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Multi-channel EEG recording during 
motor imagery of different joints 
from the same limb
Xuelin Ma   1,2,4, Shuang Qiu1,4 & Huiguang He   1,2,3 ✉

Motor imagery (MI) is one of the important brain-computer interface (BCI) paradigms, which can be used 
to control peripherals without external stimulus. Imagining the movements of different joints of the same 
limb allows intuitive control of the outer devices. In this report, we describe an open access multi-subject 
dataset for MI of different joints from the same limb. This experiment collected data from twenty-five 
healthy subjects on three tasks: 1) imagining the movement of right hand, 2) imagining the movement 
of right elbow, and 3) keeping resting with eyes open, which results in a total of 22,500 trials. The dataset 
provided includes data of three stages: 1) raw recorded data, 2) pre-processed data after operations such as 
artifact removal, and 3) trial data that can be directly used for feature extraction and classification. Different 
researchers can reuse the dataset according to their needs. We expect that this dataset will facilitate the 
analysis of brain activation patterns of the same limb and the study of decoding techniques for MI.

Background & Summary
Brain-computer interface (BCI) system establishes a direct communication and control path between the brain 
and the external devices that does not depend on the peripheral nerves and muscles1. Electroencephalography 
(EEG) has been widely used for BCI because of its high temporal resolution, cost-effectiveness, portability 
and noninvasive nature2. Compared with other BCI paradigms, such as steady state visual evoked potentials 
(SSVEPs)3, P300 potentials4, etc., a motor imagery (MI)-based BCI can be independent of external stimulus and 
reflect the subject’s voluntary movement awareness5.

Most existing MI studies focus on different limbs (e.g. left hand, right hand)6–8 or their combinations (e.g. both left 
hand and feet)9,10. The BCI systems based on the MI of different limbs have been successfully applied to control wheel-
chair11 and mechanical exoskeleton12,13, as well as for post stroke rehabilitation14,15. However, imagining the movement 
of different upper limbs to control a peripheral device to perform different actions will lead to an inconsistency between 
the intention of movement and the action of the end effector, which is called cognitive disconnection16. For example, it 
was unnatural to open and close the hand orthosis by imagination of right hand and both feet movement respectively6. 
Therefore, the decoding of fine imaging movement from the same limb has aroused more and more concern.

In the early stage of the study, most researchers focus on the fine movement of one single joint. For examples, 
Salehi et al.17 and Alazrai et al.18 did some research on motor imagery recognition of figure gestures. Vuckovic and 
Sepulveda utilized Gabor transform features for decoding four wrist movements (flexion, extension, pronation, 
and supination)19. Afterwards, Edelman et al. improved the decoding accuracy of these wrist imagining move-
ments from 69.1% to 81.4% by source space analysis16. Discriminating the MI of different joints is also essential 
for general intuitive control of the limb. However, there are few studies on this aspect, and the decoding accuracy 
cannot meet the requirements of practical application. Suwannarat et al. developed a motor imagery training sys-
tem with three different joint movements of same limb, namely, the hand opening/closing, wrist flexion/extension 
and forearm pronation/supination20. In 2015, Yong et al. first investigated a 3-class BCI system for rest, imaginary 
grasp and elbow movement with an averaged classification accuracy of 60.7%21. More recently, Tavakolan et al. 
reported that the accuracy can be improved to 74.2% by extracting time-domain features22.
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In this paper, we collected data from twenty-five subjects in the new dataset MI-2, which contains a total of 
22,500 (=25 · 900) hand movement MI, elbow movement MI, and resting state trials. The subjects performed spe-
cific MI tasks according to the prompts on the screen and their EEG data were recorded at the same time. During 
the experiment, EMG signals of the limbs were monitored to make sure that the collected EEG data were indeed 
the result of motor imagery, not motor execution. The public dataset consists of three stages of data, namely the 
raw data, the pre-processed data, and the trial data that can be directly used for classification, so that different 
researchers can reuse the dataset according to their needs.

Based on this dataset, we have preliminarily compared the differences in EEG activation patterns between 
hand and elbow MI, and conducted a three-classification decoding task using the existing baseline and the 
state-of-the-art methods, proving that the collected data of the three categories are separable23. Also, we extracted 
the correlation coefficient matrices between channels as features representing functional connections, and devel-
oped an ensemble Channel-Correlation Network to improve the decoding performance. In this dataset, our pro-
posed deep learning based method obtained a decoding accuracy of 87.03% in the 3-class scenario23.

This paradigm of different joints from the same limb can provide intuitive control of outer equipments (e.g. 
exoskeleton), without the need to increase the cognitive load of the users to establish any artificial associations 
between imaging movement and neuroprosthetic movement. We expected that this dataset could be used to anal-
ysis the brain activation patterns and to design the decoding methods of MI of different joints from the same limb.

Methods
Subjects.  All experiments were approved by the ethical committee of Institute of automation, Chinese 
Academy of Sciences. In this experiment, we collected data from 25 right-handed healthy subjects (19 males, 
6 females, aged 19–27) without MI-based BCI experience. All subjects signed the informed consent before the 
experiment. The names of all participants have been hereby anonymized. The participants are identified only by 
their aliases “sub-001” through “sub-025”.

Experimental paradigm.  The subjects sat in a comfortable chair with their hands naturally on their thighs, 
keeping their eyes one-meter away from the screen (see Fig. 1(a)). As shown in Fig. 2, each trial (8s) started with 
a white circle at the center of the monitor for 2s, followed by a red circle as a cue for 1s to remind the subjects of 
paying attention to the upcoming target. The target prompt (“Hand” or “Elbow”) appeared on the screen for 4s. 
During this period, the subjects were asked to imagine the prompted movement kinesthetically in mind rather 
than a visual type of imagery. The subjects were instructed to avoid any motion during imagination. The EMG 
of the right hand and the right forearm of the subjects were monitored (see Fig. 1(b)) to make sure they did not 
move involuntarily. After the imagination, “Break” appeared for 1s as the end of the entire 8s trial. During the 
break, the subjects were asked to relax and minimize their eye and muscle movements.

The experiments contained 7 sessions, involving five sessions consisting of 40 trials each for two kinds of 
motor imagination tasks (20 trials for each movement imagination in one session) and two sessions consisting 
of 50 trials each for resting state. In order to avoid interference between the imaginary tasks before and after, the 
order of the MI task indications in a session was disrupted. There were 5 to 10 minutes of rest between sessions. 
Thus, there are totally 300 trials (100 trials for each type of mental state) per subject in the dataset.

Figure 1  Data acquisition scenario. Informed consent was obtained from the individual in the figure for 
the publication of the images. (a) The Neuroscan SynAmps2 amplifier (Neuroscan, Inc.) with a 64-channel 
electrode cap according to the standard 10/20 System. (b) The EMG of the forearm and upper arm of the right 
arm were monitored. (c) Horizontal and vertical EOGs were collected for later artifact removal.

Figure 2  Timing of one trial.
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Data collection and preprocessing.  As shown in Fig. 1(a), EEG data were acquired using a 64-channel 
gel electrode cap (according to the standard 10/20 System) with a Neuroscan SynAmps2 amplifier (Neuroscan, 
Inc.). The sampling frequency was 1000 Hz. The left mastoid reference was used for EEG measurement. Electrode 
impedances were kept below 10 kΩ during the experiment. The band-pass filtering range of the system was 0.5–
100 Hz. Besides, an additional 50 Hz notch filter was used for data acquisition.

The pre-processing of the collected data was done using the EEGLAB toolkit (v14.1.1_b)24 of MATLAB (R2015a) 
software. We used Common Average Reference (CAR) to spatially filter the data, and performed time-domain filtering 
on the data from 0 to 40 Hz. The formula of CAR is shown in Eq. (1), where N represents the number of EEG channles. 
The data were downsampled to 200 Hz to reduce computational cost. A plugin in EEGLAB called Automatic Artifact 
Removal toolbox (AAR)25 was used to automatically remove the ocular and muscular artifacts in EEG.

∑= −
=

s s
N

s1
(1)i i

i

N

i
1

Data Records
The data are freely downloaded from the open access repository26. The source files and meta-data files in this 
dataset were organized according to EEG-BIDS27, which was an extension to the brain imaging data structure for 
EEG. The directory tree for our repository and some previews for meta-data are shown in Fig. 3.

On the whole, the repository’s data consists of three parts: (1) Preprocessed Data stored in the home folder – 
set/fdt files with meta-data; (2) Raw Recorded Data stored in the sourcedata folder – cnt files; (3) Trial Data stored 
in the derivatives folder – mat files. Within these directories, the subdirectory corresponding to each subject is 
named “sub-xxx”, where xxx represents the serial number of the subject.

Raw Data.  The acquired raw data for a single task session were saved as .cnt files and organized according to 
the following naming rules:

Figure 3  Directory tree for the repository with previews of EEG files. The left side of the figure is the directory tree 
for our repository and the arrows indicate the contents of the folder or preview contents of the meta-data files.
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− − − .sub xxx ses yy task TASKNAME eeg cnt_ _ _ ,

where xx stands for the subject number (001, 002, …, 025), yy is the session number (01, 02, …, 19), TASKNAME 
represents the task type (“motorimagery” or “rest”).

After loading the.cnt file through EEGLAB toolbox, you will get a structure variable named “EEG” whose key 
field information can be seen in Table 1.

Name Description

EEG.nbchan The number of channels

EEG.srate The sampling rate of data

EEG.pnts The total number of sampling points

EEG.data (EEG.nbchan · EEG.pnts) matrix containing the EEG data

EEG.chanlocs
Information about the names of the channels and their corresponding locations. For example, EEG.chanlocs(33) 
and EEG.chanlocs(65) represent Horizontal EOG (HEO) and Vertical EOG (VEO) respectively. Note that the 
channel locations are only available in .set/.fdt files.

EEG.urevent Records of when the event occurred.

EEG.urevent.type “1” represents hand movement and “2” represents elbow movement

EEG.reject Statistics used for data rejection

Table 1.  Contents of EEG structure in.cnt and set/.fdt files.

Figure 4  Channel activities snapshot of the collected raw EEG signals (.cnt file). The bottom two channels are 
EMG channels.

Figure 5  The impedances of all the 65 electrodes were kept close to or below 5 kilo-ohms.
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Processed Data.  Raw data (.cnt files) from Neuroscan was imported to MATLAB using the EEGLAB tool-
box. After the preprocessing operations such as re-referencing and artifact removal were performed, the data of 
each session were saved as two associated files: FILENAME.set and FILENAME.fdt (.fdt for float data). Note that 
at this stage the two EMG channels that were not relevant to the EEG data analysis were removed. The name of 
them are consistent with the raw recorded data except for the suffix:

− − − . .sub xxx ses yy task TASKNAME eeg set fdt_ _ _ ( ),

The .set and .fdt files store meta information (e.g. number of channels, sampling rate) and raw data respectively.
After loading the .set/.fdt file through EEGLAB toolbox, you will get a structure variable named “EEG” whose 

key field information can be seen in Table 1.

Trial Data.  To facilitate the decoding of movement intentions, the trial data of each subject were integrated 
into a single .mat file, which are ready for feature extraction and classification. This folder contains 25 .mat files 

Figure 6  Averaged time-frequency maps of 25 subjects. Blue indicates ERD.

Figure 7  Averaged topographical distribution of power of 25 subjects in the upper alpha band (10–12 Hz) and 
upper beta band (23–25 Hz). Blue indicates ERD.
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named in the format sub – xxx_task – motorimagery_eeg.mat, where xxx stands for the subject number (001, 002, 
…, 025). Each.mat file stores three variables:

•	 task_data: It contains all the task data of a subject with a size of (session number, trial number, channel num-
ber, sample points), e.g. (15, 40, 62, 800).

•	 task_label: It contains all the task label (“1” and “2” for MI of hand and elbow, respectively) of a subject with 
a size of (session number, trial number), e.g. (15, 40).

•	 rest_data: It contains a total of 300 trials from 4 rest sessions (75*4) with a size of (trial number, channel 
number, sample points), e.g. (300, 62, 800).

Figure 8  The comparison of power (in dB) changes with time (in s) during hand, elbow motor imagery, and 
resting state for electrode C3. The specific frequency band of each subject is indicated in the title.
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Technical Validation
EMG Validation.  During imagination, the subjects were instructed to avoid any motion. The electromy-
ography (EMG) signal snapshot is shown in Fig. 4 (the bottom two channels). When we observed actual hand 
movements or fluctuations in EMG signals, we would remind the subject and restart the session. In this way, we 
can ensure that the collected EEG is indeed the result of motor imagery, not motor execution. Due to equipment 
problems, the EMG signals were only available in the last 15 subjects (from sub-011 to sub-025).

EEG Validation.  As shown in Fig. 5, during the experiment, the impedances of electrodes were kept close to 
or below 5 kilo-ohms to ensure the quality of the connections between the electrodes and the scalp.

Event related desynchronization (ERD, reduction in power) in the alpha and beta band during the period of 
motor imagery has been extensively documented in the literature28,29. This characteristic behaviors is observed 
in our data. Figure 6 shows the average time-frequency maps of all subjects at electrode positions C3, C4 and Cz 
during the MI of hand, elbow, and resting state. The maps show clear reduction of power in both alpha (8–13 Hz) 
and beta (20–25 Hz) bands from 0 to 4s, except for resting state. In order to study the activation of the motor area, 
we calculated the average energy distribution in the alpha and beta bands, and plotted them into a topology map 
based on the channel positions, which are depicted in Fig. 7. The maps of the hand and elbow MI show a clear 
ERD pattern in the contralateral motor areas, while that of the resting state diagram does not.

In addition, we determined a 2Hz-wide frequency band according to the frequency of the lowest energy posi-
tion in each subject’s ERD graph, and plotted the curve of energy with time. As shown in Fig. 8, the power 
decrease after the onset (0-s on the x-axis) of the motor imagery.

These results indicate that in our experiments, subjects’ imagination of the hands and elbows activated their 
corresponding areas of motion on the opposite side of the brain, which is consistent with previous studies28.

In addition to the above qualitative analysis, there is also quantitative analysis. We extracted the features of 
FBCSP30 and used the SVM as our classifier to classify the data of each subject. Table 2 shows the classification 
accuracies of cross-trial under 5-fold cross-validation. The classification results of each subject were above the 
chance level (33.33%) in the 3-class scenario.

Usage Notes
The raw recorded EEG dataset, the pre-processed dataset, and the classification-ready trial-wise dataset are avail-
able from Harvard Dataverse26. The data can be analyzed in MATLAB using the EEGLAB toolkit. Detailed tutori-
als of EEGLAB can be found on their website (https://sccn.ucsd.edu/eeglab/index.php). Although the results may 
not vary much between versions, we recommend the researchers use EEGLAB with version v14.1.1_b.

We provide some instructions on how to use EEGLAB to load our data.

	 1.	 Load the .cnt file. First select “File” from the menu, then select the sub-menu “Import data”, “Using 
EEGLAB functions and plugins”, “From Neuroscan .CNT file”, select the target CNT file (e.g. sub-001_ses-
01_task-motorimagery_eeg.cnt) from the file navigation window that pops up, and click “OK”.

	 2.	 Load the .set file. First select “File” from the menu, then select the sub-menu “Load existing dataset”, select 
the target SET file (e.g. sub-001_ses-01_task-motorimagery_eeg.set) from the file navigation window that 
pops up, and click “OK”.

	 3.	 Check the workspace in MATLAB. The “EEG” variable contains the information as shown in Table 1.

Code availability
The custom MATLAB script MI2_preprocess.m was used to pre-process the raw recorded data. The MI2_
saveMat.m file was used to extracted the 4s-trial data from continuous data and save them to the.mat files. The 
channel_dict.ced file contains the location information of channels for our EEG record data and can be easily 
imported into EEGLAB. These scripts and files are stored in the code folder and shared with the dataset.

Received: 10 March 2020; Accepted: 19 May 2020;
Published: xx xx xxxx

Subject Acc. (%) Subject Acc. (%) Subject Acc. (%)

sub-001 69.00 sub-010 70.78 sub-019 62.44

sub-002 68.11 sub-011 68.89 sub-020 67.78

sub-003 71.67 sub-012 71.67 sub-021 69.67

sub-004 69.00 sub-013 67.67 sub-022 69.89

sub-005 66.33 sub-014 67.44 sub-023 66.78

sub-006 73.44 sub-015 71.33 sub-024 70.22

sub-007 63.78 sub-016 69.11 sub-025 68.00

sub-008 67.33 sub-017 67.78 mean 68.68

sub-009 71.89 sub-018 67.11 std 2.44

Table 2.  Classification accuracy obtained with FBCSP + SVM method.
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