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Liver ischemia/reperfusion (I/R) injury is a complex and common clinical disease with limited therapeutic options. �e aim of our 
study was to discover the candidate target genes in liver I/R injury and to further elucidate the potential regulatory mechanisms, 
especially the ones involving transcription factors and miRNAs. �e analysis of mouse data set GSE10657 from Gene Expression 
Omnibus database (GEO) revealed 203 differentially expressed genes (DEGs) including 19 transcription factors (TFs). Functional 
and pathway enrichment analyses were conducted to explore their biological functions. We further obtained the targets of TFs and 
miRNAs, to form our TF-mRNA/TF-miRNA-mRNA co-regulatory network. In our network, we found that the important subunits 
of activator protein 1 (AP-1) including JUN, FOS and ATF3, were hub genes in liver I/R injury. AP-1 target genes were activated in 
our mouse models. AP-1 could transcriptionally activate phosphatase and tensin homolog (PTEN) while AP-1-dependent miRNAs 
countered this effect. In conclusion, this study suggested that AP-1, together with AP-1-dependent miRNAs formed a co-regulatory 
network enabling AP-1 target genes to be tightly controlled, which will complete the mechanism of liver ischemia/reperfusion injury 
and provide direction for finding potential therapeutic targets.

1. Introduction

Liver surgery is o�en accompanied by hepatic ischemia/ 
reperfusion, and liver ischemia/reperfusion injury is a common 
pathological process which results in liver dysfunction in the 
early stages a�er transplantation [1, 2]. However, the specific 
mechanism of the occurrence and development of liver 
ischemia/reperfusion is still largely unclear.

�e popularity of genome-wide sequencing, the  promotion 
of chip technology, and the continuous progress of bioinformatic 
analyses in the recent years enable us to construct the regulatory 
network of miRNA and TFs. It provides us a new approach to 
uncover the regulatory mechanisms of liver I/R injury [3]. JUN, 
an important subunit of AP-1 [4], is reported as a key gene in 

the process of liver ischemia/reperfusion [5, 6]. Moreover, we 
identified PTEN as a target gene of AP-1 in our own regulation 
network. PTEN is well known to counter-regulate 
 phosphoinositide 3-kinase (PI3K) activity, which is crucial in 
cell survival and growth [7]. PTEN inhibition has been reported 
to increase I/R survival and reduce injury [8]. Our study 
validated one of the potential regulatory mechanisms suggested 
by our bioinformatic analyses, the AP-1/PTEN and AP-1/
miRNAs/PTEN co-regulatory network in mouse models. We 
found that AP-1, together with AP-1-dependent miRNAs 
formed a co-regulatory network enabling tight control of AP-1 
target genes. �erefore, the core TFs along with their regulatory 
network suggested in our regulatory network may become 
 potential targets for future liver ischemia/reperfusion therapy.
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2. Materials and Methods

2.1. Microarray Data. �e expression microarray data of 
GSE10657 [9] were obtained from Gene Expression Omnibus 
(GEO), which had been background adjusted and normalized. 
GSE10657 included 15-mice (4-5 weeks), and mice were 
divided into five groups, respectively: Sham, Ischemia 30 min 
(Ish_30 min), Ischemia 60 min (Ish_60 min), Ischemia  
90 min (Ish_90 min), and Ischemia 90 min + reperfusion 
60 min (Ish_90 min_rpf). In order to observe the whole 
dynamic process of hepatic ischemia/reperfusion, we paired 
different treatment groups in the dataset according to the 
biological process of ischemia/reperfusion for differential 
expression analysis (Ish_30 min vs. Sham, Ish_60 min vs. 
Ish_30 min, Ish_90 min vs. Ish_60 min, Ish_90 min_rpf vs. 
Ish_90 min, Ish_90 min_rpf vs. Sham).

2.2. Differential Expression Analysis. �e processing of probe-
level data in CEL files was conducted by the affy package in 
� [10]. Background correction was carried out using the 
robust multi-array average (RMA) method, followed by 
quantile normalization and probe summarization [11]. �e 
limma package was applied to identify differentially expressed 
genes (DEGs) between two groups. In this analysis, adjusted 
� value <0.05 and |log2 (fold change, FC)|>1 were used as 
the cutoff criteria. Transcriptional factors were selected from 
DEGs according to the Tfcheckpoint database [12].

2.3. GO & KEGG Enrichment. To study the pathway and 
biological process of these 203 genes, the metascape webserver 
[13] was hired to perform the functional annotation, Gene 
Ontology (GO) enrichment analysis and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway enrichment analysis. 
�e threshold of significant differences was set at an adjusted � 
value ≤0.01 a�er Benjamini correction. �e heatmap � package 
was employed to exhibit the significant enrichment terms. 
�e top 10 enriched items (sorted by Generatio, a proportion 
of enriched gene count to total DEGs) in GO-BP, GO-CC,  
GO-MF, and KEGG pathway were visualized, respectively.

2.4. Construction of AP-1-Subunit-Centered Regulatory 
Network. In order to obtain AP-1 target genes, targets of JUN, 
FOS, and ATF3 were extracted from HARM-ENCODE project 
(http://amp.pharm.mssm.edu/Harmonizome/), respectively. 
To collect genes involved in ischemia/reperfusion injury 
from AP-1 target genes, we gathered candidate genes from 
two sources including identified DEGs from our differential 
analysis and results from an extensive literature search. 
PUBMED search using keywords “(ischemia/reperfusion 
injury) AND genes” revealed 498 genes. �en we searched 
“ischemia/reperfusion injury” in DisGeNet database  
(http://www.disgenet.org/home/) to generate gene set 
associated with ischemia/reperfusion injury. Overlapping 
genes of pubmed and DisGeNet were considered as genes 
highly related to pathology of ischemia/reperfusion injury and 
used as one of the sources to construct our AP-1-subunit-
centered regulatory network (Supplementary material). 
�en we predicted the targets of miRNAs that are AP-1 
target genes using TargetScan (release 7.2: March 2018) [14]. 

A�er deciphering TF-mRNA/miRNA and miRNA–mRNA 
regulatory relations, AP-1-subunit-centered regulatory 
network was constructed. Cytoscape (version 3.4.0) was 
used to visualize our regulation network. CentiScaPe app 
[15], a plug-in of Cytoscape, was used to calculate the degree 
distribution of network.

2.5. Liver I/R Modeling and GPT Assay. Male C57/BL6 mice 
(6 weeks old) were purchased from the Chinese Academy 
of Sciences. All experimental animals did not carry special 
pathogenic factors, and the experimental animal ethics were 
emphasized throughout the experiment. During the entire 
operation of liver ischemia/reperfusion, we adopted a nonlethal 
method of blocking the branches of the hepatic portal vein as 
previously described [16, 17], each group contained 6 mice. 
Group of sham animals underwent the following operations: 
anesthesia, laparotomy, and exposure. GPT assay was carried 
out using the ALT/GPT kit (nuctech, China) according to 
standard protocol.

2.6. Western Blotting Assay. Liver tissue from mice subjected 
to liver ischemia/reperfusion was homogenized by a 
homogenizer, and the protein was extracted by RIPA buffer 
mixed with phenylmethylsulfonyl fluoride (NCM Biotech, 
China) and protease inhibitor cocktail (Sigma, USA). Western 
blotting assay was strictly conducted in accordance with 
standard protocol. �e protein concentration of each sample 
was determined by BCA Kit (Pierce, USA). �e 10% SDS-
PAGE gel was used to separate the protein and PVDF (Tanon, 
China) was used to transfer the protein. �ose nonspecific 
binding sites were sealed by skim milk. Blots were probed 
with Anti-PTEN (No. 9188, Cell Signaling Technology, USA), 
Anti-p-c-JUN (No. 3270, Cell Signaling Technology, USA), 
Anti-GAPDH (No. 5174, Cell Signaling Technology, USA).

2.7. RNA Isolation and Quantitative Real-Time PCR. �e 
 entire RNA extraction and quantitative real-time PCR process 
was strictly performed according to the previous study [18]. 
Briefly, total RNA was extracted from liver tissue using  TRIzol 
 (Invitrogen, USA). �e quality and concentration of total RNA 
was detected by the spectrophotometer (Bio-Rad, USA). �e 
cDNA was then synthesized using the kit of ReverTra Ace 
qPCR RT (TOYOBO, Japan). Finally, quantitative real-time 
PCR was performed using SYBR Green (TOYOBO, Japan). 
�-ACTIN was used as an internal reference. Each gene was 
tested for at least three independent experiments. �e primer 
sequences we used were as follows: PTEN: (forward  primer) 
5’-TGGATTCGACTTAGACTTGACC-3’ and (reverse  primer) 
 5’-TCACTTAGCCATTGGTCAAGAT-3’, c-JUN: (forward 
primer) 5’-GGGAGCATTTGGAGAGTCCC-3’ and (reverse 
primer) 5’-TTTGCAAAAGTTCGCTCCCG-3’, ATF3: (forward 
primer) 5’-GTCACCAAGTCTGAGGCGG-3’ and  (reverse 
primer) 5’-GTTTCGACACTTGGCAGCAG-3’, MMP9: (for-
ward primer) 5’-GGAGCACGGCAACGGAGAAG-3’ and 
(reverse primer) 5’-CCTGGTCATAGTTGGCTGTGGTG-3’.

In order to isolate the miRNA, we used the miRNA 
Extractor (QIAGEN, Germany) to obtain miRNA from the 
liver tissue. �e quality and concentration was also detected 
by the spectrophotometer (Bio-Rad, USA). Kit of miScript II 
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RT (QIAGEN, Germany) was used to synthesize cDNA 
according to the instruction. �e detection of miRNA expres-
sion was carried out using miRNA Quantitation PCR Kit 
(QIAGEN, Germany). Endogenous control of miRNA was U6. 
�e primers for target miRNAs were purchased from Sangon 
Biotech (China).

2.8. Cell Culture, Hypoxic Reoxygenation Modeling and 
Reagents. Mouse hepatic parenchymal cell AML12 was 
purchased from ATCC. AML12 was cultured in DMEM/F12 
with 10% fetal bovine serum (FBS; Gibco, USA) and 1% ITS 
(Insulin, Transferrin, Selenium, Cyagen, USA). AML12 cell 
were maintained at 37°C under stable 5% CO2 in a humidified 
chamber.

For hypoxia and reoxygenation modeling, AML12 was 
cultured in hypoxic incubator (94% N 2.5% CO2 and 1% O2) 
for 90 min and then stimulated with 100 ng/ml LPS  
(Sigma-Aldrich, USA) and 20 μM H2O2 in normal 
incubator.

2.9. Plasmid Constructs and Luciferase Reporter Assay. pAP1-
TA-luc reporter gene plasmid was purchased from Beyotime 
Biotechnology (China). PTEN promoter-luc reporter gene 
plasmid and Luc-PTEN 3’UTR reporter gene plasmid were 
synthesized by Genechem (China). Luciferase activities 
in different treatment groups were measured through the  
Dual-Luciferase Reporter Assay System (Promega, USA) 
48 h a�er transfection according to the manufacturer’s 
instructions. Renilla luciferase served as an internal reference.

2.10. Statistics. Data were expressed as mean ± standard error 
of mean (SEM). Statistical significance between two groups 
was determined by unpaired t-tests and between multiple 
groups was determined by ANOVA, (∗� < 0.05, ∗∗� < 0.01, 
∗∗∗� < 0.001 and ∗∗∗∗� < 0.0001). Data analyses mainly used 
SPSS13.0 (SPSS Inc. Chicago, USA) and GraphPad Prism 6.0 
so�ware (GraphPad, Inc., San Diego, CA, USA).

3. Results

3.1. Differentially Expressed Genes (DEGs) in Liver I/R 
Based on GEO Database. Series matrix files of GSE10657 
were obtained from GEO. According to the biological pro-
cess of ischemia/ reperfusion injury, we identified 33 DEGs 
in Ish_30 min vs. Sham, of which 2 were up-regulated, 31 
were down- regulated (Figure 1(a) and Supplementary ma-
terial), and there was no DEG in Ish_60 min vs. Ish_30 min 
or in Ish_90 min vs. Ish_60 min. Differential analysis of 
Ish_90 min and Ish_90 min_rpf  revealed 51 DEGs, of which 
38 were up- regulated, 13 were down-regulated (Figure 1(b) 
and  Supplementary material). Finally, among Ish_90 min_rpf 
and sham, we confirmed 182 DEGs, including 73 up- regulated 
genes and 108 down-regulated genes (Figure 1(c) and Supple-
mentary material). �e DEGs of these groups were combined 
together. A total of 203 differential genes were obtained, 82 
were up-regulated and 127 were down-regulated, of which 
6 genes (Socs3 Fosl2 Junb Gm20186 Id2 Cxcl1) were down- 
regulated during the ischemic phase and up-regulated during 

the reperfusion phase. Notably, among these 203 differentially 
expressed genes (DEGs), there are 19 TFs (Table 1).

3.2. Functional Analysis of the DEGs. A�er identifying the 
DEGs, we conducted functional enrichment analysis of these 
203 DEGs (Figure 1(d)). As shown in Figure 1(d), KEGG 
pathway analysis revealed that mitogen-activated protein 
kinase (MAPK) signaling pathway was a distinctly enriched 
pathway. Moreover, GO annotation showed DEGs were 
significantly enriched in biological process of inflammatory 
response, regulation of response to external stimulus, and 
positive regulation of cell death; cellular components of GO 
showed that DEGs were enriched in collagen trimer and 
transcription factor AP-1 complex (Figure 1(d)).

3.3. AP-1-Subunit-Centered Regulatory Network. As we all 
know, hub nodes play critical roles in biological networks. 
Our bioinformatic analyses identified JUN and FOS, which 
are subunits of AP-1, as differentially expressed TFs a�er 
liver ischemia/reperfusion injury. JUN and FOS are targets of 
MAPK pathway [19]. Furthermore, KEGG pathway revealed 
MAPK signaling pathway as one of the most significantly 
enriched pathways (Figure 1(d)), suggesting that AP-1 
played an important regulatory role in the process of liver 
I/R. Based on these results, we decided to construct the AP-
1-subunit-centered regulatory network. We incorporated 
experimentally verified AP-1 target genes from HARM-
ENCODE project. Considering that liver I/R is a dynamic 

Table 1:  Identified differentially expressed TFs. (Comparison: 1: 
Ish_30 min vs. Sham, 2: Ish_60 min vs. Ish_30 min,3: Ish_90 min vs. 
Ish_60 min, 4: Ish_90 min_rpf vs. Ish_90 min, 5: Ish_90 min_rpf vs. 
Sham).

Gene symbol Gene name Comparison
EGR3 Early growth response 3 4,5
HBP1 HMG-box transcription factor 1 5

ZBTB16 Zinc finger and BTB domain 
containing 16 1,5

IER2 Immediate early response 2 5
CREBBP CREB binding protein 5
ATF3 Activating transcription factor 3 4,5

NR4A1 Nuclear receptor subfamily 4, 
group A, member 1 4,5

JUNB Jun B proto-oncogene 1,4
NFKBIZ NFKB inhibitor, zeta 4,5
FOS FBJ osteosarcoma oncogene 5
KLF6 Kruppel-like factor 6 4,5
JUN Jun proto-oncogene 4,5
FOSB FBJ osteosarcoma oncogene B 5

BTG2 B cell translocation gene 2, 
 anti-proliferative 5

TBX3 T-box 3 5
FOSL2 Fos-like antigen 2 1,4
EGR2 Early growth response 2 4,5
KLF13 Kruppel-like factor 13 5

DBP D site of albumin promoter 
 (albumin D-box) binding protein 5
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Figure 1:  Identified DEGs in GSE10657 dataset and gene function enrichment analysis between different comparisons. (a) Hierarchical 
clustering heatmap of DEGs between Ish_30 min vs. Sham. (b) Heatmap of Ish_90 min_rpf vs. Ish_90 min. (c) Heatmap of Ish_90 min_rpf vs. 
Sham. Orange represents that the expression of genes is relatively up-regulated and blue represents that the expression of genes is relatively 
down-regulated. (d) �e top 10 enrichment scores in KEGG pathway and gene ontology (GO) enrichment analysis. �e horizontal axis shows 
the gene-ratio of the selected genes and the vertical axis represents the enriched terms. �e bigger the plots are, the more genes are enriched 
in this term.
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with our heatmap (Figures 1(b) and 1(c)), mRNA levels of 
AP-1 subunits (JUN and ATF3) were evidently elevated in I/R 
groups (Figures 4(b) and 4(c)).  

In order to better verify the results of our network, we 
performed qPCR to detect the mRNA levels of several AP-1 
target genes that have been reported to have biological signif-
icance in I/R injury, including MMP9 and PTEN [20–22]. As 
predicted by our bioinformatic network, MMP9 was signifi-
cantly up- regulated in our I/R model (Figure 4(e)). However, 
one of the AP-1 target genes, PTEN were down-regulated in 
the early stage of liver I/R injury (Figure 4(d)). Although 
PTEN was predicted as a target gene of AP-1 and considered 
as one of genes highly related to pathology of ischemia/rep-
erfusion injury by our literature search, our differential anal-
ysis failed to identify PTEN as a DEG (Figure 2(b)). We 
hypothesized that in addition to being the target gene of AP-1, 
PTEN is co-regulated by miRNAs to account for this phenom-
enon. �erefore, we predicted the targets of miRNAs that are 
transcriptionally activated by AP-1 using TargetScan (release 
7.2: March 2018). We focused on the 49 candidate genes that 
our differential analysis failed to identify as DEGs like PTEN 
(Figure 2(b)) and reconstructed our network by adding 
miRNA–mRNA regulatory relations (Figure 2(c) and 
Supplementary material). �e degree distribution of network 

and acute process, DEGs retrieved from samples of set time 
point may not fully represent this complex biological process 
and may omit genes of important biological functions. To 
overcome this issue, in addition to DEGs from our analysis, 
we gathered candidate genes from an extensive literature 
search to construct the regulatory network (Figure 2(a) and 
Supplementary material).

3.4. AP-1 and AP-1 Target Genes Were Activated during the Liver 
I/R Injury. We next performed a nonlethal segmental ischemia/
reperfusion model on the mice, and the different treatment 
groups were given ischemia for 90 min, reperfusion for 1 hour, 
6 hours, and 12 hours. Serum glutamate pyruvate transaminase 
(GPT) levels were significantly elevated 6 hours a�er modeling 
(Figure 3(a)). Histological damage and inflammatory response 
in liver tissue could be observed about 6 hours a�er reperfusion 
by hematoxylin and eosin (HE) staining (Figure 3(b)). Our 
heatmap of Ish_90 min_rpf vs. Ish_90 min and Ish_90 min_rpf 
vs. Sham showed that JUN, an important subunit of AP-1, 
was one of the hub genes in our regulation network of the 
liver I/R injury. Activation of AP-1 requires phosphorylation 
of AP-1 subunits [4]. Phosphorylation of c-JUN was detected 
a�er reperfusion (Figure 4(a)), which suggested that AP-1 was 
activated at the early stage of mice liver I/R injury. Consistent 

100×

200×

SHAM 1h 6h 12h

Figure 3: Mice liver ischemia/reperfusion (I/R) induce liver injury. (a) GPT levels of mice liver I/R in sham group, reperfusion 1 h, reperfusion 
6 h, reperfusion 12 h. (b) Hematoxylin and eosin stain (HE) analysis of mice liver. *� < 0.05, **� < 0.01, ***� < 0.001.
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cells were cultured in a hypoxic incubator for 90 min and 
next stimulated with LPS and H2O2 for 15 min, 1 h and 5 h 
in the normal oxygen environment. Luciferase reporter assay 
revealed that AP-1 was activated as early as 15 minutes. �e 
activation of AP-1 was hindered by Jun N-terminal kinase 
(JNK) inhibitor SP600125 (Figure 5(a)). We constructed PTEN 
promoter luciferase reporter plasmid containing 7 putative JUN 
binding sites (Table 2), and PTEN promoter luciferase reporter 
assay showed that PTEN could be transcriptionally activated 
during cellular hypoxia/reoxygenation. �is activation was 
significantly inhibited by SP600125 (Figure 5(b)). Considering 

was calculated to evaluate the importance of a gene in the 
regulatory network. PTEN has a degree of 31 while MMP9 
has a degree of 1 in our regulatory network (Supplementary 
 material)  suggesting PTEN was likely to be regulated in a 
much more complex manner.

3.5. PTEN Was Transcriptionally Activated by AP-1 in Cellular 
Hypoxia/Reoxygenation Model. To investigate the regulatory 
mechanism of PTEN in liver I/R injury, we simulated the 
physiological process of liver I/R injury in vitro by employing 
a cellular hypoxia/reoxygenation model in which AML12 
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Figure 4: Activation of AP-1 and AP-1 target genes in the process of liver ischemia/reperfusion (I/R) injury. (a) PTEN, p-c-JUN, GAPDH 
expression were examined by a western blot assay. (b, c) mRNA levels of AP-1 subunits (JUN and ATF3). (d, e) AP-1 target genes, including 
PTEN, MMP9. *�< 0.05, **� < 0.01, ***� < 0.001 and ****� < 0.0001.
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Figure 5: PTEN was transcriptionally activated by AP-1 while inhibited by AP-1-dependent miRNAs in cellular hypoxia/reoxygenation 
model. (a) Results of AP-1 reporter gene luciferase assay. (b) Results of PTEN promoter luciferase reporter assay. (c) Results of the luciferase 
reporter assay of 3’UTR of PTEN. Cellular hypoxia/reoxygenation model was used in luciferase reporter assays. (d) miR-212-3p, miR-22-3p, 
miR-29a-3p, miR-92a-3p expression levels in mice liver I/R sample were examined by qPCR. SP600125 is a Jun N-terminal kinase (JNK) 
inhibitor. *� < 0.05, **� < 0.01, ***� < 0.001, ****� < 0.0001.
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several AP-1-dependent miRNAs that were predicted to target 
PTEN (miR-212-3p, miR-92a-3p, miR-29a-3p, and miR-
22-3p), which were also predicted to be the target genes of 
AP-1 in our network. Next, we verified their expression levels 
in liver I/R tissues by qPCR. �e expression levels of miR-
212-3p, miR-92a-3p, miR-29a-3p, and miR-22-3p were 
 markedly altered in the early stage of liver I/R injury  
(Figure 5(d)). �ese results indicated that AP-1-dependent 
miRNAs that were predicted to target PTEN were altered in 
liver I/R injury and possibly played an important role in 
 regulating PTEN  expression at the post-transcriptional level 
(Figure 6).

4. Discussion

Our study aimed to construct the interaction network of 
miRNA and TF in mice liver I/R model, which could provide 
new targets and regulatory mechanisms for further 
experiment and clinical therapy. When we used high-
throughput data to find the hub genes in biological processes, 
the expression of some key genes o�en fluctuate so that they 
cannot be captured at specific sampling points. �erefore, 
identifying key genes only by high-throughput data may 

AP-1 is a major target of JNK signaling pathway [4], these 
findings suggested that PTEN was transcriptionally activated 
by AP-1 in hypoxia/reoxygenation model in vitro.  

3.6. AP-1-Dependent miRNAs Target 3’UTR of PTEN in Cellular 
Hypoxia/Reoxygenation Model. To investigate whether 
miRNA is involved in the regulation of AP-1/PTEN axis, 
we constructed the specific luciferase reporter gene plasmid 
containing 3’UTR of PTEN. To best mimic the regulation 
of PTEN, we employed SV40 promoter, which can also be 
activated by AP-1, in our luciferase reporter gene plasmid. 
As expected, we observed elevated luciferase activity in the 
control group a�er hypoxia/reoxygenation modeling, while 
luciferase activity in PTEN 3’UTR group was significantly 
decreased at 15 min a�er reoxygenation compared with 
control group (Figure 5(c)). �e decrease of luciferase activity 
in PTEN 3’UTR group was significantly reversed at 5 h a�er 
reoxygenation when treated with JNK inhibitor (Figure 5(c)). 
Taken together, these lines  evidence suggested that AP-1-
dependent miRNAs targeted 3’UTR of PTEN in vitro.

According to the results obtained above, we speculated 
that AP-1-dependent miRNAs can target 3’UTR of PTEN 
during I/R injury. To test our hypothesis in vivo, we selected 

Table 2: PTEN promoter luciferase reporter plasmid containing 7 putative JUN (Model ID: MA0488.1) binding sites.

Binding sites Score Relative score Start End Strand Predicted site sequence
1 9.924 0.896 41 53 1 GAGTTGATGTCAT
2 1.799 0.807 44 56 −1 AAAATGACATCAA
3 2.213 0.812 313 325 −1 CCGATGTTGCAAC
4 1.799 0.807 392 404 −1 TTAATGAGGTGAA
5 6.175 0.855 880 892 −1 AGGAGGAGGTCAC
6 4.463 0.836 1412 1424 1 CCGATGAGGTGAC
7 3.255 0.823 1753 1765 1 GCGCTGAGGCCAA

I/R injury

MAPK

Nucleus AP-1
FOS c-JUN

ATF3
p p p

AP-1-dependent miRNA:
miRNA-212-3 p, miRNA-92 a-3 p
miRNA-29 a-3 p

In�amation,
Cell survival

AP-1-dependent miRNA PTEN

PTEN PI3K

Figure 6: Model of AP-1/ AP-1-dependent miRNAs/PTEN regulation mechanism. In the hepatic ischemia/reperfusion, AP-1 is activated, 
which activates downstream PTEN. At the same time, AP-1-dependent miRNAs are also activated. �ese miRNAs have targeted PTEN and 
negatively regulate PTEN. In this way, AP-1 forms a very precise regulation of PTEN during hepatic ischemia/reperfusion.
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5. Conclusions

Collectively, our study suggested that AP-1, together with 
AP-1-dependent miRNAs formed a co-regulatory network 
enabling AP-1 target genes to be tightly controlled, which will 
complete the mechanism of liver ischemia/reperfusion injury 
and provide direction for finding potential therapeutic 
targets.
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