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Abstract
Background: In silico techniques are highly suited for both the discovery of new and development
of existing vaccines. Enterohemorrhagic Escherichia coli O157:H7 (EHEC) exhibits a pattern of
localized adherence to host cells, with the formation of microcolonies, and induces a specific
histopathological lesion (attaching/effacing). The genes encoding the products responsible for this
phenotype are clustered on a 35-kb pathogenicity island. Among these proteins, Intimin, Tir, and
EspA, which are expressed by attaching-effacing genes, are responsible for the attachment to
epithelial cell that leads to lesions.

Results: We designed synthetic genes encoding the carboxy-terminal fragment of Intimin, the
middle region of Tir and the carboxy-terminal part of EspA. These multi genes were synthesized
with codon optimization for a plant host and were fused together by the application of four repeats
of five hydrophobic amino acids as linkers. The structure of the synthetic construct gene, its mRNA
and deduced protein and their stabilities were analyzed by bioinformatic software. Furthermore,
the immunogenicity of this multimeric recombinant protein consisting of three different domains
was predicted.

Conclusion: a structural model for a chimeric gene from LEE antigenic determinants of EHEC is
presented. It may define accessibility, solubility and immunogenecity.

Background
Enterohemorrhagic Escherichia coli O157:H7 (EHEC) is an
important human pathogen [1], causing diarrhea and in
some cases hemolytic-uremic syndrome (HUS), leading
to kidney failure and even death [2]. EHEC produces sev-
eral virulence factors, enabling it to colonize the large
bowel and cause disease [3].

Cattle are most frequently identified as the primary source
of bacteria, so reduction in E. coli O157:H7 prevalence in
cattle by vaccination represents an attractive strategy for
reducing the incidence of human disease [4]. An experi-
mental vaccine was recently shown to significantly reduce
shedding of the organism under natural exposure condi-
tions [5].
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These pathogenic bacteria contain a chromosomal island
known as the Locus of Enterocyte Effacement (LEE,
35KD), containing genes critical for forming the attach-
ment and effacement (A/E) lesion. This locus can be
divided into three functional regions: the first one encod-
ing a type III secretion system; the second containing the
genes eae and tir; and the third consisting of espD, espB,
and espA [6,7].

Intimin, a key colonization factor for EHEC O157:H7 acts
as an outer membrane adhesion protein which is encoded
by the gene eae. This protein mediates bacterial attach-
ment through its C-terminal region to enterocytes by
binding to Tir (Translocated Intimin Receptor) [8,9].

Tir, a 78-kDa protein, is secreted from EHEC and is effi-
ciently delivered into the host cell [10,11].

The type III secretion system is involved in the secretion of
different proteins including EspA, EspB, EspD, and Tir.
EspA forms a filamentous structure on the bacterial sur-
face as a bridge to the host cell surface. It delivers EspB,
EspD, and Tir directly into the host cell. EspB is delivered
primarily into the host cell membrane where it becomes
an integral membrane protein and, along with EspD,
forms a pore structure through which other bacterial effec-
tors, such as Tir, enter the host cell [6,12]. Additionally,
studies on rabbit models indicate that pedestal formation
is mediated by the same proteins (Intimin, EspA, EspB,
EspD and Tir), and translocated Tir can bind to intimin
via amino acids 258 to 361 [3,13].

The Tir-Intimin interaction causes attachment of EHEC to
the intestinal cell surface and triggers actin cytoskeletal
rearrangements, resulting in pedestal formation. Recent
evidence shows that active immunization of mice with
recombinant Intimin from Citrobacter rodentium as a
mouse model pathogen can prevent colonization of bac-
teria in the digestive tracts of animals [14].

These determinants are potent mucosal immunogens and
induce humoral and mucosal responses (IgA instead of
IgG) following oral administration [15,16]. Among differ-
ent systems for oral administration, transgenic plants are
becoming more attractive because of their low cost, easy
scale-up of production, natural storage organs (tubers and
seeds), and established practices for efficient harvesting,
storing, and processing [17,18]. Moreover, a number of
proteins such as recombinant antibodies and recom-
binant subunit vaccines have been expressed successfully
in transgenic plants [19].

In this study we designed a new structural model contain-
ing three putative antigenic determinants of EspA, Intimin
and Tir, fused together by hydrophobic linkers. Addition

of the regulatory sequences Kozak and ER-retention signal
at the 5' and 3' ends respectively, and codon optimization
of this chimeric gene for expression in plants, were used to
improve the efficiency of transcription and translation
[20-22]. Finally, a novel in silico approach was used to
analyze the structure of the designed chimeric protein.

Results
Design and construction of chimeric gene
The 282 amino acids from the carboxy terminus of
Intimin have been reported to be involved in binding to
its receptor Tir [23,24]. The region of Tir involved in the
interaction with intimin has also been mapped (residues
258 to 361, designated Tir 103) [25]. For the third frag-
ment, a truncated form of espA (lacking 36 amino acids
from the N-terminal of the protein, designated EspA 120)
was selected. This part of EspA120 is exposed on the bac-
terial surface [6].

Upon sequence comparison by ClustalW, the C-terminals
of intimin (282 amino acids) and EspA (120 amino acids)
and the middle part of Tir (103 amino acids) showed high
degree of conservation among different strains of E. coli
O157:H7 (Data not shown).

These three parts were selected for designing a synthetic
construct. In order to separate the different domains, link-
ers consisting of EAAAK repeats and expected to form a
monomeric hydrophobic α-helix were designed. It has
been shown that the salt bridge Glu--Lys+ between
repeated Ala can stabilize helix formation [26]. Four
repeated EAAAK sequences were introduced between dif-
ferent domains for more flexibility and efficient separa-
tion. The Kozak sequence [27] was added before the start
codon in order to ensure high and accurate expression of
mRNA in a eukaryotic host. For efficient accumulation of
the recombinant protein in Endoplasmic Reticulum (ER),
the sequence KDEL was added at the end of the synthetic
construct. Arrangements of fragment junctions and linker
sites are shown in Figure 1.

Bioinformatic analysis of the wild type and optimized 
synthetic gene
A synthetic sequence encoding the chimeric gene was
designed using plant codon bias. To optimize the syn-
thetic gene, negatively cis acting motifs and repeated
sequences were avoided. Both the wild type and the syn-
thetic chimera were analyzed for their codon bias (Figure
2A) and GC content (Figure 2B),

The overall GC content was reduced from 41.59 to
40.96%, which should increase the overall stability of
mRNA from the synthetic gene. Moreover, there was no
sequence stretch within the gene showing an average GC
content below 40%.
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Schematic model which shows the construction of EspA 120, Intimin 282 and Tir 103, bound together by the linkers for expression in plants; these fragments were selected on the basis of the common sequence found in different strains of E. coli O157 H7Figure 1
Schematic model which shows the construction of EspA 120, Intimin 282 and Tir 103, bound together by the 
linkers for expression in plants; these fragments were selected on the basis of the common sequence found in 
different strains of E. coli O157 H7.

A: Codon usage analysis of wild type and optimized gene for expression in plantsFigure 2
A: Codon usage analysis of wild type and optimized gene for expression in plants. The value of 100 is set for the 
codon with the highest usage frequency for a given amino acid in the desired expression into plants. This procedure allows us 
to compare the adaptiveness of different codons relative to each other (relative adaptiveness). Plots represent the relative adap-
tiveness of a given codon at the indicated codon position. B: GC analysis of wild type and optimized chimeric gene. Plots repre-
sent the average GC content, before and after optimization.
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The optimized gene showed a codon bias for plants and
contained no rarely used codon. This is also reflected by
the codon adaptation index (CAI), which is a measure-
ment of the relative adaptiveness of the codon usage of a
gene compared with the codon usage of highly expressed
genes. The chimeric gene showed a CAI of 0.98, compared
to that of the wild type gene, which was only 0.76 [28].

Within the synthetic construct, the splice sites, polyade-
nylation signal, instability elements, and all the cis-acting
sites that may have a negative influence on the expression
rate were removed (Table 1). Furthermore, the necessary
restriction enzyme sites (XbaI and SacI) were introduced
at the ends of the sequence for cloning purpose.

mRNA structure prediction
A genetic algorithm-based RNA secondary structure pre-
diction was combined with comparative sequence analy-
sis to determine the potential folding of the chimeric
gene. The 5' terminus of the gene was folded in the way
typical of all bacterial gene structures. The minimum free

energy for secondary structures formed by RNA molecules
was also predicted. All 34 structural elements obtained in
this analysis revealed folding of the RNA construct. The
data showed the mRNA was stable enough for efficient
translation in the new host (Data not shown) [29].

Protein secondary structure prediction
The secondary structure of the chimeric protein was pre-
dicted by online software. Three prediction methods were
compared for evaluating the structure of this protein. The
results showed that helix structures lie in the regions of aa
129 to 148 and aa 431 to 450, which are related to the
hydrophobic amino acids inserted between different
domains (Figure 3) [30,31].

Tertiary structural prediction for the chimeric protein
Comparative and ab initio modeling of the synthetic
sequence was exploited to produce 3D models of the chi-
meric protein. Two hundred thirty three-dimensional
models were generated for this chimeric protein. The
models were uploaded to the server to draw the tertiary
structural illustrations with Swiss-PdbViewer and Rasmol
software in order to determine the final structure of the
protein. Furthermore, SCRATCH servers http://
www.igb.uci.edu/ developed by California University
were used for protein structure prediction by PSI-BLAST
and neural networks. There were two α-helices and several
β-turns, which were consistent with the results of second-
ary structure analyses. The results of tertiary structure pre-
diction showed the formation of three separate domains
of the chimeric protein (Figure 4) [32,33].

Evaluation of model stability
The profile of energy minimization was calculated by
spdbv (Swiss-PdbViewer) (-1391.230 Kcal/mol) indicat-
ing that the recombinant protein had acceptable stability
compared to that of original structure of each domain.
Additionally, the data generated by a Ramachandran plot
confirmed the structural stability of the protein (Figure 5).

Solvent accessibility prediction
The solvent accessibility distributions were characterized
using the major hydrophobic and polarity properties of
residual patterns. These patterns showed that the mean
residue accessible surface area (ASA) gave a high solvent
accessibility value, approximately fifty percent (Data not
shown) [34].

Prediction of B-cell epitopes
Different factors such as hydrophilicity, plasticity, exterior
accessibility, antigenicity and secondary structure were
used to predict the chimeric protein epitopes. The
epitopes located on the surface of the protein could inter-
act easily with antibodies, and they were generally flexi-
ble. Bcepred software was used to determine the

Table 1: Analysis of cis-acting elements

Splice site Original Optimized

GGTAAG 2 0

GGTGAT 4 0

GTAAAA 1 0

GTAAGT 2 0

GTACGT 0 0

Poly A

AATAAA 1 0

AATGAA 0 0

AATGGA 0 0

TATAAA 2 0

AATAAT 3 0

AAAAAAA 1 0

Poly T

TTTTTT 1 0

Destabilizing element

ATTTA 3 0
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continuous B cell epitope based on single characters
including hydrophilicity, antigenicity, flexibility, accessi-
bility, polarity and exposed surface (Table 2). As shown in
Table 2, linkers between different domains (aa 129 to 148
and aa 431 to 450) contained no epitope sites [35-37].
Furthermore, the conformational epitopes for B cells were
predicted by the Discotope server (Table 3) [38].

Discussion
Many bacterial pathogens infect or invade their hosts via
mucosal surfaces. This process is initiated by the attach-
ment of the bacteria to the cell membrane via specific
receptors. Enterohemorrhagic E. coli is a good model and
has been well studied in this context. In this bacterium,
the antigens Intimin, EspA, and Tir are required for attach-
ment to the intestinal mucosa [39]. If the function of these
receptors was impaired, the bacterium could not attach to
the host cell surface and the disease would be suppressed.

This impairment is related to the production of immu-
noglobulin class A (IgA), which is the dominant antibody
on the mucosal surface [2].

Therefore, mucosal immunization especially via the oral
route is an attractive strategy for inducing protective
immunity against mucosal pathogens [40]. Several vehi-
cles (Polymers, Alginate, Polyphosphazenes and other
biodegradable polymers, Immunostimulating complexes
(ISCOM), Liposomes) [41] have been used for delivering
antigen to the target tissue. The capacity of plants for pro-
ducing vaccines which could induce mucosal immunity is
a great advantage. Plant cells act as a natural microencap-
sulation system to protect the vaccine antigens from being
degraded in the upper digestive tract before they can reach
the gut-associated lymphoid tissue (GALT) [18]. Studies
on B subunit labile toxin (LTB) suggest that plant-based
oral vaccines can significantly boost mucosal immune
responses that have been primed by parenteralinjection
[42].

One the most important problems in transgenic plants is
low level production of recombinant immunogenic pro-
tein. To solve this problem, different strategies such as
strong promoter, organelle targeting and organelle trans-
formation have been used [17]. Furthermore, synthetic
genes with plant codon optimization have been used to
mimic highly expressed plant genes. The effective applica-
tions of synthetic genes in plants have been proven by
other researchers [16].

Two types of vaccines are available against E. coli
O157:H7: one is a genetically engineered vaccine tested
on a small group of adult volunteers. It appears safe and
stimulates the production of antibodies against the poten-
tially fatal pathogen [43]. The other is Econiche (made

Ab initio and comparative modeling was used to predict the tertiary structure of the chimeric protein, EspA-Intimin-TirFigure 4
Ab initio and comparative modeling was used to pre-
dict the tertiary structure of the chimeric protein, 
EspA-Intimin-Tir. The result was viewed by Rasmol soft-
ware.

Analysis of chimeric EspA-Intimin-Tir protein secondary structureFigure 3
Analysis of chimeric EspA-Intimin-Tir protein secondary structure.
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from an extract of lysed bacteria containing type III secre-
tion proteins) for vaccination of healthy cattle as an aid in
reducing shedding of Escherichia coli O157: H [44]. Both
of these vaccines are high risk and are insufficiently safe
and for this reason we attempted to design multi compo-
nent antigens which can create protection and prevent
colonization. This construct should contain essential anti-
genic factors of E. coli O157:H7 that are exposed com-
pletely.

On the basis of knowledge of molecular modeling and
immuno-informatics, a novel approach was employed to
identify a set of peptides that could be used as a vaccine

either in natural or in synthetic form. This approach has
been extended to the entire proteomes of other microor-
ganisms such as T-cell epitopes of secretory proteins of
Mycobacterium tuberculosis [45,46], Tertiary Structure of
Mycobacterium leprae Hsp65 Protein [47], T-cell antigen of
Chlamydia [48], tandem repeat antigens from Leishmania
donovani [49], and Envelope Glycoprotein of Japanese
Encephalitis Virus (JEV) [50] to identify new sets of poten-
tially antigenic proteins.

Here we designed new constructs of EHEC antigens
including EspA, Intimin and Tir that contained essential
determinants for bacterial attachment and effacement.

(A) Evaluation of model stability based on a Ramachandran plot and (B) energy minimizationFigure 5
(A) Evaluation of model stability based on a Ramachandran plot and (B) energy minimization.

Table 2: Epitopes predicted in chimeric protein by different parameters based on Bcepred software

Prediction parameters Epitope positions*

Hydrophilicity 1-14, 25-38, 47-55, 108-115, 128-144, 160-166, 202-219, 222-230, 232-242, 262-268, 283-291, 301-309, 319-329, 
392-404, 448-475, 482-490, 512-526, 528-547, 430-446.

Flexibility 4-10, 25-35, 43-51, 104-113, 199-214, 217-226, 279-287, 307-314, 316-325, 389-403, 447-453, 480-485, 539-545.

Accessibility 2-18, 27-42, 45-55, 81-87, 95-101, 113-120, 128-144, 147-155, 157-166,169-177, 179-191, 201-217, 250-259, 276-282, 
289-298, 319-331, 340-349, 374-384, 391-401, 430-463, 467-493, 510-551.

Exposed surface 28-42, 251-259, 340-346, 392-398, 450-457, 472-479, 482-490, 520-527, 530-550.

Polarity 32-39, 128-144, 157-164, 249-259, 430-446, 473-480, 510-526, 533-552.

Antigenic propensity 38-44, 112-119, 174-180, 312-319, 352-360, 363-370, 413-419, 498-508.

* Number shows position of amino acids.
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Theoretically, the DNA fragment consisted of these three
putative antigens and could be synthesized as a unique
construct optimally suited for expression in a plant sys-
tem. Several factors which can affect the expression of for-
eign genes in plant systems such as messenger RNA
instability [51], premature polyadenylation [52], abnor-
mal splicing [53], and improper codon usage have been
reported [54]. In order to increase the mRNA stability,
DNA motifs that might contribute to mRNA instability in
plants, such as the ATTTA sequence and the potential
polyadenylation signal sequence AATAAA, were elimi-
nated from the synthetic gene (for detail see Table 1). The
synthetic DNA fragment which encoded the mature chi-
meric gene was constructed based on the codon usage of
highly expressed nuclear-encoded genes of tobacco (Nico-
tiana tobaccum L.) as a model, and canola (Brassica napus
L.) as the final target plant [55].

The efficiency of heterologous protein production can be
diminished by biased codon usage. Approaches normally
used to overcome this problem include targeted mutagen-
esis to remove rare codons or the addition of rare codon
tRNAs in specific cell lines. Recently, improvements in the

technology have enabled synthetic genes to be produced
cost-effectively, making this a feasible alternative [56]. In
addition, as each step in the process of gene expression,
from the transcription of DNA into mRNA to the folding
and posttranslational modification of proteins, is regu-
lated by complex cellular mechanisms, a relationship is
expected to exist between mRNA expression levels and
protein solubility in the cell. By formulating a relation
between the mRNA expression level and the recombinant
protein, production can be reasonably predicted [57].

In eukaryotic mRNA, the consensus sequence surround-
ing the start codon (Kozak seq. 5'GCC ACCATGGC) can
increase the correctness and efficiency of translation up to
10 fold. In the synthetic construct, the 5'GCCACC
sequence was added before the ATG codon. The second
codon following the initial methionine was Ala, encoded
by the codon GCT, and the necessary GC was provided;
therefore there was no need to replace the other nucle-
otides or amino acids [27]. Codons that are rarely used in
plants, such as XCG and XUA (X denotes U, C, A, or G),
were avoided in the construction of the synthetic gene
(Figure 2B). It has been reported that rare codons in

Table 3: One hundred and eighteen discontinuous B-Cell epitopes of chimeric protein predicted by the Discotope server

Start & End 
position

Start & End 
position

Start & End 
position

Start & End 
position

Start & End 
position

Start & End 
position

Start & End 
position

Start & End 
position

Start & End 
position

49-6 174-19 202-19 252-12 312-10 351-10 377-11 389-8 412-14

50-13 175-21 204-16 253-17 324-14 359-11 378-10 390-5 425-5

51-13 176-12 229-8 254-4 325-13 361-13 379-12 391-8 426-5

52-17 177-11 231-6 255-8 326-9 364-14 380-13 392-11 427-7

54-15 178-13 232-7 256-8 327-13 367-12 381-11 402-12 433-11

55-16 179-21 242-12 257-9 328-12 368-8 382-10 403-7 439-11

69-9 189-10 243-12 258-9 329-12 369-9 383-8 404-9

70-8 193-12 244-16 259-9 330-12 370-9 384-5 405-10

72-9 194-12 245-13 260-11 331-14 371-12 385-6 406-8

89-15 195-17 246-12 276-10 345-7 372-10 386-7 407-8

90-14 196-14 247-11 277-12 346-7 373-11 387-6 408-11

136-8 197-13 249-18 281-12 347-7 374-12 388-10 409-10

137-7 200-19 250-17 286-12 349-7 375-12 389-8 410-15

138-9 201-21 251-13 287-8 350-11 376-12 388-10 411-14
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mRNA tend to form higher-order secondary structures,
which might require additional time for ribosomal move-
ment through the critical region [58].

An ideally biased gene would show a codon adaptation
index (CAI) of 1.0. Even though no natural plant gene
reaches this theoretical value, this index was increased
from 76% in the wild type chimeric sequence to 98% in
this synthetic gene. Furthermore, the G/C ratio and distri-
bution were balanced from 41.59 to 40.96 percent with
no significant changes, and this has been reported to be
associated with low mRNA stability and expression in
higher plants [55]. The nucleotide that encodes the ER
retention signal (KDEL) which helps to accumulate the
recombinant protein inside the endoplasmic reticulum
was fused in-frame at the 3' end of the chimeric gene
[15,16]. Finally, the required restriction enzyme sites
(XbaI and SacI) were introduced at the ends of the syn-
thetic gene for future cloning into plant expression vec-
tors.

Graphical depiction of the predicted minimum free
energy for the synthetic gene showed that the average
energy minimization was near - 400 Kcal/mol.

Comparison of the synthetic gene with the original one
revealed no major difference between these two mole-
cules and their structures were compatible with each
other.

In the protein structure prediction, the chimeric protein
formed three domains that were separated by two main α-
helix moieties which could help the protein to form a
final structure. These α-helix structures are related to the
designation of special amino acid sequences, residues
129-148 and 431-450, which are inserted between
domains. With these results we could speculate that these
parts could support the stable structure of a protein which
contained three domains.

B-cell epitopes for the chimeric protein could be predicted
on the basis of the structural prediction and solvent acces-
sibility. Hopp and Woods in the 1980s developed a
method for predicting B-cell epitopes with hydrophilicity
parameters. Since then, several distinct methods such as
Hydrophilicity method, Accessibility method, Antigenic-
ity method, Flexibility method and secondary structure
analysis have been developed [36,39]. Applying just one
of these methods is not enough for obtaining results good
enough to predict the B-cell epitope. In this study, we
combined all the data obtained by these analyses and pre-
dicted the B-cell epitopes.

The integrated results showed that the most likely B-cell
epitopes of this chimeric protein, as shown in Table 2,

were located in three distinct parts, selected as the EspA,
Intimin, and Tir domains.

For eliciting an immune response against E. coli O157:H7,
studies have shown that production of the carboxy termi-
nal part of Intimin in a transgenic plant cell line and its
application via the oral route is more effective than injec-
tion [16]. In this study, we designed a multi domain anti-
gen which was selected on the basis of three
immunogenic parts of attaching/effacing loci from E. coli
O157:H7, which were then optimized upon plant codon
preference for analyzing mucosal and systematic immu-
nity.

Conclusion
Bioinformatics tools for predicting epitopes are now a
standard methodology. In silico epitope mapping, com-
bined with in vitro and in vivo verification, accelerates the
discovery process by approximately 10-20-fold. Develop-
ment of sophisticated bioinformatics tools will provide a
platform for more in-depth analysis of immunological
data and facilitate the construction of new hypotheses to
explain the complex immune system function [59].

In this study, we have combined several techniques and
profiles to improve the state-of-the-art prediction of 3D
structure and relative solvent accessibility. Building a
homology model for this chimeric protein has been used
to understand the antigenic sites and structural conforma-
tion domains which were used to predict continuous and
discontinuous epitopes. Also, for the antibody-antigen
interaction, it is important to know how much area of sur-
face is exposed; accordingly we defined the exposed areas
and surface accessibility.

Considering the multi colonization factor of this bacte-
rium, multi antigenic parts should be used for repressing
this pathogen. For this reason, more research should focus
on designing multi antigenic proteins from E.
coliO157:H7. This study and a few others [60,61] indicate
that epitope construction and prediction will be useful
not only in vaccine development but also in the prospec-
tive engineering and re-engineering of protein therapeu-
tics, reducing the risk of undesired immunogenecity and
improving the likelihood of success in clinical use.

Finally, the conclusions drawn for E. coli O157:H7 pro-
teins could be combined with expression profiling to
identify genes whose expression changes under shifting
environmental conditions [62].

In conclusion, we believe that all of these findings will
intensify efforts to develop a vaccine candidate against E.
coli O157:H7.
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Methods
Sequence analysis
Related sequences for espA (40 sequences), eae (32
sequences) and tir (50 sequences) were obtained from
Genbank (accession no. not shown). Multiple sequence
alignments were performed using ClustalW software (EBI,
UK) http://www.ebi.ac.uk/Tools/clustalw2/ in order to
identify a fragment common to all the sequences.

Construct design
An antigenic sequence was constructed by fusing the C-
terminal of espA, C-terminal of eae and middle fragment
of tir using hydrophobic amino acid linkers (accession no.
GQ205376).

The in silico gene analysis and multi parameter gene opti-
mization of the synthetic chimera gene was performed
using Stand-alone softwares such as Leto (Entelechon,
Germany), DNA 2.0 http://www.dnatwopointo.com,
DNAsis MAX (Hitachi Software), and online data bases
and softwares such as the codon database http://
www.kazusa.or.jp/codon, Gene bank codon data base
and Swissprot reverse translation online tool http://
www.bioinformatics.org/sms2/rev_trans.html. The
desired properties were verified by Gen-Script (NJ, USA).
The multimeric gene was synthesized by ShineGene
Molecular Biotech, Inc (Shanghai, China).

Bioinformatic analysis of chimeric recombinant protein
The messenger RNA secondary structure of the chimeric
gene was analyzed by the program mfold http://www.bio
info.rpi.edu/applications/mfold. Recombinant protein
Secondary-structure predictions were performed by the
neural-network-based algorithm program (PHD), and for
3D structure, online ab initio software was used http://
www.igb.uci.edu/[63]. 3D structural stability of the syn-
thetic protein was further analyzed by Swiss-PdbViewer
for energy minimization [64]. Solvent accessibility of dif-
ferent residues was evaluated by DSSP and other online
programs (VADAR) http://redpoll.pharmacy.ualberta.ca/
vadar/. The predictive value of the hyper glycosylation
code which may act in plants is well established based on
online software http://www.cbs.dtu.dk/services/[65].

Prediction of B-cell epitopes
The amino acid sequence was analyzed using three web-
based B-cell epitope prediction algorithms; Bcepred http:/
/www.imtech.res.in/raghava/bcepred/, Continuous B cell
epitopes prediction methods based on physico-chemical
properties on a non-redundant dataset, and the Discotope
http://www.cbs.dtu.dk/services/DiscoTope/ Server for
predicting discontinuous B cell epitopes from three-
dimensional protein structures. Briefly, chimeric proteins
were analyzed first for continuous B-cell epitopes using

Bcepred and then using the Discotope server to predict
discontinuous B cell epitopes. Finally, we used the VaxiJen
server to predict the immunogenecity of the whole anti-
gen and its subunit vaccine [48,66,67].
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