threshold concentration, Cth. (B) Cells near the initial

signaling volume participate in the emission according an activation function, f ðcÞ. For instance, in the case of Hill function activation,

f ðcÞ ¼ ½1þ ðCth=cÞn��1. C: Initiation times for Heaviside activation, in which f ðcÞ ¼ Q½c� Cth�. Numerics (thick colored lines) and approximate asymptotic

theory (Equations (10) and (11), thin black lines) of the initiation time’s dependence on ri for cells and diffusion in 1D or 2D (left) or cells in 2D with

diffusion in 3D (right). For cells and diffusion in 1D, Equation (10) provides a good approximation in the limits vri=D � 1 and vri=D � 1. Similarly, for

cells and diffusion in 2D, Equation (11) governs the large and small vri=D limits. In both of these cases, the wave always initiates, but the initiation time

Figure 3 continued on next page
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In Figure 3C, we demonstrate this dramatic dimension-dependence in the case of switch-like acti-

vation, for which f ðcÞ ¼ Q½c� Cth�. To find the initiation time tinit, we integrate Green’s functions of

the diffusion equation (see Appendix 7: Initiation dynamics for details) to calculate the concentration

profile created by cells continuously emitting with rate a inside the initiating colony. When the con-

centration at ri is equal to the threshold – Cth ¼ cðri; tinitÞ – cells outside the initiating colony begin to

participate in the relay and the wave is initiated. Below, we characterize the initiation time as a func-

tion of ri and the characteristic time and length scales – D=v2 and D=v, respectively – of a given sys-

tem, thus linking the initiation dynamics to the asymptotic wave speed, v. A summary of these

results as a function of dimension, along with a summary of the asymptotic dynamics, can be found

in Table 1.

For cells in 1D with 1D diffusion, the initiation time in the limits of small (ri � D=v) and large

(ri � D=v) initiating colonies is:

tinit »
pD=4v2ð ÞðD=vriÞ2 ri �D=v

tmin;1;1 ¼ 2D=v2 ri �D=v:

(

(10)

When ri �D=v, the signaling molecules quickly diffuse across and away from the initiating colony.

Thus, it is hard for the colony to build up a concentration that exceeds Cth. Correspondingly, the ini-

tiation time increases like 1=r2i for small ri. Meanwhile, for ri �D=v, the size of the initiating colony

becomes irrelevant and reaches a minimum value of tmin;1D, determined entirely by the characteristic

time scale D=v2. The full dependence of tinit on ri is pictured in Figure 3C, where we show that the

above limits are valid approximations.

Next, we consider cells in 2D with diffusion in 2D. Here, for ri � D=v, the initiation time scales

harshly as

tinit ~
r2i =4D
� �

eð2D=vriÞ
2

ri �D=v

tmin;2;2 ¼ tmin;1;1 ¼ 2D=v2 ri �D=v:

(

(11)

Figure 3 continued

can be orders of magnitude larger than D=v2 if ri � D=v. For cells and diffusion in 3D (right), signaling waves do not initiate for vri=D<
ffiffiffi

3
p

. Here again,

the asymptotic theory Equation (12) is in good agreement with numerics.

Table 1. Summary of asymptotic and initiation dynamics with Heaviside activation.

For different system dimensionalities, we summarize the asymptotic wave speed, v; the initiation time

for small initial signaling colony size, tinit;
vri
D
� 1; and the initiation time for large initial signaling col-

ony size, tinit;
vri
D
� 1. One-dimensional diffusive environments are assumed to be narrow channels of

width h in each direction perpendicular to the channel length. The cell density � has units 1/m for

cells in 1D, 1/m2 for cells in 2D, and 1/m3 for cells in 3D. When the diffusive and cell dimensions do

not match, the environment is assumed to be semi-infinite.

tinit; tinit;

v vri
D
� 1

vri
D
� 1

Cells in 1D, diff. in 1D a�D
h2Cth

� �1=2
~ D

vri

� �2
2D=v2

Cells in 1D, diff. in 2D 2a�
phCth ~ exp 2D

vri

� �2
4D=pv2

Cells in 2D, diff. in 2D a�D
hCth

� �1=2
~ exp 2D

vri

� �2
2D=v2

Cells in 2D, diff. in 3D 2a�
pv

no waves 4D=pv2

Cells in 3D, diff. in 3D a�D
Cth

� �1=2 no waves 2D=v2
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Results in the above limits are corroborated by numerical simulation in Figure 3C, where we

show initiation times for the limits above and for intermediate values of vri=D.

Lastly, we consider cells in 3D with 3D diffusion and find that there is a critical initial signaling col-

ony size of ri ¼
ffiffiffi

3
p

D=v below which the wave will not initiate. Around the critical colony size, tinit

diverges as ðvri=DÞ6½ðvri=
ffiffiffi

3
p

DÞ2 � 1��2. If ri � D=v, then tinit again plateaus at a constant value tmin;3D

that only depends on the characteristic time scale D=v2:

tinit »

noinitiation ri<
ffiffiffi

3
p

D=v

D=9pv2ð Þðvri=DÞ6
ðvri=

ffiffi

3
p

DÞ2�1½ �2 ri »
ffiffiffi

3
p

D=v

tmin;3D ¼ 2D=v2 ri �
ffiffiffi

3
p

D=v:

8

>

>

>

<

>

>

>

:

(12)

These analytic expressions again agree well with numerical simulation, as seen in Figure 3C. In

Appendix 7: Initiation dynamics, we work out the case of cells in 2D with diffusion in 3D, for which

there is a minimum initiating colony size of ri ¼D=v. There, we also show that the qualitative findings

presented above also hold for systems with discrete cells.

The critical initiating colony size for a 3D environment is reminiscent of elegant work on range

expansions (Tanaka et al., 2017; Barton and Turelli, 2011). There, the effects of diffusive migration

and population growth compete with each other, and a critical mass is needed to initiate the spatial

advance of a particular genotype. Here, the dimension-dependent dynamics of concentration build-

up dictate that a signaling wave which will always initiate in one- and two-dimensional environments

requires a critical initial colony size in 3D.

Because the signaling wave always initiates in one- and two-dimensional environments, it can in

principle be initiated by a single cell. As random activation of a single cell can initiate a signaling

wave that fixes the entire population to maximal activation, these signaling dynamics have typically

been thought of as unstable (Deneke and Di Talia, 2018). Yet, as we have shown here, even in one-

and two-dimensional environments, the initiation time for colonies smaller than D=v can be many

orders of magnitude larger than the characteristic time scale of D=v2 (Figure 3D). Thus, even though

this signaling modality is technically unstable, it is robust against stochastic activation of a small num-

ber of cells over very long time scales.

In effect, then, even strictly positive-valued activation functions require a ‘critical mass’ of cells to

initiate a signaling wave. In the context of neutrophil swarming – which we will shortly consider in

more detail – this critical mass may provide a basis by which the immune system ‘decides’ whether

to initiate a full-scale swarming response. In vitro experiments (Reátegui et al., 2017) indicate that

small colonies of a pathogen can indeed fail to incite a swarm. Moreover, since the critical size of an

initiating colony goes like D=v, we can see that relays utilizing smaller (lower molecular weight,

higher D) signaling molecules require larger critical masses, all else equal.

Finally, we note that for cells with a Hill-like activation function f ðcÞ ¼ cn=ðcn þ Cn
thÞ of order n � 2,

the above results for switch-like activation provide a good quantitative approximation of the initia-

tion times (see Appendix 8: Wave initiation with Hill function activation). Moreover, for cells in 3D

with Hill activation functions of order n>3, there is a critical colony size just as for switch-like activa-

tion. These results highlight the role of spatial degrees of freedom in determining the wave initiation

dynamics and stability.

Application to neutrophil swarming and gradient generation
With a firm understanding of the diffusive wave and initiation dynamics, we now turn our sights to

understanding a specific model system: neutrophil swarming. In beautiful work across several organ-

isms (Lämmermann et al., 2013; Isles et al., 2019; Reátegui et al., 2017), experimentalists have

observed striking behavior: an acute injury or infection can elicit rapid, highly directive motion of

neutrophils – the most prevalent white blood cells – toward the site of the injury or infection. These

experiments have demonstrated that a lipid small molecule called leukotriene B4 (LTB4) – along with

many larger, slower-diffusing proteins (Reátegui et al., 2017) – governs the long-range recruitment

of swarming neutrophils (Lämmermann et al., 2013; Afonso et al., 2012; Reátegui et al., 2017;

Isles et al., 2019). Reategui et al. have noted the presence of several other pro- and anti-inflamma-

tory lipid small molecules during swarming, though their precise roles are less clear. LTB4 serves to

activate the neutrophils and also acts as a chemoattractant (Afonso et al., 2012) when receptors for
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LTB4 are blocked, swarming behavior is significantly impaired (Lämmermann et al., 2013;

Reátegui et al., 2017). The release of LTB4 has been thought to work as a relay, although the pre-

cise mechanistic details of this relay remain unclear (Lämmermann and Germain, 2014; Kienle and

Lämmermann, 2016).

In vitro experiments performed with human neutrophils are particularly relevant given the results

discussed so far. In these experiments, human-derived neutrophils are injected into a chamber, then

settle onto the surface of a glass slide, resulting in a uniform sprinkling of cells in 2D. Also on the

glass slide are circular ’targets’ (of size ri) coated in zymosan, a fungal surface protein that elicits a

swarming response (Reátegui et al., 2017). Some cells land on or near the target, giving an initial

condition as in Figure 3A. These cells begin signaling their neighbors, which in turn migrate towards

the target (Figure 4A).

By tracking individual cells in time, one can deduce their migratory direction as a function of time.

A typical metric for quantifying the directionality a cell’s migration is the chemotactic index – the

cosine of the angle � between a cell’s motion and the direction of the target (Figure 4A). One can

average over the cells at a given distance r and time t to construct a plot of the average directional-

ity hcos �i in space and time. As pictured in Figure 4B, such a plot reveals a clear divide in space and

time between cells that are highly directed toward the target (pink) and those without any particular

directionality (white and light blue). We refer to the boundary of this divide as an information wave

front – cells that lie underneath the curve have received the signal and begun chemotaxing toward

the target while those above the curve have not.

Interestingly, the information wave front is convex with respect to the origin – a dramatic depar-

ture from what simple diffusive signaling by cells on the target would yield (Figure 4A/B), and from

what Reategui et al. observe in experiments with neutrophils whose LTB4 receptors have been

blocked (see Appendix 10: Simple diffusion model for more). We therefore posit that the cells may

be participating in a relay in which they emit LTB4 in response to the same and check to see if this is

consistent with the observed information wave front.

To do so, we perform a numerical simulation of Equation (2) with an additional term to account

for the signaling of cells that land on the target. For this analysis, we assume a circular target of

radius ri » 100 mm, though the targets fabricated by Reategui et al. are smaller, oblong objects.

Here, the diffusive environment is effectively three dimensional and the cells are close enough to

allow for the use of a continuum model like Equation (2) (see below). Our model assumes switch-

like activation of neutrophils, which we associate with the onset of directed chemotaxis. We ignore

the inward migration of cells in this analysis, as it has a negligible effect on the information wave

propagation since the cells move at a speed u » 0:3 mm/s � v (see Appendix 11: Quantifying the

effects of chemotaxis). Thus, as mentioned above, Equation (2) effectively has two parameters:

Cth=a� and D. Fitting these two parameters to the observed information wave front gives

Cth=a� » 3:67� 10
5 s/m and D » 1:25� 10

�10 m2/s, the latter of which is consistent with the diffusion

constant of a small molecule like LTB4. This implies a wave speed of v » 1:7 mm/s. Thus, we are vali-

dated in using a continuum model with a thick extracellular medium, as for this experiment the extra-

cellular medium thickness h ¼ 2 mm � D=v and the mean distance between neutrophils, d ¼ 50 mm,

satisfies vd=4D » 0:17 � 1. The cell thickness H » 10 mm indeed satisfies H � D=v, meaning the use of

the delta function to describe the cell distribution is valid. Finally, as LTB4 has a lifetime 1=g of many

minutes (Bray, 1983) and D=v2 » 40 s � 1=g, we can indeed ignore signaling molecule decay. These

fit parameters give a curve that matches the transient dynamics over the field of view of the experi-

ment (Figure 4). Thus, our relay model gives dynamics that are consistent with the dynamics of neu-

trophil swarming experiments – namely, the observed convex shape of the information wave front.

Larger field-of-view and longer time-course experiments with varying cell densities and larger targets

will provide a deeper mechanistic understanding of such relays, while also testing the scaling predic-

tions of Equation (5) and Equation (8).

The fit value of Cth=a� ¼ 3:67� 10
5 s/m is consistent with the neutrophil’s LTB4 receptor affinity.

To show this, we first note that Reategui et al. measured the LTB4 emission rate under similar condi-

tions as the relay experiment analyzed above; they found that a » 40 molecules per second per cell

(see Appendix 9: Sensitivity of the information front to fit parameters for details). Using the cell den-

sity of � ¼ 1=d2 ¼ ð50 �mÞ�2, we find that Cth » 500 pM. This value is within the range of the
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Figure 4. Application to neutrophil swarming. (A) Schematic of the simple diffusion model. Here, cells on the target (within ri) signal distant neighbors

by continuously emitting a single signaling molecule. If the neighboring cells have a chemotactic response, they migrate toward the target with some

noise – that is, some non-zero angle � with respect to the target. Otherwise, they move around with no sustained directionality. (B) Experimental data

(color plot) reproduced from Reátegui et al., 2017 showing the information wave front in neutrophil swarming experiments. By tracking the neutrophils

in space and time, they observe highly directed motion of the neutrophils towards the target (pink) starting around t ¼ 200 s. There is a clear boundary

in space and time – the information wave front – between the regions where cells migrate toward the target (pink) and jostle around with no particular

direction (white and light blue). While a relay theory (black line) is consistent with the convex shape of the information wave front, simple diffusive

signaling by only the cells on the target (gray line) is not. The diffusion constants for both models is D ¼ 1:25� 10
�10 m2/s. The threshold

concentrations for the relay and simple diffusion models are Cth=a� » 3:66� 10
5 s/m and 2:91� 10

4 s/m, respectively. The parameters for the relay

Figure 4 continued on next page
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measured BLT1 receptor affinity for LTB4, which is reported to be approximately 0.1 � 2 nM

(Yokomizo, 2015).

Finally, we comment on the matter of why neutrophils might employ such signaling relays. As we

have shown above, relays lead to ’fast’ communication, in the sense that they give rise to diffusive

waves which travel a distance vt in a time t, compared to the ~
ffiffiffiffiffi

Dt
p

distance of simple diffusion.

However, there is another potential reason to use diffusive relays: they create strong gradients that

may help cells chemotax effectively.

To get an idea of the gradients we are working with, we compare those generated by a relay –

calculated by solving Equation (2) and approximated in Equation (9) – to a comparable simple diffu-

sion model, such as that pictured in Figure 4B. (In Appendix 10: Simple diffusion model, we present

the same comparison for a thin extracellular medium.) As is well-known, a burst-like emission of a dif-

fusible molecule creates shallow, Gaussian concentration profiles away from the source; the same is

true for continuous emission of a fixed source. Thus, the gradients that individual cells or small colo-

nies of cells can create through simple diffusive signaling are orders of magnitude shallower than the

collective gradients generated by relays (Figure 4C). This hints that neutrophils may use relays not

solely for their improved signaling speed, but also for the strong resulting chemotactic gradients.

Discussion
In this work, we have shown how simple cell signaling relays can give rise to diffusive waves whose

properties are robust to many underlying details. Our work especially highlights the importance of

the dimensionality of the extracellular medium, as seemingly innocent changes to the environment

can have large effects on the resulting diffusive waves. The strong effect of system dimensionality is

reminiscent of previous work on diffusive dynamics, which showed how dimensionality can effect

Turing pattern instabilities (Levine and Rappel, 2005).

Although we have characterized the asymptotic dynamics, initiation, and potential design princi-

ples of these waves in several scenarios, many interesting problems remain as yet unsolved. First, as

noted by Lammermann and colleagues (Lämmermann and Germain, 2014; Kienle and Lämmer-

mann, 2016), it is unclear how the complexities of in vivo extracellular environments affect these

results, particularly in the context of neutrophil swarming. Ambient flow (for example, in blood ves-

sels), constrictions, and complex diffusive environments may lead to dynamics of biological relevance

beyond those discussed here. Additionally, it would be interesting to study how different models of

chemoreception and cellular uptake – topics of theoretical (Muratov and Shvartsman, 2004) and

experimental (Youk and Lim, 2014; Scherber et al., 2012; Tweedy et al., 2016) relevance – affect

our conclusions.

As an experimental test of our model, we propose studying neutrophil swarming dynamics over a

wide field of view with varying cell densities and extracellular medium thicknesses. For diffusive

waves with approximately our experimentally inferred parameters for neutrophil swarming (D=v » 100

mm), one could probe the thin extracellular medium limit of h � D=v with microfluidic chambers of

tens of microns in height. Similarly, with mm-scale chambers introduced by Reátegui et al., 2017

and discussed in the previous section, one can reach the limit of a thick extracellular medium. Experi-

ments in these two limits would provide quantitative tests of our theory. In particular, varying cell

density would provide a test of the dimensionality-dependent relations for collective signaling wave

speed, Equations (5) and (8).

On a mechanistic level, although a relay mechanism would allow neutrophils to quickly coordinate

their response, it remains unclear how inflammatory response is modulated in such a scenario. If

inflammation during neutrophil swarming is governed by a fast-travelling wave, then how do the

cells collectively turn off response? One possibility is that signaling pathways in neutrophil swarm

Figure 4 continued

model are chosen to fit the wave front by eye while the simple diffusion model parameters are chosen to give the same signaling distance at t ¼ 500 s.

(C) Gradients created by signaling relays (black) and simple diffusion (gray) models in panel B. The dashed vertical lines indicate the location of the

information wave front. As time increases from left to right, the relay signaling motif gives an information wave that signals cells faster than simple

diffusion in the long time limit. Cells within the wave front (to the left of the dashed lines that indicate the wave fronts) experience significantly larger

gradients when the cells utilize a relay, which may facilitate efficient chemotaxis.
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resolution – for instance, those involving LXA4 (Reátegui et al., 2017) production and emission –

work by a similar relay mechanism; it is also possible that LTB4 production is governed by other fast-

diffusing signaling molecules whose presence is necessary for LTB4 production, thereby limiting the

relay’s recruitment range.

Studies of the neutrophil relay mechanism may provide an interesting contrast to similar intercel-

lular signaling dynamics in Dictyostelium discoideum (Pálsson and Cox, 1996; Kessler and Levine,

1993; Noorbakhsh et al., 2015) and microbial consortia (Parkin and Murray, 2018). The former

provides a particularly striking contrast, since the waves that drive Dictyostelium signaling are pulsa-

tile in nature, yet are also used to coordinate chemotactic response. Whereas continuous emission

relays create continuous, steep concentration profiles, pulsatile relays in Dictyostelium create travel-

ing wave packets of high concentration, each of which elicits a chemotactic response. We see no evi-

dence of ‘jumps’ in chemotactic response during neutrophil swarming. It is not clear what drives one

organism to adopt pulsatile signaling over relays with continuous emission, or vice versa.

Finally, it would also be interesting to leverage the design principles we have discussed for engi-

neering synthetic relays, a field with a rich history (Parkin and Murray, 2018; Brenner et al., 2008;

Brenner et al., 2007; Basu et al., 2005). To that end, our results provide a general framework for

determining how system dimensionality, diffusion constants, activation functions, cell density, etc.

affect cell signaling and wave initiation. Experimental work on this problem and others would pro-

vide tests of our many quantitative predictions.

Materials and methods
To find the information wave front for cells in n dimensions and diffusion in m dimensions with con-

tinuous emission and Heaviside activation, we make use of the Green’s function for the diffusion

equation with sources in n dimensions and diffusion in m dimensions, Gn;mðr; t;R; TÞ. These equations

are enumerated in Appendix 7: Initiation dynamics; dT dR a � Gn;mðr; t;R; TÞ describes the concentra-

tion created at a radius r and time t by a tiny ring of sources at radius R with density � that emit at

rate a for duration dT at time T.

To find the information front, one is looking for a curve rcðtÞ such that Cth ¼ cðrcðtÞ; tÞ. Thus, with
an initial signaling colony of size ri, one must solve the problem:

Cth ¼ a�

Z t

0

dT

Z max ri ;rcðTÞ½ �

0

dR Gn;mðrcðtÞ; t;R;TÞ: (13)

This constraint equation considers every radius at time T and, if it is less than rcðTÞ, adds a con-

centration contribution of a� dT dR Gn;mðrcðtÞ; t;R;TÞ at rcðtÞ; the sum of all these contributions must

be equal to Cth. If one wishes to find the information front for a simple diffusive theory, one performs

the same integral as above, but truncates the integration over R at ri.

This method is preferable to brute PDE solving (for example, on a grid) since the former requires

fine-grained meshing over the out-of-plane dimension when considering systems of, for example,

cells in 2D and diffusion in 3D. In contrast, our Green’s function method requires only numerical inte-

gration over the in-plane sources; the Green’s functions appropriately keep track of the out-of-plane

dynamics for us.

To solve this problem, we first find the initiation time, then find rcðtÞ at discrete times, increment-

ing in steps of Dt � D=v2 (we use Dt ¼ D=10v2 in the main text and Appendices, which gives conver-

gence of the information wave front). Linear interpolation between these points defines a

continuous curve rcðtÞ.
An explicit implementation of this method is provided at github./pdieterle/diffWavePropAndInit

(Dieterle, 2020; copy archived at swh:1:rev:f8d9feffd57d05f47c8c14c6d9850643b2858d0a).
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Appendix 1

Model set-up
Before doing any math, let’s set up the scenarios we intend to study. We consider a continuum of

cells described by a cell density, �. These cells emit one type of signaling molecule at a rate a when

the local concentration of the signaling molecule is above a certain threshold, Cth. The molecules dif-

fuse in the extracellular medium with diffusion constant D. The concentration of the signaling mole-

cule is described by the variable c, which is a function of both space and time: c ¼ cðr; tÞ. In general,

then, we have

qc

qt
¼Dr2cþ a�Q½c�Cth� (14)

with Q½:� the Heaviside step function. We study this model and variants going forward.

A word about notation before we proceed: in Equation (14), we have written the source term as

a�Q½c� Cth�, with � the cell density. In some cases, we will write this source term slightly differently;

for instance, with point-like cells homogeneously distributed in a two-dimensional plane, we will

write the source term as a� dðzÞQ½c� Cth�. Here, � is a two-dimensional cell density, dð:Þ is the Dirac

delta function, and z is the out-of-plane dimension. Therefore, the cell density � which appears in all

of the subsequent discussion will be a three-dimensional density if the cells are distributed in three

dimensions, a two-dimensional density if the cells are distributed in two dimensions, and an one-

dimensional density if the cells are distributed in one dimension. As we will show below, the choice

of a delta function to describe the distribution in out-of-plane dimensions is justified when the cell

size is small compared to the inherent length scale of the diffusive wave, D=v.
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Appendix 2

Asymptotic wave ansatz
We start out by seeking to understand what dynamical properties a system described by Equa-

tion (14) has at large times. To study these dynamics, we need an inspired guess for what the

dynamics will look like. We imagine that when a small volume of cells starts signaling its neighbors –

and those neighbors start signaling their neighbors – that a reasonable guess for the dynamics of

such a signaling relay is an outward propagating wave with speed v. We define r as the distance

from the center of the outward propagating wave. At long times for a uniform cell density, the shape

information wave front will obey radial symmetry and our ansatz becomes cðr; tÞ ¼ cðr� vtr̂Þ with r̂

the unit vector pointing from the origin to the wave front.

With this guess, we can define a new coordinate ~r ¼ r � vt (we call this ~x ¼ x� vt for cells in one

dimension) which defines the distance to the wave front. Note that ~r<0 means we are inside the

wave front while ~r>0 means we are beyond it. With these definitions, qc=q~r ¼ qc=qr and

qc=qt ¼ �v qc=q~r. For cells in 1D, we consider the y and z to be dimensions perpendicular to the line

of cells with the density described by � dðyÞdðzÞ with � measured in cells per unit length; for cells in

2D, we consider z to be the out-of-plane dimension and the density to be described by �dðzÞ with �

measured in cells per unit area; for cells in 3D, � is measured in cells per unit volume. Assuming azi-

muthal symmetry in 2D and radial symmetry in 3D, we arrive at

cells in 1D : 0¼D
q
2c

q~x2
þ q

2c

qy2
þ q

2c

qz2

� �

þ v
qc

q~x
þ a� dðyÞdðzÞQ½c�Cth� (15a)

cells in 2D : 0¼D
q
2c

q~r2
þ 1

r

qc

q~r
þ q

2c

qz2

� �

þ v
qc

q~r
þ a� dðzÞQ½c�Cth� (15b)

cells in 3D : 0¼D
q
2c

q~r2
þ 2

r

qc

q~r

� �

þ v
qc

q~r
þ a� Q½c�Cth� (15c)

These equations can be simplified once more by noting that we are considering asymptotic –

that is, large r – dynamics. Thus, as long as v�D=r, we can say that vqc=q~r dominates terms like

D qc=q~rð Þ=r and we can ignore the latter (Tanaka et al., 2017). By construction, our ansatz says that

cð~r¼ 0Þ �Cth, meaning that Q½c�Cth� ¼Q½�~r�. This gives simplified equations according to:

cells in 1D : 0¼D
q
2c

q~x2
þ q

2c

qy2
þ q

2c

qz2

� �

þ v
qc

q~x
þ a� dðyÞdðzÞQ½�~x� (16a)

cells in 2D : 0¼D
q
2c

q~r2
þ q

2c

qz2

� �

þ v
qc

q~r
þ a� dðzÞQ½�~r� (16b)

cells in 3D : 0¼D
q
2c

q~r2
þ v

qc

q~r
þ a� Q½�~r�: (16c)

These equations provide both a natural length scale, D=v, and a natural timescale, D=v2. One can

see that these are the relevant time and length scales for our problem by non-dimensionalizing,

for example, Equation (16c) to get

cells in 3D : 0¼ q
2ðcv2=a�DÞ
qðv~r=DÞ2

þ qðcv2=a�DÞ
qðv~r=DÞ þQ½�v~r=D�: (17)

Thus, every length scale in the problem is normalized by D=v; because of our traveling wave

ansatz, every length scale can be converted to a time scale by dividing by v, giving D=v2 as the natu-

ral timescale. The natural length scale is useful, for example, for understanding what it means for

cells to be in ‘one dimension’ or for diffusion to be in ‘two dimensions’. If the cells are organized in a

line (or on a plane) such that their average deviation from the line (or distance from the plane) is
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d�D=v, then they are effectively in one (or two) dimensions and Equation (16a) (or Equation (16b))

holds. If cells are constricted to a narrow channel of width h�D=v (or an extracellular medium of

thickness h�D=v), then diffusion is effectively one (or two) dimensional. For instance, for cells con-

fined in a very narrow one-dimensional channel of width h�D=v, we can simplify Equation (16a)

because q
2c=qy2 ¼ q

2c=qz2 ¼ 0 and dðyÞdðzÞ! 1=h2. The resulting equation is the exact same as for

cells in 3D but with a source term proportional to a�=h2:

cells in 1D; diffusion in 1D : 0¼D
q
2c

q~x2
þ v

qc

q~x
þ a�

h2
Q½�~x�: (18)

For cells in 2D with an extracellular medium of thickness h�D=v, diffusion is effectively two-

dimension and, by the same logic that produced Equation (18), the asymptotic governing equation

is:

cells in 2D; diffusion in 2D : 0¼D
q
2c

q~r2
þ v

qc

q~r
þ a�

h
Q½�~r�: (19)

As Equations (17), (18), and (19) are all the same, the dynamics of cells in 1D with diffusion in 1D

are the same as those of cells in 2D with diffusion in 2D or those in 3D with diffusion in 3D.

Moreover, the non-dimensional Equation (17) shows us that the concentration scale of interest is

a�D=v2, meaning that there must be a relationship along the lines of Cth ~ a�D=v
2v ~ a�D=Cthð Þ1=2 –

exactly the wave speed relationship we found in the main text.

One can, however, arrive at a different governing equation by considering cells in 2D

(for example, cells sitting on a plane) with a thick extracellular medium of thickness h � D=v. In this

case, diffusion effectively takes place in three dimensions and

cells in 2D; diffusion in 3D : 0¼D
q
2c

q~r2
þ q

2c

qz2

� �

þ v
qc

q~r
þ a�dðzÞQ½�~r�: (20)

which, by the same logic above, is functionally equivalent to the governing equation for cells in 1D

with diffusion in 2D. We can therefore see that it is not the dimensionality of the cell distribution or

the diffusive environment that determines the asymptotic dynamics, but rather the difference in

dimension between the two.

Going forward, we will think of cells in two dimensions, as we have done in the main text. This

will allow us to interpolate between an effectively two-dimensional diffusive environment (the thin

extracellular medium limit) and an effectively three-dimensional environment (the thick extracellular

medium limit).

Cells in 2D, diffusion in 2D: the thin extracellular medium limit
For an extracellular medium of thickness h � D=v, diffusion effectively takes place in two dimensions

as argued in the previous section. The signaling molecule concentration has no z-dependence and

concentrations get normalized by h. Here,

0¼D
q
2c

q~r2
þ v

qc

q~r
þ a�

h
Q½�~r� (21)

is our asymptotic governing equation.

For both ~r<0 and ~r>0, Equation (21) reduces to two straightforward-to-solve linear ODEs. With

bi as constants that we will determine momentarily,

~r<0 : 0¼D
q
2c

q~r2
þ v

qc

q~r
þ a�=h ¼) cð~r<0Þ ¼ b2e

�v~r=Dþ b3 � a�~r=hv (22a)

~r>0 : 0¼D
q
2c

q~r2
þ v

qc

q~r
¼) cð~r>0Þ ¼ b0e

�v~r=Dþ b1: (22b)

We can solve for the bi by applying boundary conditions. First, we demand c! 0 as ~r!¥ and

that the concentration profile only blow up linearly as ~r!�¥. Physically, these demands are justified
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as follows: the concentration as ~r!¥ has to go to zero because there are no cells emitting in that

region and it is far from the wave front; the concentration as ~r!�¥ can grow at most linearly

because the cells a distance �~r from the wave front have only been emitting for a time �~r=v. Com-

bining these asymptotic boundary conditions with the demand that cð~rÞ be continuous and have a

continuous first derivative at ~r¼ 0 allows us to stitch together the solutions in Equations (22a) and

Equations (22b) to yield:

cð~r<0Þ ¼ a�D=hv2 � a�~r=hv (23a)

cð~r>0Þ ¼ a�De�v~r=D=hv2: (23b)

We show this concentration profile in the left panel of Appendix 3—figure 1A. From the above,

we infer that

Cth ¼ cð0Þ ¼ a�D=hv2 ¼) v¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a�D=hCth

p

: (24)

Thus, we have an explicit formula relating wave speed, emission rate, cell density, diffusion con-

stant, extracellular medium thickness, and threshold concentration. We can also see that the concen-

tration profile beyond the wave front is exponential, not Gaussian as for simple diffusion. The

concentration inside the wave front grows linearly as the distance from the wave front.

Cells in 2D, diffusion in 3D: the thick extracellular medium limit
Next, we consider Equation (16b) in the limit that the extracellular medium h � D=v. In this limit, we

effectively have cells in 2D with diffusion in 3D. With cells sitting on a substrate, signaling molecules

can only diffusive in the upper half of the plane, and we have a semi-infinite environment which

accounts for an extra factor of 2 in the emission term, yielding:

0¼D
q
2c

q~r2
þ q

2c

qz2

� �

þ v
qc

q~r
þ 2a� dðzÞQ½�~r�: (25)

Instead of working directly with dðzÞ, we consider the cells to be of a thickness H such that

2dðzÞ! 1

H

ffiffiffi

2

p

q

expð�z2=2H2Þ and

0¼D
q
2c

q~r2
þ q

2c

qz2

� �

þ v
qc

q~r
þ a�

H

ffiffiffiffi

2

p

r

e�z2=2H2

Q½�~r� (26)

Next, we take a partial Fourier transform of Equation (26) with k and Cð~r;kÞ the Fourier partners

of z and cð~r; zÞ, respectively. Here, we choose Cð~r;kÞ � 1
ffiffiffiffi

2p
p
R

¥

�¥ e
ikzcð~r; zÞ. This gives:

0¼D
q
2C

q~r2
� k2C

� �

þ v
qC

q~r
þ

ffiffiffiffi

2

p

r

e�H2k2=2a� Q½�~r� (27)

which is another pair of piecewise, straightforward-to-solve, linear ODEs. Solving with the same

boundary conditions that yielded Equations (23a) and Equations (23b), we arrive at

Cð~r<0;kÞ ¼ a�e�H2k2=2

Dk2
ffiffiffiffiffiffi

2p
p 2�

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4D2k2=v2þ 1
p

� �

exp v~r
2D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4D2k2=v2þ 1
p

� 1

� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4D2k2=v2þ 1
p

0

@

1

A (28a)

Cð~r>0;kÞ ¼ a�e�H2k2=2

Dk2
ffiffiffiffiffiffi

2p
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4D2k2=v2þ 1
p

� 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4D2k2=v2þ 1
p exp � v~r

2D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4D2k2=v2 þ 1

p

þ 1

� �

� �

: (28b)

To find the concentrations at the cells, we can take the inverse partial Fourier transform of these

expressions at z¼ 0. But first, we note that the right sides of Equations (28a) and Equations (28b)

have no support when k� v=D. Thus, if Hv=D� 1, the term e�H2k2=2 is irrelevant for calculating the
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real-space concentrations and can be replaced with 1. This is equivalent to having chosen dðzÞ to

describe the out-of-plane cell density.

Proceeding with e�H2k2=2 ! 1, one can take the inverse partial Fourier transform and arrive at

Cth ¼ 2a�=pv: (29)

Similarly, in the limit j~rj �D=v,

cð~r��D=v; zÞ» 2a�

v

ffiffiffiffiffiffiffiffi

�~rv
pD

r

evz
2=4D~r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�pvz2

4D~r

r

erfc

ffiffiffiffiffiffiffiffiffiffiffiffiffi

� vz2

4D~r

r
 !

(30a)

cð~r�D=v; zÞ»a�
ffiffiffiffiffiffiffiffiffiffi

D

p~rv3

r

e�v~r=De�vz2=4D~r: (30b)

The former has the same functional dependence on z as the concentration a distance z away from

a continuously emitting point source with diffusion in 1D after a time ~r=v (see Appendix 6: Assessing

the validity of a continuum analysis). Using the above, we can find the concentration in the plane of

the cells (z¼ 0):

cð~r�D=v; z¼ 0Þ» 2a�

v

ffiffiffiffiffiffiffiffi

�~rv
pD

r

(31a)

cð~r�D=v; z¼ 0Þ»a�
ffiffiffiffiffiffiffiffiffiffi

D

p~rv3

r

e�v~r=D: (31b)

We show this concentration profile in the left panel of Appendix 3—figure 1B.

Of course, one can arrive at the scaling form of Equation (29) through dimensional analysis con-

siderations, as discussed in the main text. Equivalently, one can non-dimensionalize Equation (25)

along the lines of Equation (17), as we will now. By normalizing all length scales by D=v and all con-

centration scales by a�=v, one can show that Equation (25) is equivalent to

0¼ q
2ðcv=a�Þ
qð~rv=DÞ2

þ q
2ðcv=a�Þ
qðzv=DÞ2

 !

þ qðcv=a�Þ
qð~rv=DÞ þ 2dðzv=DÞQ½�v~r=D�: (32)

from which we can tell that the concentration scales of the problem, including Cth, are proportional

to a�=v, and thus that v~a�=Cth, exactly as required by Equation (29).

Cells in 1D, diffusion in 3D: an artificial case
Finally, we consider a line of cells in one dimension with diffusion taking place in three dimensions.

This corresponds to a somewhat artificial test case of cells in a line with mean distance from the line

d � D=v and diffusion in an environment of size h � D=v in the dimensions perpendicular to this line

of cells. Nonetheless, it is interesting because we have to include the finite size of the cells in order

to get a traveling wave solution. Here,

0¼D
q
2c

q~x2
þ q

2c

qy2
þ q

2c

qz2

� �

þ v
qc

q~x
þ a�

pH2
e� y2þz2ð Þ=2H2

Q½�~r� (33)

with v the wave speed; ~x the distance to the wave front; y and z the extra diffusive dimensions; and

H the size of the cells.

Taking partial Fourier transforms across both y and z gives with the Fourier transform conventions

and notation used above gives

0¼D
q
2C

q~x2
� k2yC� k2zC

� �

þ v
qC

q~x
þ a�

p
e� k2yþk2zð ÞH2=2Q½�~x� (34)

which reduces to Equation (27) with k2 ! k2y þ k2z . One can then find the concentration profiles and
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self-consistency relationship for Cth by inverse Fourier transforming the analogs of Equations (31a)

and Equations (31b). The value of Cth ¼ cð~x¼ 0;y¼ z¼ 0Þ diverges as H! 0.
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Appendix 3

Pulsed emission and decay
In this section, we consider pulsed emission and decay of the signaling molecule. These scenarios

are relevant for signaling pathways in, for example, Dictyostelium (Pálsson and Cox, 1996;

Noorbakhsh et al., 2015; Kessler and Levine, 1993) and E. coli (Parkin and Murray, 2018), in

which intracellular dynamics produce a pulse-like release of signaling molecules into the extracellular

medium.Kessler and Levine, 1993 have previously used this machinery to construct a signaling

model for Dictyostelium, including pulsed emission and signaling molecule decay. Here, we consider

the effects of each independently.

We explicitly discuss only the asymptotics of cells in 2D with diffusion in 2D (equivalent to cells in

1D with diffusion in 1D or cells in 3D with diffusion in 3D, as shown previously), although we quote

the results for cells in 2D with diffusion in 3D (equivalent to cells in 1D with diffusion in 2D) which are

obtained using the Fourier transform machinery in Appendix 2: Asymptotic wave ansatz. Here again,

the asymptotic dynamics depend on the difference in dimensionality between the cellular and the

diffusive environment.

Pulsed emission with cells in 2D and diffusion in 2D
Here, we consider a square pulse of length t emitted once a cell exceeds the threshold concentra-

tion Cth. In the moving frame, this pulse has length vt – for notational simplicity here, we dispense

with dimensional subscripts on the wave speed – giving rise to the pulsed emission analog of

Equation (21):

0¼D
q
2c

q~r2
þ v

qc

q~r
þ a�

h
Q½�~r�Q½~rþ vt � (35)

which is nothing more than three piecewise linear equations, which we stitch together as before.

The source term is zero when ~r<� vt (Region I) or ~r>0 (Region III) and a�0 for �vt<~r<0 (Region II).

We thus recover the following:

RegionI :cð~r<� vt Þ ¼ b1þ b2e
�v~r=D (36a)

RegionII :cð�vt<~r<0Þ ¼ b3 þ b4e
�v~r=D� a�~r=hv (36b)

RegionIII :cð~r>0Þ ¼ b5 þ b6e
�v~r=D (36c)

Applying the same boundary conditions as with continuous emission, we arrive at

RegionI :cð~r<� vt Þ ¼ a�t =h (37a)

RegionII :cð�vt<~r<0Þ ¼ a�D=hv2 � a�D

hv2
e�v2t =De�v~r=D� a�~r=hv (37b)

RegionIII :cð~r>0Þ ¼ a�D

hv2
ð1� e�v2t =DÞe�v~r=D (37c)

which tells us a few things of interest. First – as seen in the right panel of Appendix 3—figure 1 A

(here, t ¼ 2D=v2 ¼ 2Cth=a�) – the concentration profile for ~r<� vt is flat. (As with continuous emis-

sion, pulsed emission gives the familiar exponential profile beyond the wave front.) Second, the

wave speed, pulse width, cell density, emission rate, extracellular medium thickness, and threshold

concentration are related through the equation
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Cth ¼ a�Dð1� e�v2t =DÞ=hv2: (38)
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Appendix 3—figure 1. Relay concentration profiles. (A) Signaling molecule concentration profiles

for cells in 2D and diffusion in 2D. Here, we assume continuous emission and no signaling molecule

decay (left panel), continuous emission and signaling molecule decay (middle panel), or pulsed

emission with no signaling molecule decay (right panel). The decay constant for the middle panel is

g ¼ v2=4D while the pulse width is t ¼ 2D=v in the right panel. For the left, center, and right panels,

the threshold concentration is calculated according to Equations (24), (41), and (38), respectively.

As discussed in the main text, the concentration profiles flatten (with respect to the profile

generated by continuous emission without decay) inside the wave front once decay or pulsed

emission is accounted for. (B) Signaling molecule concentration profiles for the same cases as in A,

but with diffusion in 3D. Compared to the case of continuous emission without decay, the

concentration profiles flatten (when accounting for decay) or have a local maximum (in the case of

pulsed emission).

For t � D=v2, we recover the usual relationship of Cth ¼ a�D=hv2. In region 2, the profile will

grow linearly as before until �v~r=D becomes comparable to v2t =D, at which point e�v2t =D�v~r=D

becomes of order unity and the profile levels off.

To understand how the wave speed with pulsed emission, v, compares to the wave speed with

continuous emission, ða�D=hCthÞ1=2, we have plotted v=ða�D=hCthÞ1=2 as a function of 1=t in Appen-

dix 3—figure 2A. We have normalized t by a characteristic time t c ¼ hCth=a�, which is equal to

D=v2 for continuous emission. When t <t c, the wave speed goes to zero. There is no wave-like solu-

tion for shorter pulses.
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Appendix 3—figure 2. Wave speed with pulsed emission or decay. (A) Wave speed v for square

pulse emission by cells in 2D with diffusion in 2D as a function of pulse width t . We normalize v by

the t ! ¥ wave speed of ða�D=CthÞ1=2. At t ¼ t c ¼ hCth=a�, the wave speed goes to zero, and for

shorter pulses there is no wave-like solution. (B) Wave speed for continuous emission by cells in 2D

with diffusion in 2D, accounting for signaling molecule decay at rate g. For g ¼ tmin;2D ¼ 1=2t c, with

t c as in panel A, the wave speed goes to zero and there are no wave-like solutions for larger decay

rates. (C) Wave speed v as a function of pulse width t for square pulse emission of a signaling

molecule by cells in 2D with a 3D diffusive environment. At t » 1:53t c ¼ 1:53Dð2Cth=pa�Þ2 (vertical
dashed line), there is a minimum wave speed of v » 0:6� ð2a�=pCthÞ (horizontal dashed line), unlike

with 2D diffusion. Importantly, t » 1:53t c is longer than the minimum initiation time of 4t c=p. Thus,

for values of t between these two, cells can reach the threshold concentration but cannot

propagate a traveling information wave. (D) Wave speed v as a function of decay rate g for cells in

2D with diffusion in 3D. At g ¼ ðp=4Þ2=t c, with t c as in C, the wave speed goes to zero.

We note that a timed pulsed emission considered here is formally equivalent to cells signaling

until the local concentration exceeds cð~r ¼ �vt Þ ¼ a�t =h. This is relevant in, for example, quorum

sensing models in which the local presence of a signaling molecule can both upregulate (at relatively

low concentrations) and downregulate (at relatively high concentrations) release of the same signal-

ing molecule (Parkin and Murray, 2018).

Continuous emission plus decay with cells in 2D and diffusion in 2D
At last, we characterize the effect of signaling molecule decay at rate g by adding a term of �gc to

Equation (16b). In the thin extracellular medium limit,

0¼D
q
2c

q~r2
þ v

qc

q~r
þ a�

h
Q½�~r��gc: (39)

This is another piecewise set of linear differential equations, which we can solve as without decay

to yield:

cð~r<0Þ ¼ a�

hg
� a�

2hg
1þð1þ 4Dg=v2Þ�1=2
h i

e
~rv
2D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4Dg=v2þ1

p
�1

� �

(40a)
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cð~r>0Þ ¼ a�

2hg
1�ð1þ 4Dg=v2Þ�1=2
h i

e
�~rv

2D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4Dg=v2þ1

p
þ1

� �

(40b)

as the concentration profiles and

Cth ¼
a�

2hg
1�ð1þ 4Dg=v2Þ�1=2
h i

v¼ 4Dg 1� 2hgCth

a�

� ��2

�1

" #�1

(41)

as our wave speed relationship. The concentration profile is flatter than its decay-free counterpart

(Appendix 3—figure 1A). For g� v2=D, Equation (41) gives the decay-free relationship. And – as

with pulsed emission – the wave speed goes to zero, this time when g! 1=2t c where t c ¼ hCth=a�

(Appendix 3—figure 2B).

Pulsed emission with cells in 2D and diffusion in 2D
Here,

0¼D
q
2C

q~r2
� k2C

� �

þ v
qC

q~r
þ

ffiffiffiffiffiffiffiffiffi

2=p
p

a� Q½�~r�Q½vt þ~r� (42)

which we can solve to yield:

RegionI :Cð~r<� vt ;kÞ ¼ B1ðkÞe
~rv
2D

�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ4D2k2=v2
p� �

(43a)

RegionII :Cð�vt<~r<0;kÞ ¼
ffiffiffi

2

p

q

a�0
Dk2

þB2ðkÞe�
~rv
2D

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ4D2k2=v2
p� �

þB3ðkÞe
~rv
2D

�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ4D2k2=v2
p� �

(43b)

RegionIII :Cð~r>0;kÞ ¼ B4ðkÞe�
~rv
2D

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ4D2k2=v2
p� �

(43c)

with BiðkÞ chosen such that C and its first derivative are continuous:

B1ðkÞ ¼
a�

D
ffiffiffiffiffiffi

2p
p

vþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4D2k2 þ v2
p� �

e
v2t
2D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4D2k2=v2þ1

p
�1

� �

� 1

� �

k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4D2k2 þ v2
p (44a)

B2ðkÞ ¼
a�

D
ffiffiffiffiffiffi

2p
p v�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4D2k2 þ v2
p� �

e
�v2t

2D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4D2k2=v2þ1

p
þ1

� �

k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4D2k2 þ v2
p (44b)

B3ðkÞ ¼� a�

D
ffiffiffiffiffiffi

2p
p vþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4D2k2 þ v2
p

k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4D2k2 þ v2
p (44c)

B4ðkÞ ¼
a�

D
ffiffiffiffiffiffi

2p
p

v�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4D2k2þ v2
p� �

1� e
�v2t

2D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4D2k2=v2þ1

p
�1

� �

� �

k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4D2k2 þ v2
p (44d)

Inverse Fourier transforming at z¼ 0 gives the real-space concentration and the following self-

consistency relationship for the wave speed:

Cth ¼
1
ffiffiffiffiffiffi

2p
p

Z

¥

�¥
dk B4ðkÞ; (45)

which simplifies to

Cth ¼ 2a�=pv for t �D=v2.
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We can compare t to the characteristic time t c ¼ DðpCth=2a�Þ2, which is equal to D=v2 in the

limit of continuous emission. Numerical solution of Equation (45) reveals that there is no self-consis-

tent solution to Equation (45) until about t » 1:53t c, at which point v» 0:6� 2a�=pCth; t » 1:53t c is

larger than the minimum initiation time of tmin;3D ¼ 4t c=p (Appendix 3—figure 2 C, Section Appen-

dix 7: Initiation dynamics). Thus, an initial pulse of length 4t c=p<t <1:53t c from cells within an initial

signaling radius ri can cause neighboring cells to exceed Cth, but cannot trigger a wave-like solution

asymptotically.

Continuous emission plus decay with cells in 2D and diffusion in 3D
We can add signaling molecule decay to the embedded system dynamics by adding a term of

�gCð~r; kÞ to Equation (27) with g the signaling molecule decay rate. Going through the same exer-

cise yields:

Cð~r<0;kÞ ¼
ffiffiffiffi

2

p

r

a�

gþ k2D
� a�

ffiffiffiffiffiffi

2p
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4D2k2=v2 þ 4Dg=v2þ 1
p

þ 1

ðDk2 þgÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4D2k2=v2 þ 4Dg=v2 þ 1
p e

~rv
2D

�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4D2k2=v2þ4Dg=v2þ1

p� �

(46a)

Cð~r>0;kÞ ¼ a�
ffiffiffiffiffiffi

2p
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4D2k2=v2þ 4Dg=v2 þ 1
p

� 1

ðDk2þgÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4D2k2=v2 þ 4Dg=v2þ 1
p e

�~rv
2D

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4D2k2=v2þ4Dg=v2þ1

p� �

(46b)

with

Cth ¼
a�

p
ffiffiffiffiffiffiffi

Dg
p arcsin 1þ v2=4Dg

� ��1=2
h i

(47)

as the parameter relationship obtained after an inverse Fourier transform at z¼ 0 and x¼ 0. This

gives a profile that propagates as a pulse (Appendix 3—figure 1B).

In the limit g � v2=D, we recover the familiar expression Cth ¼ 2a�=pv. Again, as when we

accounted for signaling molecule decay with cells in 2D and diffusion in 2D, the wave speed

approaches zero, but with g ¼ ðp=4Þ2=t c where t c ¼ DðpCth=2a�Þ2 (Appendix 3—figure 2 D).
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Appendix 4

Finite extracellular medium
We consider now what happens when one does not lie in the extreme cases of an extracellular

medium of thickness h � D=v or h � D=v. To examine the case of arbitrary thickness h, we turn to

the method of images (Appendix 4—figure 1A).
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Appendix 4—figure 1. Wave speed in a finite extracellular medium. (A) Method of images

configuration for solving for concentrations in a finite-sized extracellular medium of thickness h. A

point-like source (a cell) at z ¼ 0 is placed in an extracellular medium of thickness h. In order to

calculate the concentration with the appropriate boundary conditions of qc=qz at z ¼ 0; h, one need

only add the contributions from ‘image cells’ at z ¼ �2jh for j ¼ 1; 2; :::. (B) Universal curve (black

line) showing non-dimensionalized wave speed (vh=2D) versus non-dimensionalized threshold

concentration (pCthD=a�h). In the limit of vh=2D � 1, we recover the familiar 3D scaling law of

Equation (29) (blue line). In the limit of vh=2D � 1, we get the 2D scaling law of Equation (24) (red

line).

Our boundary conditions for the extracellular medium require the concentration to obey qc=qz ¼
0 at z ¼ 0; h – signaling molecules cannot diffuse through the boundaries. By invoking the uniqueness

theorem, we know that if we can find an arrangement of ’image cells’ – each emitting diffusible sig-

naling molecule at rate a – that satisfies these boundary conditions, then this arrangement of cells

gives the unique solution for the concentration profile inside the extracellular medium. In our case,

to satisfy the boundary condition above, we have image cells at z ¼ �2jh for j ¼ 1; 2; . . ..

This means that we can find the concentration profiles simply by adding up the contributions

from many discrete sources. Given this knowledge, we seek a relationship like Equation (24) or

Equation (29) but for arbitrary h. To do so, we use Green’s function integration and the fact that we

can analyze the asymptotic dynamics of cells in 1D to deduce the asymptotic dynamics of cells in 2D,

as previously shown.

The concentration – as measured at ðr; z ¼ 0; tÞ – of a burst-like emission by a single point-like

source at ðR; 2jh; TÞ is given by the Green’s function:

Gðr; z¼ 0; t;R;2jh;TÞ ¼ e
�ðr�RÞ2þð2jhÞ2

4Dðt�TÞ

2pDðt�TÞ ; (48)

so the Green’s function of a single point-like source in a finite-thickness extracellular medium is

(Appendix 4—figure 1A):
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Ghðr; z¼ 0; t;R;TÞ ¼
X

¥

j¼�¥
Gðr; z¼ 0; t;R;2jh;TÞ ¼ e

� ðr�RÞ2
4Dðt�TÞ

2pDðt�TÞ 1þ 2

X

¥

j¼1

e
�ðjhÞ2
Dðt�TÞ

 !

: (49)

We assume a traveling wave solution at speed v meaning that the concentration Cth ¼ cðr¼ vt; z¼
0; t!¥Þ is, for a density of cells � emitting with rate a, given by:

Cth ¼ cðvt;0; t!¥Þ ¼ a� lim
t!¥

Z vt

0

dR

Z t

R=v

dT Ghðvt;0; t;R;TÞ ¼

a�

2pD

Z

0

�¥
d~R

Z �~R=v

0

d~t

~t
e�

~R2

4D~t 1þ 2

X

¥

j¼1

e�
ðjhÞ2
D~t

 !

(50)

with the substitutions ~t¼ t�T and ~R¼ R� vt. This yields:

Cth ¼
2a�

pv
1þ 2

X

¥

j¼1

Z �¥

0

dx Ei
1

x

jhv

2D

� �2

þx

" # !

¼ 2a�

pv

X

¥

j¼�¥

Z �¥

0

dx Ei
1

x

jhv

2D

� �2

þx

" #

(51)

for x¼ v~R=4D and Ei½:� the exponential integral function. For h�D=v, Equation (51) reduces to

Equation (29) because the term
P

¥

j¼1
� � � »0. Meanwhile, for h�D=v, the sum over j can be turned

into an integral, giving the familiar thin extracellular medium relationship, Equation (24).

We emphasize that Equation (51) provides a universal relationship between threshold concentra-

tion, wave speed, cell density, and signaling molecule emission rate for any extracellular medium

thickness. By dividing both sides of Equation (51) by a�h=pD, we arrive at a relationship between a

non-dimensionalized threshold concentration, pCthD=a�h, and a non-dimensionalized wave speed,

vh=2D:

pCthD

a�h
¼ 2D

vh

X

¥

j¼�¥

Z �¥

0

dx Ei
1

x

jhv

2D

� �2

þx

" #

: (52)

We plot this relationship in Appendix 4—figure 1B and see that Equation (52) is an interpolation

between the thin (h�D=v) and thick (h�D=v) extracellular medium limits.
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Appendix 5

Asymptotic wave dynamics with Hill function activation
Numerical solutions show traveling waves

As shown in the main text, making the change from a Heaviside function source term to an order-n

Hill function (Q½c� Cth� ! cn=ðcn þ Cn
thÞ) in Equation (14) preserves the scaling relationships Equa-

tions (24) and (29) with a constant factor as long as the new source terms give traveling wave solu-

tions. We have found numerically that n � 1 Hill functions indeed give traveling wave solutions, with

n ¼ 1; 2; 3 shown for thin and thick extracellular media in Appendix 5—figure 1.
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Appendix 5—figure 1. Wave speeds and profiles with Hill function activation. (A) Numerical

simulation of cells in 1D with diffusion in 1D and Hill function activation. The details of the simulation

are described in Appendix 5: Asymptotic wave dynamics with Hill function activation. For n � 2, we

see good agreement between the Heaviside theory (black lines) and the Hill function numerics (red

dots). Snapshots are shown at t=t c ¼ 5; 10; 15; 20; 25 where t c ¼ h2Cth=a� equals D=v2Q, the

characteristic time scale for Heaviside activation. Note that the x-axis is scaled by the characteristic

length lc ¼ hðDCth=a�Þ1=2, which is the length scale for Heaviside activation with a delta function

source, D=vQ. In the insets, we display the wave speed for the order-n Hill function, vn, compared to

the Heaviside activation wave speed, vQ ¼ ða�D=h2CthÞ1=2. Our fit to the n ¼ 1 data gives

vn¼1 » 1:93vQ, but we have shown in Appendix 5: Asymptotic wave dynamics with Hill function

activation that vn¼1 ¼ 2vQ, meaning that the wave speeds in the insets are slight underestimates. (B)

Numerical simulation of cells in 1D and diffusion in 2D with Hill function activation. For n � 2, the

wave speed and concentration profiles (blue dots) agree well with the Heaviside theory (black lines).

The theory plotted here assumes a delta-function-like source with respect to the extra diffusive

dimension, as in Equation (25). The numerics, however, use a very narrow (H ¼ lc=10) Gaussian

source. Here, the characteristic length lc ¼ phDCth=2a� equals D=vQ, the length scale for Heaviside

activation. The x-axis is scaled by the same quantity. Snapshots are shown at t=t c ¼ 5; 10; 15; 20; 25

with the characteristic time t c ¼ DðphCth=2a�Þ2 equal to D=v2Q, the time scale for Heaviside

activation. In the insets, we display the wave speed for the order-n Hill function, vn, compared to the

Heaviside activation wave speed, vQ ¼ 2a�=pCth.

To find these solutions, we numerically solved Equation (14) with a Hill function source term for

cells in 1D with diffusion in one or two dimensions. We used D ¼ 10
�10 m2/s and vQ ¼ 2 mm/s with

the threshold concentration determined by Equations (29) and (24) with v ! vQ. In this way, we

could compare vn – the wave speed given by the order-n Hill function – to the Heaviside wave speed

vQ. For our numerics, we imposed a maximum size step of D=10vQ for the spatial dimension where

the cells live, a maximum step size of D=30vQ for the added spatial dimension (when modeling diffu-

sion in 2D), and a maximum time step of D=10v2Q. These step sizes give convergence of the informa-

tion wave fronts, which we define as the curves rcðtÞ such that cðrcðtÞ; tÞ ¼ Cth. We simulated times

tmax � 25D=v2Q using Mathematica’s ‘NDSolveValue’ function and, when modeling diffusion in 2D,

replaced the delta function in Equation (14) with a Gaussian of width D=10vQ. As noted earlier, since
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the width of this Gaussian is sufficiently smaller than D/v, the numerical results will be close to the

delta function limit; indeed, this substitution gives a wave speed (according to an inverse Fourier

transform of Equation (28b) at ~r; z ¼ 0) of v=vQ » 0:95, in close correspondence with the Delta func-

tion wave speed. The initiating colony is of size ri ¼ 2D=vQ, and we assume all cells in the initiating

colony signal at the maximal rate a.

To find the wave speeds noted in Equation (1), we found the location of the wave front, rcðtÞ,
and fit a line to the region of 24D=v2Q � t � 25D=v2Q. As shown in Appendix 5—figure 1, for n � 2,

the wave speeds are very close to vQ with significant deviation only for n ¼ 1. Even the concentration

profiles are in good agreement with the Heaviside solution for n � 2.

Connection to Fisher waves
When the dimensionality of the cell distribution matches the diffusive dimensionality and cell activa-

tion is described by the n ¼ 1 Hill function, one can find the wave speed by using a modified version

of the analysis pioneered by Fisher, 1937 and Kolmogorov et al., 1937. To see this, we first con-

sider a modified version of Equation (16c) with order-n Hill function activation:

0¼D
q
2c

q~r2
þ v

qc

q~r
þ a�

cn

cn þCn
th

: (53)

The new activation term is mathematically obnoxious as it no longer has a simple spatial interpre-

tation; with a Heaviside function, for example, one can turn a term like Q½c�Cth� into a simple func-

tion of ~r :Q½c�Cth� ¼Q½�~r�. This has an important consequence: instead of solving two differential

equations with constant source terms and matching boundary conditions (as we did for the Heavi-

side emission), we must now solve a single differential equation with a difficult non-linear source

term. We note that Equation (53) is, in the limit n!¥, equivalent to a relay with Heaviside

activation.

However, there is a distinct advantage to the new source term: it is one-to-one in c. Thus, we may

make the substitution f ¼ cn

cnþCn
th

c ¼ Cth
f

1�f

� �1=n
, then plug this into Equation (53) to yield (after some

rearrangement):

0¼ v
qf

q~r
þD

q
2f

q~r2
þ 1þð2f � 1Þn

nf ð1� f Þ
qf

q~r

� �2
" #

þ na�

Cth

f 2�1=nð1� f Þ1þ1=n: (54)

Equation (54) looks a lot like the traditional Fisher equation,

0¼ v
qf

q~r
þD

q
2f

q~r2
þ na�

Cth

f ð1� f Þ (55)

in that it has a source term that goes to zero at f ! f0;1g, a term D
q
2 f

q
2~r
, and a term v

qf

q~r
. We therefore

take Fisher’s approach (Fisher, 1937) and think of gradients of f as functions of f rather than x. As

such, we define Fðf Þ ¼ qf

qx
, which allows us to make the substitution q

2f

qx2
¼ qF

qx
¼ qf

qx
qF
qf
¼ F qF

qf
. This is valid

under the assumption that the concentration profiles are monotone decreasing, which is seen to be

the case in Appendix 5—figure 1. Under all of the above, we get:

0¼ vFþD F
qF

qf
þ 1þð2f � 1Þn

nf ð1� f Þ F2

� �

þ na�

Cth

f 2�1=nð1� f Þ1þ1=n (56)

which gives us a non-linear ODE for F. Of particular note are the boundary conditions for F. Namely,

Fð0Þ ¼ Fð1Þ ¼ 0, which is to say that cells well inside of the wave front are all emitting at their maxi-

mal rate since c�Cth and that cells well beyond the wave front are not emitting at all. Thus, there is

no spatial dependence on the cellular activation, f ¼ cn= cn þCn
th

� �

, in these regions.

Next, we turn to the traditional method of examining the f ! 0 limit. As F ! 0, Equation (56)

becomes, to lowest order in f and assuming F » � lf b,

0¼�lvþD l2bf b�1þ 1� n

n
l2f b�1

� �

þ na�

Cth

f 2�1=n�b: (57)
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where l>0. One can only obtain a self-consistency relationship between v and Cth=a� if b¼ 2� 1=n.

Otherwise, f 2�1=n�b diverges or goes to zero. With this choice, Equation (57) becomes:

n¼ 1 :0¼�lvþDl2=nþ a�

Cth

l¼ 1

2D
v�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 � 4a�D

Cth

r
� �

(58a)

n>1 :0¼�lvþ na�0
Cth

þOðf 1�1=nÞl¼ na�

vCth

(58b)

where in Equation (58b) we have taken the f ! 0 limit. To get a wave speed, v, out of

Equation (58a), we demand that the quantity under the square root be non-negative, which ensures

that l>0 is a real number as assumed. This means v� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a�D=Cth

p

¼ 2vQ – a bound that is very similar

to conventional Fisher waves. In the case of Fisher waves, the minimum wave speed is selected for

(Fisher, 1937; Kolmogorov et al., 1937); the same is true here, as the minimum wave speed v¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a�D=Cth

p

is what one finds after numerically solving the 1D dynamics (Appendix 5—figure 1A). In

contrast, for n>1, this method yields no such wave speed bound.
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Appendix 6

Assessing the validity of a continuum analysis
Next, we consider the validity of a continuum analysis like Equation (16b) for studying asymptotic

wave dynamics. To do so, we compare our continuum wave speed relationships, Equations (24) and

(29), to a simple model of discrete cells on a lattice in 1D (Appendix 6—figure 1A). We refer to this

as the discrete lattice model, which has been studied previously and is the subject of on-going work

(Keener, 2000; Dieterle P and Amir A, 2020. Manuscript in preparation). We briefly discuss the

results of this lattice model below, and show that it agrees with the continuous model when the sep-

aration between cells, d, is much less than the characteristic length D=v. This heuristic also holds for

cells in two and three dimensions, and for cells scattered randomly according to a Poisson process.

v

...

d

c(x=0,t=0) =
Cth(v,D,d)

A emitting
since

t  = -d/v

emitting
since

t  = -2d/v

...
»

B C

v
/(

2
a
/¼

d
h
C

th
)

v
/(
a
D

/d
h

2
C
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)1

/2
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Appendix 6—figure 1. Wave dynamics with discrete sources. (A) Cartoon showing the discrete

lattice model of cell signaling relays for cells in 1D. Here, a concentration wave propagates

rightward at speed v through a group of cells spaced by a constant distance d. The concentration at

~x ¼ t ¼ 0 defines the threshold concentration in this discrete system and is a function of v; D; and d:

Cth ¼ Cthðv;D; dÞ. (B) Wave speed v compared to the continuous theory value of aD=dh2Cthð Þ1=2 as a
function of vd=4D for cells in 1D with diffusion in 1D. We can see that the wave speed approaches

the continuous theory value for vd=4D � 1. (C) Same as B but for cells in 1D and diffusion in 2D.

To start, we first calculate the three-dimensional concentration (SI units of 1/m3) generated by a

continuously emitting point source emitting at a rate a at a distance x after a time t. For diffusion in

m dimensions, we will refer to this concentration as c.;mðx; tÞ. For diffusion in m ¼ 2 dimensions, we

will consider a semi-infinite environment in order to recapitulate Equation (29), which holds for cells

in one (two) dimensions with diffusion in a semi-infinite two-dimensional (three-dimensional) space.

These relationships are:

c.;1ðx; tÞ ¼
a

h2

Z t

0

dT
e�x2=4DT

ð4Þ1=2
¼ a

h2

ffiffiffiffiffiffiffi

t

pD

r

e�x2=4Dt �
ffiffiffiffiffiffiffiffi

px2

4Dt

r

erfc

ffiffiffiffiffiffiffiffi

x2

4Dt

r
 !

(59a)
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c.;2ðx; tÞ ¼
2a

h

Z t

0

dT
e�x2=4DT

4pDT
¼� a

2phD
Ei � x2

4Dt

� �

(59b)

with erfc½:� the complementary error function and Ei½:� the exponential integral. We have assumed

one-dimensional diffusion takes place in a narrow channel with cross-sectional area h2 and two-

dimensional diffusion takes place in an extracellular medium of thickness h.

Next, we assume the cells in this lattice model perform a signaling relay with Heaviside activation:

once the local concentration exceeds a threshold Cth, they participate in the signaling molecule

emission at a rate a. If the resulting wave speed is v, then a cell at a distance ~x ¼ �jd from the wave

front has been emitting for a time jd=v. That cell then creates a concentration cj;m ¼ c.;mðjd; jd=vÞ at
ð~x; tÞ ¼ ð0; 0Þ. The full concentration at the wave front is Cth by definition, and it is equal to the sum

of the concentrations created by all cells behind the wave front. This gives us the following self-con-

sistency relationships between the threshold concentration, Cth; wave speed, v; diffusion constant,

D; and cell separation d:

diff:in1D : Cth ¼
X

¥

j¼1

cj;1 ¼
a

vh2

X

¥

j¼1

ffiffiffiffiffiffiffiffiffi

j
vd

pD

r

e�jvd=4D�
ffiffiffiffiffiffiffiffi

j
4D

q

erfc

ffiffiffiffiffiffiffiffi

j
vd

4D

r

 !" #

(60a)

diff:in2D : Cth ¼
X

¥

j¼1

cj;2 ¼�a

2

X

¥

j¼1

Ei �j
vd

4D

� �

: (60b)

Equations (60a) and (60b) provide relationships analogous to Equations (24) and (29). In fact, in

the limit vd=4D� 1, the sums in these relationships are well-approximated by an integral over j from

j¼ 0 to ¥. In this limit, with �¼ 1=d, Equation (60a) becomes Cth ¼ a�D=h2v2, the one-dimensional

analog of Equation (24); similarly, Equation (60b) simplifies to Cth ¼ 2a�=phv, the one-dimensional

analog of Equation (29). (One can turn Equation (60b) into an integral from j¼ 0 to ¥. The inte-

grand diverges at j¼ 0, but is still integrable because the divergence is logarithmic.) Therefore, we

can see that the continuum limit is valid when the separation between cells is d� 4D=v. We have

shown the approach to the continuous theory limit in Appendix 6—figure 1B/C.
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Appendix 7

Initiation dynamics
In this section, we demonstrate the initiation time relationships discussed in the main text using

Green’s function integration. To do so, we write down the Green’s functions Gn;mðr; t;R; TÞ describing
diffusion of molecules in m dimensions released by cells in n dimensions at ðR; TÞ and measured by

cells at ðr; tÞ. For n 6¼ m, we assume a semi-infinite environment. For cells in 1D and diffusion in 1D,

we assume a narrow channel of width h in both dimensions perpendicular to the channel. For cells in

1D or 2D and diffusion in 2D, we assume an extracellular medium of thickness h. We calculate the

Green’s functions for cells in two dimensions by integrating over a ring of diffusive sources at radius

R; we calculate the Green’s functions for cells in three dimensions by integrating over a shell of diffu-

sive sources at radius R. Below, I0½:� is the zeroth I-Bessel function and sinh ½:� is the hyperbolic sine

function. The Green’s functions are

G1;1ðr; t;R;TÞ ¼ e�ðr�RÞ2=4Dðt�TÞ=h2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pDðt�TÞ
p

(61a)

G1;2ðr; t;R;TÞ ¼ e�ðr�RÞ2=4Dðt�TÞ=2phDðt�TÞ (61b)

G2;2ðr; t;R;TÞ ¼ R I0 rR=2Dðt�TÞ½ �e�ðr2þR2Þ=4Dðt�TÞ=2hDðt�TÞ (61c)

G2;3ðr; t;R;TÞ ¼ R I0 rR=2Dðt�TÞ½ �e�ðr2þR2Þ=4Dðt�TÞ=2
ffiffiffiffi

p
p

D3=2ðt�TÞ3=2 (61d)

G3;3ðr; t;R;TÞ ¼ R sinh rR=2Dðt�TÞ½ �e�ðr2þR2Þ=4Dðt�TÞ=r pDðt�TÞ½ �1=2: (61e)

One-by-one, we study the initiation time for these systems by studying the self-consistency rela-

tionship for the threshold concentration Cth and initiation time tinit for a given initial signaling colony

of size ri:

Cth ¼ a�

Z tinit

0

dT

Z ri

0

dR Gn;mðri; tinit;R;TÞ ¼ a�

Z tinit

0

dT

Z ri

0

dR Gn;mðri;0;R;�TÞ (62)

where the logic here is that the signaling wave initiates when the threshold concentration at the

edge of the initial signaling colony exceeds Cth. At tinit, cells outside the colony participate in the sig-

naling and birth a diffusive wave with dynamics we have already studied extensively. This scenario

assumes the cells do not move – that the cell density is fixed. In the case of neutrophils, this means

that we are ignoring the possibility that a cell initially located off the target randomly encounters the

target and starts signaling. Unlike the asymptotic dynamics, the difference in diffusive and cell

dimension is not the salient parameter for understanding diffusive wave initiation. Rather, the initia-

tion dynamics are determined solely by the dimension of the diffusive environment.

We now seek to derive the equations in the main text which show the relationship between the

wave initiation time tinit and initial signaling colony size ri for various system dimensionalities when

ri � D=v or ri � D=v. The full relationships of tinit versus ri for various system dimensionalities are

plotted in Figure 3 of the main text.

Initiation with cells in 1D and diffusion in 1D
With cells and diffusion in 1D, we can perform the integral Equation (62) directly (for cells in 1D, we

consider the bounds on the integral over R to be �ri to ri) and get a closed form relationship:

Cth ¼
a�r2i
h2D

Dti=pr
2

i

� �1=2
e�r2

i
=Dti � 1þ 1þDti=2r

2

i

� �

erf r2i =Dti
� �1=2

h i

: (63)

In the limit where ri �Dti, we get that ti ¼ 2D=v2 by using the asymptotic relationship Equa-

tion (24). This is the minimum initiation time, tmin;1;1.
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tmin;1;1 ¼ 2D=v2 (64)

and it tells us that ri �Dti is equivalent to ri �D=v – we can appeal to the natural length and time

scales from our asymptotic analysis. We will soon see that this is also the minimum initiation time for

cells in 2D with diffusion in 2D and cells in 3D with diffusion in 3D; this is the case because, as in the

asymptotic analysis, we’ve essentially ignored the curvature of the target when calculating the ri �
D=v initiation time.

In the opposite limit – ri � D=v – we can Taylor Expand Equation (63) and get

ri �D=v : tinit » ðpD=4v2ÞðD=vriÞ2; (65)

thus validating our equations in the main text.

Initiation with cells in 1D and diffusion in 2D
Next, we consider the self-consistency equation Equation (62) with n ¼ 1;m ¼ 2. As before, we first

consider the limit of ri � Dv and recover (through Equation (29)):

tmin;1;2 ¼ 4D=pv2 (66)

while for ri �Dv,

ri �D=v : log Dtinit=r
2

i

� �

»2D=vri: (67)

Initiation with cells in 2D and diffusion in 2D
Moving on, we consider the case in the main text of cells in 2D with diffusion in 2D. To perform the

integration of Equation (62) in this case, it is easiest to rewrite the Bessel function in Equation (61c)

in integral form, then integrate first over time. With ri � D=v, such an analysis gives a minimum initia-

tion time of

tmin;2;2 ¼ 2D=v2: (68)

In the opposite limit of ri �D=v,

ri �D=v : logð4Dtinit=r2i Þ» 2D=vrið Þ2 (69)

as noted in the main text.

Initiation with cells in 2D and diffusion in 3D
Now, we will see that diffusive waves do not always initiate in 3D environments. We consider the

integral in Equation (62), but take tinit ! ¥ which gives us a maximum concentration Cmax;2;3 at r ¼ ri

of:

Cmax;2;3 ¼ 2a�ri=pD (70)

Thus, by Equation (29), if ri<D=v, Cmax;2;3<Cth and the signaling wave cannot initiate. Examining

Equation (62) for ri »D=v reveals

ri »D=v : tinit » pD=16v2
� �

ðvri=DÞ4ðvri=D� 1Þ�2 (71)

while

tmin;2;3 ¼ 4D=pv2: (72)
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Initiation with cells in 3D and diffusion in 3D
Finally, we consider initiation with cells in 3D. Again, we consider the limit tinit ! ¥ in Equation (62)

to get:

Cmax;3;3 ¼ a�r2i =3D: (73)

Thus, waves do not initiate below a critical ri. However, here, the critical value is ri ¼
ffiffiffi

3
p

D=v. As

with 1D cells/diffusion and 2D cells/diffusion, we recover

tmin;3;3 ¼ 2D=v2 (74)

in the limit ri �D=v.

Wave initiation with discrete cells
In the main text, we claimed that the qualitative wave initiation findings hold even in systems with

discrete cells. Here, we show this by considering the extreme case of a single, point-like cell at the

center of an initiating colony of size ri. We consider cells and diffusion in the same number of dimen-

sions, m. In an m-dimensional diffusive environment, the concentration created by this source –

which emits at a rate a – at a radius ri and time t will be given by:

cðri; tÞ ¼ a

Z t

0

dT e�r2
i
=4DTð4pDTÞ�m=2: (75)

For m¼ 3, this integral is bounded from above by a=4pDri as t!¥ while for m¼ 1;2, the concen-

tration diverges as t!¥. Thus we can see that, as in the continuum theory of the main text, the

wave will always initiate for m¼ 1;2 but has a critical radius for m¼ 3.

However, this is not the only qualitative similarity between the discrete and continuum cases. For

m ¼ 1; 2, we obtain

cm¼1ðri; tÞ ¼
a
ffiffiffiffiffiffiffiffiffiffi

4pD
p 2

ffiffi

t
p

e�r2
i
=4Dt � ri

ffiffiffiffiffiffiffiffiffiffi

p=D
p

erfc
ri
ffiffiffiffiffiffiffiffi

4Dt
p

� �

(76a)

cm¼2ðri; tÞ ¼
a

4pD
G0ðr2i =4DtÞ; (76b)

which we can manipulate to a more familiar form by considering the ri �D=v and t�D=v2 limit, in

which case we yield:

ri �D=v : cm¼1ðri; tÞ»a
ffiffiffiffiffiffiffi

t

pD

r

(77a)

ri �D=v : cm¼2ðri; tÞ»
a

4pD
log

4Dt

r2i
: (77b)

Making the substitution of cðri; tÞ ¼Cth, setting t¼ tinit, multiplying both sides of the equations by

rmi , and writing Cth ¼ a�D=v2 ~aD=rmi , we arrive at:

ri �D=v; m¼ 1 : tinit ~ ðD=v2ÞðD=vriÞ2 (78a)

ri �D=v; m¼ 2 : log Dtinit=r
2

i

� �

~ ðDri=vÞ2; (78b)

exactly the results of Equations (65) and (69).

Thus, not only the rough phenomenology (of m ¼ 3 being distinct from m ¼ 1; 2 in that exhibits a

critical radius), but also the specific scalings of initiation time hold when accounting for the discrete-

ness of cells.
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Appendix 8

Wave initiation with Hill function activation
We now characterize the effect of Hill function-like activation on the signaling wave initiation, as we

have done already for asymptotic dynamics. To do so, we consider a simple situation: cells within a

volume of size ri signal with some rate a while neighboring cells outside of the initial signaling vol-

ume (i.e., with r>ri) signal with a concentration-dependent rate of acn=ðcn þ Cn
thÞ. These calculations

give us an idea of how sensitive the initiation dynamics are to the details of cell activation. As we will

show, the initiation dynamics with Hill function activation are a good approximation of the initiation

dynamics for Heaviside activation when for relatively small n. One can imagine that such a situation

may be relevant in, for example, the neutrophil swarming experiments presented in the main text

(Reátegui et al., 2017). Here, cells in direct contact with a foreign protein begin signaling their

neighbors, which respond to the presence of the signaling molecule by participating in the emission

themselves. This analysis again treats the cell distribution as static and ignores the possibility that

neutrophils may randomly encounter the target.

Wave initiation with Hill function activation, cells in 1D, and diffusion in
1D
For cells in 1D with diffusion in 1D, the scenario described above can be described with the follow-

ing equation of motion:

qc

qt
¼D

q
2c

qr2
þ a�

h2
Q½ri �jrj�þ a�

h2
Q½jrj � ri�

cn

cn þCn
th

: (79)

One can non-dimensionalize Equation (79) by dividing all the concentration scales by Cth, divid-

ing all the length scales by lc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2CthD=a�
p

, and dividing all the time scales by t c ¼ h2Cth=a�, thusly

arriving at

qðc=CthÞ
qðt=t cÞ

¼ q
2ðc=CthÞ
qðr=lcÞ2

þQ
ri� jrj

lc

� �

þQ
jrj � ri

lc

� � ðc=CthÞn
ðc=CthÞn þ 1

; (80)

which shows that lc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2CthD=a�
p

is the relevant length scale and t c ¼ h2Cth=a� is the relevant time

scale. (In the n!¥ limit of Heaviside activation, t c ¼D=v2 and lc ¼D=v.) As with Heaviside activation,

we refer to the initiation time tinit as the time at which cðri; tinitÞ ¼Cth. To find tinit, we numerically

solve Equation (79) using the methods discussed in Appendix 5: Asymptotic wave dynamics with

Hill function activation. This gives the relationship of tinit=t c as a function of ri=lc and n shown in

Appendix 8—figure 1A. As seen in Appendix 8—figure 1A, even low-order (n¼ 1;2;3;5;10) Hill

functions exhibit relatively large (compared to t c) initiation times for ri � lc.
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Appendix 8—figure 1. Diffusive wave initiation with Hill function activation. (A) Wave initiation for

cells in 1D with diffusion in 1D. Here, the initiation time tinit is normalized by the characteristic time

scale t c ¼ h2Cth=a� and the initial signaling colony size ri is normalized by the characteristic length

Appendix 8—figure 1 continued on next page
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Appendix 8—figure 1 continued

scale lc ¼ h2CthD=a�ð Þ1=2. Yellow data points are individual simulations with dashed black guides to

the eye connecting the yellow points. The solid yellow line corresponds to Heaviside-like activation

and is reproduced from the main text. (B) Same as A, but for cells in 2D and diffusion in 2D. Here,

t c ¼ hCth=a� and lc ¼ hCthD=a�ð Þ1=2. (C) Same as A, but for cells in 3D and diffusion in 3D. Here,

t c ¼ Cth=a� and lc ¼ CthD=a�ð Þ1=2. We note the value of ri ¼
ffiffiffi

3
p

lc, the value below which waves fail

to initiate for Heaviside-like activation.

Wave initiation with Hill function activation, cells in 2D, and diffusion in
2D
Next, we study the initiation dynamics above with cells and diffusion in two dimensions. Here, the

dynamics are governed by the following equation of motion:

qc

qt
¼D

q
2c

qr2
þ 1

r

qc

qr

� �

þ a�

h
Q½ri� r� þ a�

h
Q½r� ri�

cn

cn þCn
th

: (81)

Now that we are considering the initiation dynamics, we must include terms like Dðqc=qrÞ=r, which
we could previously neglect in our asymptotic analysis of cells in 2D with diffusion in 2D. The curva-

ture of the initial signaling colony matters when calculating initiation times. Note that Equation (81)

can be non-dimensionalized in the same spirit as Equation (80) with characteristic length scale lc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hCthD=a�
p

and characteristic time scale t c ¼ hCth=a�. As with cells and diffusion in 1D, we numeri-

cally solve Equation (81) using the methods discussed in Appendix 5: Asymptotic wave dynamics

with Hill function activation to find tinit such that cðri; tinitÞ ¼Cth. Here again, we see that even low-

order (n¼ 2;3;5;10) Hill functions exhibit relatively large (compared to t c) initiation times for ri � lc.

Wave initiation with Hill function activation, cells in 3D, and diffusion in
3D
Finally, we study signaling wave initiation properties of a 3D environment by studying wave initiation

with cells and diffusion in 3D. To do so, we numerically solve the 3D analog of Equation (81),

qc

qt
¼D

q
2c

qr2
þ 2

r

qc

qr

� �

þ a�Q½ri� r� þ a�Q½r� ri�
cn

cnþCn
th

; (82)

which can be non-dimensionalized in the same spirit as Equation (80), but with characteristic length

scale lc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CthD=a�
p

and characteristic time scale t c ¼Cth=a�. We solve Equation (82) using the

methods discussed in Appendix 5: Asymptotic wave dynamics with Hill function activation to find tinit

such that cðri; tinitÞ ¼Cth. This gives the numerically determined relationship of tinit as a function of ri
and n shown in Appendix 8—figure 1C. We see that even low-order (n¼ 2;3) Hill functions exhibit

relatively large (compared to t c) initiation times for ri � lc. Larger yet Hill functions (n¼ 5;10) can

lead to very large initiation times (compared to t c) even for ri » lc.

In fact, n>3 activation functions can result in initiation failures when a�r2i =3DCth � 1. To see that

this is the case, we treat Equation (82) in the steady state (qc=qt ¼ 0) and use a perturbative analysis,

assuming cn=ðcn þ Cn
thÞ � 1, in which case cn=ðcn þ Cn

thÞ » c=Cthð Þn. In such a situation, we can write

cðrÞ» c0ðrÞ þ c1ðrÞ as the sum of a dominant contribution c0 that is generated by cells within ri and

satisfies

0¼D
q
2c0

qr2
þ 2

r

qc0

qr

� �

þ a�Q½ri� r� (83)

and a small correction c1 that is generated by cells beyond ri and obeys
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0¼D
q
2c1

qr2
þ 2

r

qc1

qr

� �

þ a�
cn
0

cn
0
þCn

th

Q½r� ri�»D
q
2c1

qr2
þ 2

r

qc1

qr

� �

þ a�
c0

Cth

� �n

Q½r� ri�: (84)

We can solve Equation (83) directly to arrive at:

c0ðr<riÞ ¼
a�

2D
r2i � r2=3
� �

; c0ðr>riÞ ¼
a�r3i
3Dr

(85)

where the form of c0ðr>riÞ is reminiscent of solving for the potential of a uniformly charged sphere in

electrostatics (Berg and Purcell, 1977). If a�r2i =3DCth ¼ �� 1, we can calculate the perturbation c1.

By Equation (84), c1 obeys

0¼D
q
2c1

qr2
þ 2

r

qc1

qr

� �

þ a�
c0

Cth

� �n

Q½r� ri� ¼D
q
2c1

qr2
þ 2

r

qc1

qr

� �

þ a�
�ri
r

� �n

Q½r� ri� (86)

so that

c1ðr<riÞ ¼
a�r2i �

n

Dðn� 2Þ ; c1ðr>riÞ ¼
a��n

Dðn� 3Þ
r3i
Dr

þ r2

n� 2

ri

r

� �n
� �

: (87)

For c1 to be a sensible perturbative correction, we require it to be positive (since we are adding

source terms to c0 to get c1) and much smaller than c0. This is the case when n>3. In this limit, it is

smaller than c0 by roughly a factor of �n – a very small correction. Thus, n>3 activation functions can

give steady-state concentration profiles that do not trigger waves in a three-dimensional diffusive

environment.

In Appendix 8—figure 1C, we can indeed see that small n activation functions show less appreci-

able increases in the initiation time as ri decreases.
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Appendix 9

Sensitivity of the information front to fit parameters
As an example of the Green’s function method described in Materials and methods, we have plotted

various information wave fronts in Appendix 9—figure 1. These wave fronts assume different values

of the diffusion constant D and the threshold concentration Cth is fit to give the experimentally

observed wave initiation time in Reátegui et al., 2017. As we can see from the plot, there is a small

range of values for D for which one can construct an information wave front that agrees with the

data (Appendix 9—figure 1 A). These values of D are consistent with the diffusion constant of small

molecules like LTB4. Values of D differing significantly from this range give information wave fronts

that differ significantly from the experimentally observed wave front.
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Appendix 9—figure 1. Wavefront fitting of the simple diffusion and relay models. (A) Plot showing

the information waves for various choices of diffusion constant (black) overlaid on the experimental

chemotactic index data from Reátegui et al., 2017 (color plot). Here, we take ri ¼ 100 mm, although

the target in the experiment is a smaller, oblong object. The size of the target has no effect on the

convex shape of the information wave front. The black line is reproduced from the main text and has

D ¼ 1:25� 10
�10 m2/s and asymptotic wave speed v» 1:7 mm/s (the threshold concentration is

Cth=a� ¼ 2=pv). This diffusion constant is consistent with a small molecule like LTB4, and the

resulting information wave dynamics can be made to fit the information wave front – both the

initiation time of » 200 s and the transient dynamics. Other choices of parameters (green: D ¼
1:8� 10

�10 m2/s, v » 2:3 mm/s, navy: D ¼ 0:8� 10
�10 m2/s, v » 1:3 mm/s) give information wave fronts

that are also roughly consistent with the experimental data. (B) However, with a much larger

(D ¼ 10
�9 m2/s, red) or smaller (D ¼ 10

�11 m2/s, dashed) diffusion constant, an information wave with

the correct initiation time does not have the correct transient dynamics. The wave speeds for these

larger and smaller diffusion constants are, respectively, v » 11 mm/s and v » 0:3 mm/s. (C) Simple

diffusion models of various diffusion constants overlaid atop data from Reategui et al. in which the

the same swarming assay as in A/B (but with a slightly smaller 80 mm target) was utilized but with

neutrophils whose LTB4 receptors (BLT1/2) had been blocked. Here, we see a 250 s offset before

the propagation of a slow-moving diffusive front. A simple diffusive model does not capture this

offset well, but does accurately capture the concave shape of the front (which contrasts with the

convex shape of the front propagated by a relay). (D) Same as in C but with a 250 s offset in the

theoretical curves. These curves fit the observed chemotactic index dynamics fairly well.

Physiological relevance of these fit parameters

With the fit values of Cth=a� ¼ 3:67� 10
5 s/m and D ¼ 1:25� 10

�10 m2/s reported in the main text

and the empirical cell density of � ¼ ð1=50 mm)2, we conclude that Cth=a» 1:5� 10
14 s/m3.

Under similar conditions with the swarming assay, (Reátegui et al., 2017) report neutrophil LTB4

production in a 3 mm thick extracellular medium to be approximately 1 pg per 100 microliters per

hour. With cells at a density of � ¼ ð1=50 mm)2 and a 3 mm thick extracellular medium, this
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corresponds to a production rate of a» 40 molecules/second/cell. Thus, combining this production

rate with the above, we yield Cth » 500 pM.

This value is within the range of the measured BLT1 receptor affinity for LTB4, which is reported

to be approximately 0.1 – 2 nM (Yokomizo, 2015).
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Appendix 10

Simple diffusion model
In the main text, we showed the qualitative differences between a signaling relay, in which cells emit

one type of signaling molecule in response to the local concentration of the same molecule, and a

simple diffusive signaling model, in which cells within some volume signal surrounding cells, which

do not participate in the signaling at all. Here, we explicitly calculate some of the properties of a

simple diffusion model. We consider cells in 2D, with a region of cells of size ri at z ¼ 0 in which the

cells emit diffusible signaling molecules at rate a. In equation form,

qc

qt
¼D

q
2c

qr2
þ 1

r

qc

qr
þ q

2c

qz2

� �

þ a�dðzÞQ½ri � r� (88)

describes the concentration in space and time. To calculate concentrations, one can either propa-

gate this equation directly or, as we do in the main text, integrate Green’s functions in a manner sim-

ilar to that described above. For cells in 2D with diffusion in 3D (assuming a semi-infinite

environment), this gives

cðr; z¼ 0; tÞ ¼ a�

Z t

0

dT

Z ri

0

dR G2;3ðr;0;R;�TÞ (89)

as the concentration at z¼ 0. One can take gradients according to qc=qr.

In Appendix 9—figure 1, we show that these dynamics produce information wave fronts that are

different from the information wave fronts of diffusive relays. Moreover, the information wave fronts

of simple diffusive theories are inconsistent (Appendix 9—figure 1C) with the observed chemotactic

index dynamics catalogued by Reátegui et al., 2017 for neutrophils with blocked LTB4 (BLT1/2)

receptors. With a time delay of ~250 s, the information wave fronts of simple diffusive models can

be made consistent with the observed information wave fronts. As there is great ambiguity about

the signaling molecules that govern recruitment of BLT1/2-blocked neutrophils, we have shown this

is true for a large range (two orders of magnitude) of diffusion constants.

In the limit r � ri, the signaling colony looks like a point source, meaning that Equation (89) can

be simplified according to
R

dR G2;3 » r
2

i e
�r2=4DT= 4

ffiffiffiffi

p
p

D3=2T3=2
� �

. Thus, we get that

r� ri : cðr; z¼ 0; tÞ» a�r2i
2
ffiffiffiffi

p
p

D3=2

Z t

0

dT
e�r2=4DT

T3=2
¼ a�r2i

2Dr
erfc

r2

4Dt

� �1=2

(90)

which, in the limit of r2 �Dt, gives

r� ri;
ffiffiffiffiffi

Dt
p

: cðr; z¼ 0; tÞ» a�r2i
Dr

erfc
r2

4Dt

� �1=2

»
a�r2i
r2

ffiffiffiffiffiffiffi

t

pD

r

e�r2=4Dt (91)

which shows that the concentration profiles of simple diffusive models indeed have very shallow,

Gaussian (with 1=r2 adjustments) tails.

Similarly, for cells in 2D with diffusion in 2D,

cðr; tÞ ¼ a�

h

Z t

0

dT

Z ri

0

dR G2;2ðr;0;R;�TÞ (92)

describes the concentrations. In the same limits (r� ri;
ffiffiffiffiffi

Dt
p

), we get

r� ri;
ffiffiffiffiffi

Dt
p

: cðr; tÞ» a�r2i t

hr2
e�r2=4Dt (93)

as the concentration. Here again, we see that the concentration profiles are shallow Gaussian with

1=r2 adjustments. We plot the resulting gradients in this thin extracellular medium limit against the

gradients from a comparable relay model in Appendix 10—figure 1B.
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Appendix 10—figure 1. Comparison of relay and simple diffusion for cells and diffusion in 2D. All

plots are for D ¼ 10
�10 m2/s, v ¼ 2 mm/s, and ri ¼ 4D=v. (A) Information fronts for relay (black) and

simple diffusion (gray) models. The information wave travels like
ffiffi

t
p

for simple diffusion and vt for

the relay. The threshold concentration for the simple diffusion model is chosen such that the its

information front intersects the relay model at t ¼ 20D=v2. Thus, hCth;relay=a� ¼ 25 s while

hCth;diff:=a� » 0:25 s. (B) Snapshots of radial gradients at various times for both the relay (black) and

simple diffusion (gray) models. The dashed vertical lines indicate the location of the wave fronts. For

short times (left) the relay’s information wave front lags behind the simple diffusion model’s

information front, though it later catches up (middle) and passes it (right). At all times, for cells just

inside the wave front, the relay model creates gradients that are orders of magnitude larger than

does simple diffusion.
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Appendix 11

Quantifying the effects of chemotaxis
To understand the effects that chemotaxis has on our model, we consider cells in 2D. The results

below can be adopted to study cells in 3D or 1D, although the dimensionality of the cells has no

effect on the asymptotic signaling wave speed.

We consider the same signaling motif as in the main text – that cells emit a diffusible molecule

with rate a once the local concentration of the same molecule exceeds Cth – but now consider a

time-varying density. Our model is a coarse-grained one; we study the case of cells moving toward

the origin (radially inward) with a mean speed u once the local concentration exceeds Cth. This is a

toy model of neutrophil chemotaxis and is, of course, an approximation because the mean radial

speed will depend on – among many other factors – the strengths of the gradients the cells use for

chemotaxis. In full, for cells in any number of dimensions and within this model,

qcðr; tÞ
qt

¼Dr2cþ a�ðr; tÞQ½c�Cth� (94a)

q�ðr; tÞ
qt

¼r� ur̂�ð ÞQ½cðr; tÞ�Cth� (94b)

where r̂ is the unit vector pointing radially outward. For cells in 2D,

qcðr; z; tÞ
qt

¼D
q
2c

qr2
þ 1

r

qc

qr
þ q

2c

qz2

� �

þ a�ðr; tÞdðzÞ Q½c�Cth�Q½r� ri�þQ½ri� r�ð Þ (95a)

q�ðr; tÞ
qt

¼ u

r

q r�ð Þ
qr

Q½c�Cth�Q½r� ri� (95b)

which are the coupled equations we will study going forward. Note that we have included a source

term for cells within the initial signaling colony of radius ri.

We again assume a signaling wave propagates at outward with speed v. In this case, the cell den-

sity beyond the target is described by:

�ðri<r<vt; tÞ ¼ �0
1þ ut=r

ð1þ u=vÞ2
(96)

which one can derive by assuming an outward propagating wave with speed v, a group of inward

chemotaxing cells with speed u, and an initially uniform density of cells �0. To do so, we consider the

signaling wave passing a cell at radius R and time t�T. At a later time t, the cell initially at R has

moved inward a distance uT. Thus, the density at r¼ R� uT and t is

�ðr; tÞ~�0R=r¼ �0ð1þ ut=rÞ=ð1þ u=vÞ. Integrating this density and demanding conservation of cell

number gives Equation (96).

Effect on asymptotic wave speed relationships
Before numerically solving Equations (95a) and (95b) to show the precise effects chemotaxis has on

the concentration profiles, concentration profiles, and information wave fronts, we calculate the

effect it has on the asymptotic wave speed.

To do so, we first show that only cells within »D=v of the wave front contribute to the concentra-

tion at the wave front. To contribute to the concentration at the wave front, you need to be within

about a diffusion length of it. If the wave front passed a time t ago, that means being within

dr »
ffiffiffiffiffi

Dt
p

. However, we know that t ¼ dr=v, so dr »D=v – the characteristic length scale of diffusive

waves.

As only cells within »D=v of the wave front contribute to concentration at the wave front, we are

considering cell densities on the order of:
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�ðr¼ vt�D=v; tÞ ¼ �0
1þ ut=r

ð1þ u=vÞ2
»�0

1þ ut=ðvt�D=vÞ
ð1þ u=vÞ2

: (97)

In the asymptotic regime of vt�D=v, we get

�»�0=ð1þ u=vÞ (98)

meaning the density of cells that contribute to the wave front propagation is approximately con-

stant. Therefore, we may modify the analysis that lead to Equations (24) and (29) to get two new

asymptotic equations for the wave speed:

h�D=v : Cth ¼
a�0D

hv2ð1þ u=vÞ (99)

and

h�D=v : Cth ¼
2a�0

pvð1þ u=vÞ : (100)

For neutrophils and the information wave front presented in the main text (reproduced in Appen-

dix 11—figure 1), 1þ u=v»1þð0:3 �m=sÞ=ð2 �m=sÞ ¼ 1:15 and the effect of chemotaxis on the

asymptotic dynamics is small.
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Appendix 11—figure 1. Effects of chemotaxis on wavefront location and concentration profiles. (A)

Information wave fronts for cell signaling relays with (navy) and without (black) chemotaxis. The

information wave fronts are overlaid on the experimental chemotactic index data from (color plot)

(Reátegui et al., 2017). The black curve is reproduced from the main text. Both models can account

for the observed information wave fronts by fitting two parameters: the signaling molecule

diffusivity, D and the threshold concentration, Cth. (B/C) Concentration profiles (B) and gradients (C)

generated by the signaling relay models in A. The wave front is indicated in all panels by the dashed

line, and the concentration profiles and gradients are plotted at the times such that the threshold

concentration is equal to the concentration at the wave front. When one accounts for chemotaxis,

the concentration profiles near the target steepen relative to models without chemotaxis.
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Effect on transient dynamics
To study the effect of chemotaxis on the transient dynamics of neutrophil swarming, we utilize a

modified version of our Green’s function method reported in Materials and methods to propagate

Equations (95a) and Equations (95b). One can do so using the same algorithm described previ-

ously, but with the following modifications with rcðtÞ the information wave front:

. For radii r at time t satisfying ri<r<rcðtÞ, find the time t�ðr; tÞ at which the neutrophils at radius r
at time t began chemotaxing inward. This time satisfies the relationship rc t

�½ � � r ¼ uðt � t�Þ.
. The density at r is therefore given by the ratio of rc t

�½ � to r with an additional factor of
one plus the ratio of the inward advection speed to the outward-propagating wave
speed at rc½t�� and t�:

�ðr; tÞ ¼ �0
rc t

�½ �=r

1þ u
qrc t�½ �
qt

� ��1
: (101)

This is analogous to Equation (96) and reduces to Equation (96) in the asymptotic limit of
rcðtÞ ¼ vt.

. We assume that once the cells reach the target edge, they pack inward at a maximum density,

in units of the cell diameter dc, of �max ¼ 1=d2c . For the experiments we discuss
(Reátegui et al., 2017), this means that �max » 10 �0.

With all these adjustments, and using the reported value of u» 20 mm/s in Reátegui et al., 2017,

we arrive at the navy information wave front in Appendix 11—figure 1A. This curve is a fit by eye to

the experimental information wave front and has fit parameters of D ¼ 1:5� 10
�10 m2/s and v ¼ 1:73

mm/s, corresponding to a threshold concentration of Cth=a�0 ¼ 2

pvð1þu=vÞ » 3:07� 10
5 s/m. For refer-

ence, the black curve in Appendix 11—figure 1A is the information wave front from Figure 4 of the

main text, for which D ¼ 1:25� 10
�10 m2/s and Cth=a�0 ¼ 2

pvð1þu=vÞ » 3:67� 10
5 s/m. Thus, including

chemotaxis only negligibly affects our fit values.

To compare the two models in Appendix 11—figure 1A, we plot both the concentration profile

(Appendix 11—figure 1B) and the concentration gradient (Appendix 11—figure 1C) for a given

critical radius (the dashed line in Appendix 11—figure 1A). When one accounts for chemotaxis, the

concentration profile near the target steepens relative to a model with a stationary cell distribution.

We can therefore see that chemotaxis itself can lead to steeper concentration profiles, though the

model we have explored here only accounts for an average inward drift of the cells.
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