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H I G H L I G H T S
� Radiomics allows for prediction of pseudoprogression in high-grade gliomas.
� Use of contrast media boosts the performance of the Radiomics prediction model.
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A B S T R A C T

Objective: Our aim is to define the capabilities of radiomics in predicting pseudoprogression from pre-treatment MR
images in patients diagnosed with high-grade gliomas using T1 non-contrast-enhanced and contrast-enhanced
images.
Material & methods: In this retrospective IRB-approved study, image segmentation of high-grade gliomas was semi-
automatically performed using 3D Slicer. Non-contrast-enhanced T1-weighted images and contrast-enhanced T1-
weighted images were used prior to surgical therapy or radio-chemotherapy. Imaging data was split into a training
sample and an independent test sample at random. We extracted 107 radiomic features by use of PyRadiomics.
Feature selection and model construction were performed using Generalized Boosted Regression Models (GBM).
Results: Our cohort included 124 patients (female: n ¼ 53), diagnosed with progressive (n ¼ 61) and pseudo-
progressive disease (n ¼ 63) of primary high-grade gliomas. Based on non-contrast-enhanced T1-weighted images
of the independent test sample, the mean area under the curve (AUC), mean sensitivity, mean specificity and
mean accuracy of our model were 0.651 [0.576, 0.761], 0.616 [0.417, 0.833], 0.578 [0.417, 0.750] and 0.597
[0.500, 0.708] to predict the development of pseudoprogression. In comparison, the independent test data of
contrast-enhanced T1-weighted images yielded significantly higher values of AUC ¼ 0.819 [0.760, 0.872],
sensitivity ¼ 0.817 [0.750, 0.833], specificity ¼ 0.723 [0.583, 0.833] and accuracy ¼ 0.770 [0.687, 0.833].
Conclusion: Our findings show that it is possible to predict pseudoprogression of high-grade gliomas with a
Radiomics model using contrast-enhanced T1-weighted images with comparatively good discriminatory power.
The use of a contrast agent results in a clear added value.
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1. Introduction

Glioblastoma are among the most common primary malignant brain
tumors in adulthood [1]. The tumors are characterized by high vascu-
larity [2], high lethality [3] and invasive growth [4]. The average sur-
vival rate in combination with radio- and chemotherapy ranges between
12.6 and 24 months [5]. On average, there are 4–11 cases per 100,000
people in a year [6] and 125,000 to 150,000 new cases are diagnosed
annually [7]. Standard treatment consists of surgery, followed by radi-
ation and chemotherapy (temozolomide) according to the Stupp scheme
[8, 9]. Magnetic resonance imaging (MRI) is considered one of the most
accurate imaging modalities for tumor assessment and response predic-
tion [4]. However, it is difficult to distinguish true tumor progression or
tumor recurrence from pseudoprogression [10]. Figure 1 shows an
example of true progression and Figure 2 an example of pseud
oprogression.

Pseudoprogression usually occurs within 3–6 months after comple-
tion of multimodal therapy [11] and is defined as a progression of
findings onMRI images without clinical correlation, which then regresses
over the course of therapy without any changes of therapeutic manage-
ment [12]. Pseudoprogression appears as contrast-enhancing lesions on
T1-weighted images and features an increase in signal intensity on FLAIR
images surrounding the resection cavity [13, 14]. Tsakiris et al. showed
that the occurrence of pseudoprogression in newly diagnosed glioblas-
tomas is about 36% [15]. A misdiagnosis can result in redundant sur-
geries and potentially harmful therapeutic changes [15]. In MR imaging
conducted for evaluation of tumor progression, the application of
gadolinium-based contrast agent is considered common practice, as
relevant diagnostic information can be visually observed from contra
st-enhanced sequences.

However, with recent studies showing that gadolinium-based
contrast-agents may be deposited in the body [16, 17], there is great
Figure 1. Case of true progression of glioblastoma under multimodal therapy. Sequen
3 month, 6 month and 8 month of therapy regime and shows continuous aggravation
column, arrows). (D) PET/MRI-fusion images confirming diagnosis of true progressi
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interest in avoiding the use of contrast agent as much as possible. There is
a need for a novel, reliable and non-invasive diagnostic tool that allows
for the correct pre-treatment prediction of true progression or pseudo-
progression, preferably without requiring the image information from
contrast-enhanced MRI sequences.

Radiomics analyses objectively quantify medical imaging features
[18]. When combined with clinical data and histopathology, it allows for
reliable predictions on disease prognosis and response to therapy [19,
20]. There are numerous studies on the benefits of radiomics in medical
imaging such as the staging of liver fibrosis, the definition of focal liver
lesions [21] or in the detection of prostate cancer [22]. Applied to gli-
omas, Cooker et al. have described an approximately 90% accuracy of
radiomics techniques combined with machine learning when assessing
the WHO 2016 grade for newly diagnosed gliomas [23]. Given the po-
tential of radiomics, the aim of the present study was to determine the
performance of prognostic models for distinguishing brain tumors with
and without progression, and second, to compare the performance of our
models using MR images generated without and with the administration
of a contrast agent.

2. Materials & methods

2.1. Study population

The single-center, retrospective study was IRB-approved, performed
in compliance with the Declaration of Helsinki and was approved by the
local ethics committee (2021-596-f-S). Due to its retrospective nature,
written informed consent was waived. We retrospectively screened our
databases at the Department of Radiology, Nuclear medicine and
Neuropathology for patients with histologically-proven Glioblastoma,
who were presented to our tertiary referral hospital between January
2015 and June 2020.
ces: T2/FLAIR, T1, T1 Gd-enhanced, PET/MRI fusion. (A–C) MRI was performed
of T2/FLAIR Signal (frist column) and increase of contrast enhancing parts (third
on.



Table 1. Histopathological and demographic data.

Training sample Independent test sample

Number 100 24

Progress: Number (in %)

Yes 49 (49.0%) 12 (50.0%)

No 51 (51.0%) 12 (50.0%)

Gender: Number (in %)

Male 57 (57.0%) 14 (58.3%)

Female 43 (43.0%) 10 (41.7%)

Age (years) 60.67 62.46
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From the initially detected 193 patients we excluded those with (1)
missing or non-diagnostic pre-treatment cerebral magnetic resonance
imaging, (2) insufficient diagnostic imaging quality, (3) incomplete
clinical data, (4) inconsistent histopathology, (5) insufficient follow-up
examinations (e.g. denied treatment/biopsy), and (6) images available
for only one of the two T1 sequences without or with contrast agent.

Finally we included 124 patients (male: n ¼ 71; female: n ¼ 53),
diagnosed with progress (n ¼ 61) and no progress (n ¼ 63) of the brain
tumor. The mean age of the patients was 61.02 years. The histopatho-
logical and demographic data of the training sample and the independent
test sample are summarized in Table 1. A detailed table with molecular
subtypes, histologic findings, and type and timing of therapy is provided
in the Appendix.

2.2. Image acquisition

We required MR images for each patient in our cohort, both without
and with contrast administration. We used the T1 MRI sequence to
generate the MR images for both, the unenhanced T1-weighted images
and the contrast-enhanced T1-weighted images. For feature computation
we used the open source software (3D slicer, version 4.11) with a bin
width of 25 and resampled voxel sizes to 2,2,2. We extracted a total of
107 radiometric features by hand-delineated regions of interest (ROI)
from the unenhanced T1-weighted images and additionally from the
Figure 2. Case of pseudoprogression in a GBM patient. Sequences: T2/FLAIRw, T1w,
as 3 month and 4,5 month after the therapy start. FLAIR signal and T1 Gd-enhanced

3

contrast-enhanced T1-weighted images of each patient and compared the
performance of models using the unenhanced T1-weighted images with
corresponding models using the contrast-enhanced T1-weighted images.
Detailed MR acquisition parameters are mentioned in the supplementary
section.

2.3. Feature extraction

In both parts of our analysis, we extracted 107 radiometric features by
manually-delineated regions of interest (ROI) from each patient's MR
images. In order to make the data more normal distribution-like, all
T1w Gd-enhanced. (A–C) MRI performed at the beginning of the therapy as well
(arrows) signal temporarily increases during therapy.
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features underwent a Yeo-Jonson transformation. The features were z-
score normalized and subjected to a 95% correlation filter keeping 56
features to account for redundancy between the features. Feature pre-
selection and model construction were both performed with the training
sample, using Generalized Boosted RegressionModels (GBM). A GBM is a
combination of a decision tree algorithm and a boosting technique.
Usually, GBM prediction models are constructed as an ensemble of weak
prediction models, i.e., weak learners.

2.4. Feature pre-selection

We used the “varImp” function in R to identify first the most impor-
tant variables. This function determines how many times each variable is
selected during the building process of the decision trees and how much
the prediction error of the model is improved by using each variable. We
determined the most important features firstly for the contrast-enhanced
images and secondly for the unenhanced images. Table 2 lists the top 15
features for both the contrast-enhanced images and the unenhanced
images in descending order of importance.

2.5. Model development

GBM models were then created with an increasing number of the
most important features identified previously. In the first step, the model
contains only the most important feature, followed by a model with the
two most important features, followed by a model with the three most
important features, and so on. The model with the highest performance
with respect to the hold-out samples used in the cross-validation to
determine the tuning parameters included in the GBM model is used as
the final model. This step-by-step approach determines the final number
of features included in the model. The GBM models contain several
tuning parameters: firstly the “tree depth”, secondly the “learning rate”,
thirdly the “minimum number of observations in the terminal node” and
finally the “number of trees”. The optimal tuning parameters of the GBM
models (tree depth ¼ 1 or 2; learning rate ¼ 0.1; minimum number of
observations in terminal nodes ¼ 5,7,9,11,13 or 15; number of trees ¼
50, 60, 70, …,150) were determined using grid search 10-fold cross-
validation, i.e., we divided the training sample 10 times into groups
with 90% and 10% of the training data, respectively. The 10 groups that
each contain 10% of the training data are denoted as “hold-out samples
of the training data”. The technique ensures that the subgroups of the
training sample do not overlap. This methodology provides robust results
even in combination with small datasets.

The tuning parameters of the GBM model may slightly depend on the
data partitioning used in the cross-validation. To determine the stability
Table 2. List of the most important features for the contrast-enhanced images and th

Feature number Features for contrast-enhanced images

1 T1_GD_1.orig.ngtdm.Strength

2 T1_GD_1.orig.glcm.ClusterShade

3 T1_GD_1.orig.shape.Elongation

4 T1_GD_1.orig.shape.Flatness

5 T1_GD_1.orig.shape.MinorAxisLength

6 T1_GD_1.orig.shape.Sphericity

7 T1_GD_1.orig.fst.ord.RobustMeanAbsoluteD

8 T1_GD_1.orig.fst.ord.Uniformity

9 T1_GD_1.orig.glcm.Idmn

10 T1_GD_1.orig.glcm.Correlation

11 T1_GD_1.orig.glcm.Idm

12 T1_GD_1.orig.glcm.Imc2

13 T1_GD_1.orig.glcm.MCC

14 T1_GD_1.orig.fst.ord.Skewness

15 T1_GD_1.orig.ngtdm.Busyness
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of the results, we therefore optimized each of the models with a given
number of features 100 times and then tested each of these models with
the test sample. The predictive power of the models was analyzed using
the area under the curve (AUC) of the receiver operator characteristic
(ROC) and the accuracy. All our performance values were determined as
means of 100 cycles/repetitions.

2.6. Model analysis

In the first part of our analyses, we used the contrast-enhanced T1-
weighted images and determined the maximum performance in
discriminating the progression/non-progression of the brain tumors with
machine learning algorithms.

In the second part of our analyses, we attempted to obtain comparable
results based on the unenhanced T1-weighted images. First, all features
were recalculated for the unenhanced images. For these comparative
analyses with the unenhanced images, the same approach was used for
model construction as in the first part of our analyses. However, we tried
two slightly different approaches for variable preselection:

� First, we used the same features as in the first part of our analyses. The
order in which each variable was included in the models was also
maintained. This means that the selection of the features used and
their order still referred to the contrast-enhanced images.

� Subsequently we determined the most important features in relation
to the unenhanced T1-weighted images. The order in which these
variables were subsequently included in the models was now based
on their importance in relation to the unenhanced images.

Finally, the models were again estimated now using these two
different sets of features and the unenhanced images. By comparing the
results from the first and second parts of our analyses, we were able to
determine the added value of the MR contrast agent.

2.7. Statistical analysis

Statistical analysis was performed using R software (version 3.5.3). As
mentioned, unenhanced T1-weighted images and contrast-enhanced T1-
weighted images before treatment were available for 124 patients
respectively. These 124 patients were allocated to a training sample and
an independent test sample at random. The training sample was used for
the construction of the different models and the optimization of the
tuning parameters included in these models. The performance of the
models was determined using the test sample, i.e., unknown/indepen-
dent data. We used a stratified 4:1 ratio. The training sample included
e unenhanced images in descending order of importance.

Features for unenhanced images

T1_nativ_1.orig.shape.Sphericity

T1_nativ_1.orig.shape.MajorAxisLength

T1_nativ_1.orig.shape.Flatness

T1_nativ_1.orig.ngtdm.Contrast

T1_nativ_1.orig.shape.Elongation

T1_nativ_1.orig.glcm.Idn

eviation T1_nativ_1.orig.fst.ord.Kurtosis

T1_nativ_1.orig.glcm.InverseVariance

T1_nativ_1.orig.glcm.Correlation

T1_nativ_1.orig.glcm.Imc1

T1_nativ_1.orig.glrlm.RunEntropy

T1_nativ_1.orig.shape.SurfaceVolumeRatio

T1_nativ_1.orig.glszm.SizeZoneNonUniformity

T1_nativ_1.orig.shape.LeastAxisLength

T1_nativ_1.orig.glcm.SumAverage
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100 patients and the test sample 24 patients with a balanced distribution
between both samples (Table 1) of tumor progress (yes/no) and gender
(F ¼ female/M ¼ male). We started our analyses using the contrast-
enhanced images. It is important to note that we kept the assignment
of the 124 patients to the training sample and the test sample unchanged
in both parts of our study. This means that regardless of whether we used
the contrast-enhanced (first part of our study) or the unenhanced MR
images (second part of our study), the same 100 patients formed the
training sample and the remaining 24 patients formed the test sample. P
values below <.05 are considered significant.

3. Results

3.1. Contrast-enhanced images

For the first part of our analyses with the contrast-enhanced T1-
weighted images, a GBMmodel was used for the feature preselection and
for the subsequent model construction. Starting with the most important
of the original 56 features (“T1_GD_1.orig.ngtdm.Strength”), we added
one additional feature in every subsequent step. The optimization of each
GBM model was repeated 100 times using grid search 10-fold cross-
validation. The results averaged over 100 cycles for each model are
summarized in Table 3. The performance of the models depends only to a
limited extend on the exact number of features used. Models with good
discriminatory power are obtained with both the training sample and the
independent test sample. The best model in terms of AUC with respect to
the hold out-samples of the training data is obtained with approximately
six to seven features. This applies accordingly to the independent test
data (Figure 3). With the addition of the first features, starting from a
model with only one feature, the AUC increases strongly for the training
sample and moderately for the independent test data. Models including
more than about 6 features do not result in higher AUC values for the
training data and even slightly lower values for the independent test data,
i.e., in this range the model starts to be overfitted.

The correlation matrix for the best model including the first six fea-
tures is shown in Figure 4. Most of the correlation coefficients only have
small values, i.e., most of the features used in this model are almost in-
dependent of each other. In the independent testing group, the mean
AUC, mean sensitivity, mean specificity and mean accuracy of this model
were 0.819 [0.760, 0.872], 0.817 [0.750, 0.833], 0.723 [0.583, 0.833]
and 0.770 [0.687, 0.833] and in the training sample 0.923 [0.883,
0.983], 0.779 [0.694, 0.910], 0.888 [0.824, 0.952] and 0.835 [0.780,
0.926] respectively. The values in the brackets indicate the 95%
Table 3. Classification results per group using the contrast-enhanced T1-weighted ima
Spec.: specificity. Acc.: accuracy.

Number of Training data

features AUC Sens. Spec. Acc.

1 0.7943 0.6853 0.7014 0.69

2 0.8247 0.6853 0.8290 0.75

3 0.8701 0.7037 0.8153 0.76

4 0.8805 0.7241 0.8294 0.77

5 0.8979 0.7590 0.8529 0.80

6 0.9225 0.7788 0.8884 0.83

7 0.9388 0.8002 0.9041 0.85

8 0.9345 0.7978 0.8980 0.84

9 0.9435 0.8273 0.9059 0.86

10 0.9347 0.8114 0.8965 0.85

11 0.9308 0.8129 0.8912 0.85

12 0.9322 0.8163 0.8902 0.85

13 0.9272 0.8137 0.8857 0.85

14 0.9299 0.8198 0.8800 0.85

15 0.9318 0.8282 0.8851 0.85

5

confidence intervals. Hence, this final GBMmodel shows good prediction
performance in both training and test group. In the left part of Figure 5
the ROC curve for the test group is shown. As our results show, brain
tumor progression/non-progression can be predicted with comparatively
good discriminatory power using machine learning algorithms based on
contrast-enhanced T1-weighted images.

3.2. Non-contrast-enhanced images

For the second part of our analyses, we used the unenhanced T1-
weighted images. As already described, the calculations were first per-
formed with the variables previously determined using the contrast-
enhanced T1-weighted images. The values of the variables were recal-
culated using the corresponding data of the unenhanced images. We also
kept the model approach of a GBM model. Table 4 shows the results for
these GBM models as a function of the number of variables used. The
models were optimized according to the previous analyses by maxi-
mizing the AUC, using cross-validation. Comparable to the first part of
the analyses, the “best” models also had approximately 6 variables.
However, the achieved discriminatory power values were clearly below
the corresponding values that were previously determined using the
contrast-enhanced T1-weighted images. The accuracy values are not
even above those of a random model.

According to Table 2, it is obvious that different features are important
for the unenhanced images than for the contrast-enhanced images. We
therefore repeated theoptimizationof ourGBMmodels.However,wenow
used the most important variables in relation to the unenhanced images.
This preselection of variables was again performed using a GBM model.
The results are summarized in Table 5. Compared to the results in Table 4,
slightly higher discriminatory power values were obtained, but these
values remain significantly below the values obtained with the contrast-
enhanced T1-weighted images. The highest accuracy values with the in-
dependent test datawere slightly above60%, and thus close to the value of
50%, which would result from a purely random experiment. The inde-
pendent test data with T1 non-contrast images using the same GBM
methodology with 6 features yielded values of 0.651 [0.576, 0.761] for
the mean AUC, 0.616 [0.417, 0.833] for the mean sensitivity, 0.578
[0.417, 0.750] for the mean specificity and 0.597 [0.500, 0.708] for the
mean accuracy. The ROC curve for the test group is shown in the right part
of Figure 5. We thus obtained our best results with both the contrast-
enhanced and the non-contrast-enhanced images with 6 features each.
We compared the two results in relation to the AUC using the DeLong test
[24]. We obtained a p-value < 2.2e-16, which means that the
ges. AUC: area under the receiver operator characteristic curve. Sens.: sensitivity.

Independent test data

AUC Sens. Spec. Acc.

35 0.7308 0.7533 0.4417 0.5975

86 0.7525 0.6842 0.7475 0.7158

06 0.7314 0.6867 0.7067 0.6967

78 0.7329 0.7108 0.7075 0.7092

69 0.8035 0.8142 0.6325 0.7233

47 0.8192 0.8167 0.7225 0.7696

32 0.8128 0.8017 0.7175 0.7596

89 0.8142 0.7992 0.7083 0.7538

74 0.8117 0.8000 0.7383 0.7692

48 0.8028 0.7750 0.7650 0.7700

28 0.8114 0.7725 0.7825 0.7775

40 0.7930 0.7283 0.7808 0.7546

04 0.7837 0.7408 0.7733 0.7571

05 0.7632 0.7175 0.7475 0.7325

72 0.7707 0.7333 0.7442 0.7388



Figure 3. Mean AUCs (100 cycles) for the GBM models using the contrast-enhanced T1-weighted images with different number of features. Dotted lines: 95%
confidence interval.

Figure 4. Pearson Correlation for the GBM model with 6 features using the
contrast-enhanced T1-weighted images.
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discriminatory power of the two models (with 6 features each) is signifi-
cantly different with extremely high probability.

3.3. Test of further machine learning models

It should be noted that in addition to the method described here using
a GBM model, we have tried numerous other machine learning methods
for both feature preselection and model estimation. However, all these
calculations using the unenhanced images resulted in much lower
discriminative powers than those we were able to achieve with the
contrast-enhanced images. In detail, we tried a total of 9 different
methods for the feature preselection. We used “distance correlation”,
“linear discriminant analysis (LDA)”, “univariate analysis”, “Lasso
regression”, “Ridge regression”, “elastic net”, “random forest”, “bagged
trees” and “naïve Bayes”. The subsequent model estimation was then
6

carried out with a total of 7 different model approaches, namely “linear
discriminant analysis (LDA)”, “Lasso regression”, “Ridge regression”,
“elastic net”, “random forest”, “bagged trees” and “naïve Bayes”, result-
ing in a total number of 63 possible combinations. Our two best combi-
nations were firstly “random forest” for variable preselection with linear
discriminant analysis as model and secondly “bagged trees” for variable
preselection in combination with “random forest” as model. With these
two combinations, the independent test data yielded values for AUC and
accuracy slightly greater than 0.7. However, even these best values are
below the corresponding values obtained with the contrast-enhanced T1-
weighted images. In addition, it must be noted, that although the two
described combinations led to comparatively good results using the in-
dependent test data, the corresponding performance values with the
hold-out samples of the training data were lower. Therefore, a certain
random effect cannot be ruled out here either.

4. Discussion

The diagnosis of glioblastoma is based on histology and several mo-
lecular markers. The appearance and development of neurological
symptoms allow the estimation of the growth dynamics of gliomas [25].

Due to the increased perfusion and higher blood volume of gliomas,
clinically best validated technique on brain tumor growth and response to
treatment is CBVmeasurement derived from DSC-MRI [26]. Radiomics is
ready to contribute to the imaging arsenal. Morphological and textural
signatures derived from the high-throughput extraction of quantitative
MR image metrics at the voxel level can be used by Radiomics techniques
to make an accurate diagnosis and evaluate tumor response [27].

Our analyses show that it is possible to predict development of
pseudoprogression of high-grade gliomas with machine learning algo-
rithms using contrast-enhanced T1-weighted images with comparatively
good discriminatory power before treatment. However, without the use
of a contrast agent, the prediction quality of the tested learning algo-
rithms is significantly reduced using the same T1 sequence. Our models
using MR images without contrast agent yielded a discriminatory power
that was only conditionally higher than that of a random model. The
mean AUC could be increased from 0.651 to 0.819 and the mean accu-
racy from 0.597 to 0.770 by using the contrast agent. It is obvious that the
use of a contrast agent significantly contributes to the discriminatory
power achieved. We verified the increase in discriminatory power using
the DeLong test.



Figure 5. ROC curves (test group) for GBM models with 6 features for the prediction of tumor progress using the contrast-enhanced T1-weighted images (left figure)
and the unenhanced T1-weigted images (right figure).

Table 4. Classification results per group using the unenhanced T1-weighted images, features determined with the contrast-enhanced T1-weighted images. AUC: area
under the receiver operator characteristic curve. Sens.: sensitivity. Spec.: specificity. Acc.: accuracy.

Number of Training data Independent test data

features AUC Sens. Spec. Acc. AUC Sens. Spec. Acc.

1 0.7061 0.6027 0.6914 0.6479 0.6308 0.4458 0.7517 0.5988

2 0.7108 0.6188 0.6802 0.6501 0.6187 0.4033 0.7775 0.5904

3 0.8027 0.6759 0.7418 0.7095 0.5387 0.4267 0.6133 0.5200

4 0.8091 0.6876 0.7508 0.7198 0.5378 0.3742 0.5733 0.4738

5 0.8571 0.7469 0.7976 0.7728 0.5649 0.5875 0.4817 0.5346

6 0.8829 0.7549 0.8043 0.7801 0.6099 0.5825 0.5650 0.5738

7 0.8810 0.7604 0.8041 0.7827 0.5956 0.5942 0.5533 0.5738

8 0.8780 0.7614 0.7908 0.7764 0.6246 0.5833 0.5842 0.5838

9 0.8754 0.7688 0.7898 0.7795 0.6254 0.5875 0.5642 0.5758

10 0.8784 0.7700 0.8037 0.7872 0.5856 0.5392 0.5675 0.5533

11 0.8729 0.7716 0.7869 0.7794 0.6158 0.5450 0.5858 0.5654

12 0.8602 0.7527 0.7806 0.7669 0.5826 0.5025 0.5650 0.5338

13 0.8737 0.7633 0.7982 0.7811 0.5865 0.5300 0.5692 0.5496

14 0.8664 0.7612 0.7988 0.7804 0.5594 0.4575 0.5717 0.5146

15 0.8718 0.7667 0.8051 0.7863 0.5542 0.4475 0.5850 0.5163

O. Mammadov et al. Heliyon 8 (2022) e10023
Jang et al. first developed a machine learning algorithm that showed
acceptable performance in distinguishing between real progress and
pseudoprogression [28]. The T1 contrast-enhanced sequence and various
clinical data, such as molecular characteristics, age, gender, and time
after completion of therapy were selected as inputs to the model. How-
ever, due to the small data set, this model required further validation. In
2020, Jang et al. optimized their previous machine learning model with
more clinical data [29]. Sun et al. also investigated the ability of radio-
mics features on T1 contrast-enhanced images to discriminate true pro-
gression from pseudoprogression using clinical data. Their radiomics
model showed an AUC of 0.72, and a sensitivity of 78,36% [30]. Another
study combined the clinical features and the MGMT promoter methyl-
ation status. Here a radiomics model was built on T1-weighted,
T2-weighted images and apparent diffusion coefficient (ADC) maps
[31] resulting in AUC of 0.80, a sensitivity of 78.2%, specificity of 66.7%,
and an accuracy of 73.7%. Compared to other studies available in the
literature, we included more datasets in order to establish our machine
learning models. Furthermore, we did not rely on any input data outside
the objectively quantifiedMR images. Our study is the first study that can
unequivocally show that contrast agent is beneficial to predict the
response.
7

Although previous studies have shown that gadolinium-based
contrast agents may be deposited in the body, there is still no scientific
consensus on whether gadolinium is dangerous or harmful. Therefore,
relevant guidelines state that no patient should be denied gadolinium if
the clinical indication justifies contrast administration [32]. Our study
shows that even in radiomics, the contrast-enhanced T1w sequence
continues to provide important diagnostic information. Thus, our results
further provide evidence, that the administration of contrast agent in
patients with suspicion of tumor progression is decisive and should not
be omitted [33, 34]. In pediatric patients and patients with impaired
renal function due to rapidly repeated measurements, ASL techniques are
discussed as an alternative [26].

There are some limitations in our study. Firstly, this analysis was
based on a retrospective data set, which has inherent limitations. Sec-
ondly, we used MR images of different vendors and could not account for
differences in scanning technique. Finally, despite our greatest efforts, we
cannot rule out overfitting of our results. For this reason, larger pro-
spective trials are needed for further validation.

In conclusion, our study shows the capabilities of a Radiomics anal-
ysis based on T1 weighted MR images in predicting the occurrence of
pseudoprogression in high-grade gliomas.We observed an added value in



Table 5. Classification results per group using the unenhanced T1-weighted images, features determined with the unenhanced T1-weighted images. AUC: area under the
receiver operator characteristic curve. Sens.: sensitivity. Spec.: specificity. Acc.: accuracy.

Number of Training data Independent test data

features AUC Sens. Spec. Acc. AUC Sens. Spec. Acc.

1 0.7458 0.5898 0.7298 0.6612 0.5524 0.4983 0.6442 0.5713

2 0.8442 0.7429 0.7616 0.7524 0.6100 0.5958 0.5700 0.5829

3 0.8607 0.7665 0.7492 0.7577 0.5458 0.5633 0.4958 0.5296

4 0.8818 0.8004 0.7843 0.7922 0.6319 0.5925 0.6150 0.6038

5 0.9200 0.8349 0.8441 0.8396 0.6387 0.7350 0.5425 0.6388

6 0.9059 0.8369 0.8157 0.8261 0.6505 0.6158 0.5775 0.5967

7 0.9139 0.8557 0.8220 0.8385 0.6300 0.5783 0.5550 0.5667

8 0.9202 0.8706 0.8212 0.8454 0.5605 0.5033 0.5733 0.5383

9 0.9605 0.9253 0.8747 0.8995 0.5644 0.5358 0.5450 0.5404

10 0.9567 0.9200 0.8645 0.8917 0.5609 0.5083 0.5892 0.5488

11 0.9578 0.9147 0.8788 0.8964 0.6421 0.5542 0.6083 0.5813

12 0.9543 0.9127 0.8708 0.8913 0.6372 0.5742 0.6233 0.5988

13 0.9621 0.9220 0.8825 0.9019 0.6177 0.5842 0.6058 0.5950

14 0.9663 0.9276 0.8990 0.9130 0.6205 0.5792 0.6058 0.5925

15 0.9559 0.9145 0.8743 0.8940 0.6111 0.5867 0.6000 0.5933

O. Mammadov et al. Heliyon 8 (2022) e10023
administrating gadolinium-based contrast media for higher diagnostic
accuracy.
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