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INTRODUCTION 
 

The prevalence of obesity in elderly populations is 

rising [1, 2] and the prime cause of death among aging 

population is cardiovascular diseases [3]. Aging is 

influenced by many factors such as lifestyle, 

environmental conditions, and genetic predisposition, 

and the characteristics of aging include telomere 

attrition, reactive oxygen species (ROS) accumulation, 

genomic instability and mitochondrial dysfunction [4]. 

Accumulating evidence has shown that D-gal induced-

aging can increase senescence markers, oxidative stress 

and apoptosis, leading to cardiac dysfunction [5–9]. In 

addition to aging, chronic high-fat diet consumption 

 is known to induce obesity, insulin resistance, 
mitochondrial dysfunction and cardiac autonomic 

imbalance, resulting in cardiac dysfunction [10, 11]. We 

previously demonstrated that rats receiving high-fat diet 
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ABSTRACT 
 

Currently, the prevalence of obesity in aging populations is fast growing worldwide. Aging induced by D-
galactose (D-gal) is proven to cause the worsening of cardiac dysfunction in pre-diabetic rats via deteriorating 
cardiac mitochondrial function. Hyperbaric oxygen therapy (HBOT) has been shown to attenuate D-gal-induced 
cognitive deterioration through decreased inflammation and apoptosis. We tested the hypothesis that HBOT 
alleviates D-gal induced cardiac dysfunction via improving mitochondrial function in pre-diabetic rats. Wistar 
rats (n=56) were fed normal diet or high-fat diet for 12 weeks. For subsequent 8 weeks, they were 
subcutaneously injected either vehicle (0.9% normal saline) or D-gal (150mg/kg/day). Rats were randomly 
subdivided into 7 groups at week 21: sham-treated (normal diet fed rats with vehicle (NDV), high-fat diet fed 
rats with vehicle (HFV), normal diet fed rats with D-gal (NDDg), high-fat diet fed rats with D-gal (HFDg)) and 
HBOT-treated (HFV, NDDg, HFDg). Sham rats received ambient pressure of oxygen while HBOT-treated ones 
received 100% oxygen given once daily for 60 minutes at 2 atmosphere absolute. HBOT reduced metabolic 
impairments, mitochondrial dysfunction and increased autophagy, resulting in an improvement of cardiac 
function in aged pre-diabetic rats. 
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for 20 weeks showed significantly reduced cardiac 

mitochondrial fusion marker mitofusin 2 (MFN2) 

compared to rats receiving normal diet indicating the 

mitochondrial dynamics imbalance [12]. Additionally, 

our recent study indicated that rats receiving high-fat 

diet for 14 weeks showed impaired mitochondrial 

dynamics as demonstrated by increased mitochondrial 

fission and decreased mitochondrial fusion [13]. 

Moreover, we recently demonstrated that D-gal induced 

aging exacerbated cardiac dysfunction in pre-diabetic 

rats via the time-dependent deterioration of 

mitochondrial function, imbalanced mitochondrial 

dynamics processes, autophagy, and augmented 

apoptosis [14]. Therefore, the therapeutic strategies 

which can alleviate the aggravation of cardiac 

dysfunction by aging in pre-diabetic condition are still 

needed. 

 

Numerous therapeutic interventions including various 

antioxidants and melatonin have been shown to yield 

advantageous results on the cardiac function in D-gal 

induced cardiac dysfunction [9, 15, 16]. Hyperbaric 

oxygen therapy (HBOT) is currently utilized clinically 

as a standard treatment in patients with carbon 

monoxide poisoning [17, 18]. Furthermore, previous in 

vivo studies have reported that HBOT could attenuate 

cognitive impairments via decreasing oxidative stress, 

inflammation and apoptosis in D-gal induced brains of 

aging mice [19, 20]. In addition, in obese diabetic rats, 

HBOT could promote glucose and lipid metabolism in 

the skeletal muscle, suggesting that HBOT could 

prevent the increased glucose and adipocyte 

hypertrophy [21, 22]. In the current study, we sought to 

test the hypothesis that HBOT effectively alleviates D-

gal induced cardiac dysfunction via decreasing 

metabolic impairments, dysfunctional mitochondria, 

oxidative stress, inflammation, apoptosis and increasing 

autophagy in pre-diabetic rats. 

 

RESULTS 
 

HBOT ameliorated both D-gal and high-fat diet 

induced metabolic impairments 

 

Body weight, caloric intake, visceral fat, plasma 

glucose, insulin, HOMA index, TC, HDL and LDL 

were assessed not only in sham but also in HBOT-

treated rats. All high-fat diet fed rats treated with HBOT 

and sham showed significantly increased body weight, 

caloric intake, visceral fat, TC, LDL levels and 

decreased HDL level, compared to normal diet fed rats: 

sham-treated normal diet vehicle (NDV), sham-treated 

normal diet fed rats with D-gal (NDDg) and HBOT-

treated NDDg rats (Table 1). However, there was no 

significant difference in body weight and caloric intake 

among all high-fat diet fed rats. Additionally, the body 

weight was not different in the normal diet fed rats 

between HBOT and sham groups. Furthermore, plasma 

glucose, TG and food intake were found to be not 

different among the groups.  

 

HBOT-treated HFV, NDDg and HFDg rats showed 

significant reduction in both plasma insulin and HOMA 

index when compared to sham-treated HFV, NDDg and 

HFDg rats, and even restored to the same levels as 

NDV rats indicating that HBOT improves peripheral 

insulin sensitivity (Table 1). However, HBOT-treated 

HFV rats and HFDg rats showed no significant 

difference in TC, HDL and LDL level, compared to 

sham-treated HFV and HFDg rats suggesting that 

HBOT had no effect on lipid metabolism in this model 

system. 

 

HBOT efficiently attenuated both D-gal and obesity 

induced increased cardiac senescence marker 

expression 

 

SA-β-gal staining was determined as senescence marker 

expression in cardiomyocytes. The results showed that 

HBOT-treated HFV rats and NDDg rats had 

significantly decreased number of SA-β-gal positive 

cells compared to sham-treated HFV rats, NDDg rats 

and even restored to the same level as NDV rats (Figure 

1A, 1B). Additionally, HBOT-treated HFDg group had 

significantly reduced senescence marker cells in 

cardiomyocytes when compared to its respective sham 

HFDg indicating that HBOT effectively attenuates 

increased cardiomyocytes senescent marker expression 

in pre-diabetic rats after the induction of aging by D-gal 

(Figure 1A, 1B). 

 

HBOT effectively ameliorated LV dysfunction in 

pre-diabetic rats after induction of aging by D-gal 

 

Sham-treated HFV, NDDg and HFDg rats showed 

significantly decreased %EF and %FS compared to 

sham NDV rats. Additionally, sham-treated HFDg rats 

had significantly impaired LV function as shown by 

significantly decreased %EF and %FS, compared with 

HFV sham and NDDg sham rats (Figure 2A, 2B). In 

contrast, HBOT-treated HFDg rats revealed 

significantly increased %EF and %FS, when compared 

to sham-treated HFDg rats. Interestingly, HFV and 

NDDg rats treated with HBOT displayed significantly 

increased %EF and %FS compared to sham-treated 

HFV, NDDg rats and even restored to the same %EF 

and %FS levels as NDV rats (Figure 2A, 2B).  

 

Pressure-volume (P-V) loop analysis was determined 
at the end of the study protocol, and sham-treated 

HFDg rats indicated the worst deterioration of LV 

function as indicated by significantly increased  
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Table 1. The effect of HBOT on metabolic parameters in pre-diabetic rats after induction of aging by D-gal. 

Parameters 
Sham  HBOT 

NDV HFV NDDg HFDg  HFV NDDg HFDg 

Body weight (g) 475 ± 9.3 608.5 ± 11.4
*‡

 477 ± 10.2 621.4 ± 16.5
*‡

 
 

601.8 ± 8.4
*‡

 479 ± 9.6 612.2 ± 7
*‡

 

Food intake 

(g/day) 
20.8 ± 0.6 22.4 ± 0.7 21.1 ± 0.5 22.2 ± 0.6  20.4 ± 0.7 20.1 ± 0.5 22.3 ± 0.5 

Caloric intake 

(kcal/day) 
82.6 ± 2.4 122.3 ± 3.5 *‡ 85.4 ± 2.1 123.6 ± 2.6*‡  111.1 ± 3.1*‡ 81.8 ± 1.6 119.1 ± 2.6*‡ 

Visceral fat (g) 24.6 ± 1.7 58.9 ± 2.7
*‡

 26.6 ± 2.3 59.6 ± 4.1
*‡

 
 

58.5 ± 4.2
*‡

 23.4 ± 1.8 58 ± 7
*‡

 

Glucose (mg/dl) 141.3 ± 4.1 135.3 ± 5.4 149.2 ± 5 151.9 ± 7  141 ± 6 135.2 ± 5.1 141.4 ± 3.7 

Insulin (ng/ml) 5.7 ± 0.5 9 ± 2.2
*

 10.8 ± 1.3
*

 12.4 ± 1.1
*

  5.6 ± 1.3†‡# 5.1 ± 0.8†‡# 5.7 ± 1.7†‡# 

HOMA index 49.4 ± 5.2 83.8 ± 10.2
*

 83.5 ± 8.1
*

 89 ± 6.6
*

  46 ± 10.3†‡# 46.4 ± 8.8†‡# 
49.7 ± 

13.7†‡# 

Cholesterol 

(mg/dl) 
72.8 ± 5.5 102.8 ± 6.7

*‡

 74.5 ± 4.3 109.6 ± 5.5
*‡

 
 

105.3 ± 11
*‡

 70.7 ± 11.3 103.5 ± 13
*‡

 

Triglyceride 

(mg/dl) 
81.3 ± 10.3 103.6 ± 9.3 94.8 ± 3.5 103.3 ± 2.3  95.2 ± 9.8 80.4 ± 10.8 95.1 ± 16.6 

HDL (mg/dl) 31.2 ± 1.5 20.4 ± 1.3
*‡

 29 ± 2 19.4 ± 2.6
*‡

 
 

23.4 ± 1.5
*‡

 28.9 ± 2.1 23.6 ± 2.7
*‡

 

LDL (mg/dl) 31.1 ± 2.6 50.9 ± 4.5
*‡

 31.8 ± 2.3 55.9 ± 5.9
*‡

 
 

54.1 ± 9.6
*‡

 30.3 ± 6 54.3 ± 7.6
*‡

 

Data represent means ± SEM. (n=5/group). *P < 0.05 vs NDV sham, †P < 0.05 vs HFV sham, ‡P < 0.05 vs NDDg sham, #P < 0.05 
vs HFDg sham. NDV, normal diet fed rats with vehicle; NDDg, normal diet fed rats with D-gal; HFV, high-fat diet fed rats with 
vehicle; HFDg, high-fat diet fed rats with D-gal; HOMA, homeostasis model assessment; HDL, high-density lipoprotein; LDL, 
low-density lipoprotein; HBOT, hyperbaric oxygen therapy. 

 

LVEDP (Figure 2C), dP/dt min (Figure 2D) and 

significantly reduced LVESP (Figure 2E), dP/dt max 

(Figure 2F) and SV (Figure 2G), compared to sham-

treated rats. In contrast, HBOT treatment effectively 

alleviated LV dysfunction in HFDg rats as shown by 

significantly decreased LVEDP, dP/dt min and 

significantly increased LVESP, dP/dt max and SV 

when compared to sham-treated HFDg rats (Figure 

2C–2G). Similar to echo results, HFV and NDDg rats 

treated with HBOT had significantly reduced LVEDP, 

dP/dt min and significantly increased LVESP, dP/dt 

max and SV, when compared to sham-treated HFV, 

NDDg rats, and restored the above parameters to the 

same level as NDV rats (Figure 2C–2G). However, 

there was no significant difference in HR among all 

groups (Figure 2H). The representative typical P-V 

loop tracing of all experimental groups were shown in 

Figure 3A–3G. 

 
Regarding HRV measurement, LF/HF ratio was 

evaluated as a cardiac sympathovagal balance 

indicator. Sham-treated HFV, NDDg and HFDg rats 

had significantly increased LF/HF ratio, compared 

with the NDV sham group. In addition, HFDg sham 

rats had higher LF/HF ratio compared with the HFV 

and NDDg sham. The results also showed that HFV 

and NDDg rats treated with HBOT had restored 

LF/HF ratio as the same level as NDV rats. 

Additionally, HBOT-treated HFDg rats had 

significantly reduced LF/HF ratio, when compared 

with its respective sham rats (Figure 4A). For blood 

pressure (BP) assessment; HBOT-treated HFV and 

NDDg rats showed significant decrease in systolic, 

diastolic and mean arterial pressure when compared to 

sham-treated HFV and NDDg rats. Likewise, HFDg 

rats treated with HBOT had significantly reduced SBP, 

DBP and MAP compared to sham-treated HFDg rats 

(Figure 4B–4D). 

 

HBOT restored cardiac apoptosis and inflammation 

to normal levels in D-gal induced aging or obese rats, 

and attenuated such impairments in aging pre-

diabetic rats  

 

For the determination of cardiac cell apoptosis, TUNEL 

assay, Bax/Bcl-2 ratio and cleaved-caspase 3/caspase 3  



 

www.aging-us.com 10958 AGING 

 
 

Figure 1. Effect of HBOT on senescence marker expression in left ventricular cardiomyocytes of pre-diabetic rats after 
induction of aging by D-gal. (A) Result of SA-β-gal staining. (B) Representative figures of SA-β-gal staining. NDV, normal diet fed rats with 

vehicle; NDDg, normal diet fed rats with D-gal; HFV, high-fat diet fed rats with vehicle; HFDg, high-fat diet fed rats with D-gal; SA-β-gal, 
senescence associated β galactosidase; HBOT, hyperbaric oxygen therapy. (n = 3/group). *P < 0.05. 

 

 
 

Figure 2. Effect of HBOT on cardiac function in pre-diabetic rats after induction of aging by D-gal. (A) Ejection fraction. (B) 
Fractional shortening. (C–H) P-V loop Analysis. NDV, normal diet fed rats with vehicle; NDDg, normal diet fed rats with D-gal; HFV, high-fat 
diet fed rats with vehicle; HFDg, high-fat diet fed rats with D-gal; EF, ejection fraction; FS, Fractional shortening; HBOT, hyperbaric oxygen 
therapy. (n = 8/group). *P < 0.05. 
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Figure 3. Effect of HBOT on typical P-V loop tracings in pre-diabetic rats after induction of aging by D-gal. (A) A typical P-V loop 
tracing of sham-treated NDV rat. (B) A typical P-V loop tracing of sham-treated HFV rat. (C) A typical P-V loop tracing of sham-treated NDDg 
rat. (D) A typical P-V loop tracing of sham-treated HFDg rat. (E) A typical P-V loop tracing of HBOT-treated HFV rat. (F) A typical P-V loop 
tracing of HBOT-treated NDDg rat. (G) A typical P-V loop tracing of HBOT-treated HFDg rat. NDV, normal diet fed rats with vehicle; NDDg, 
normal diet fed rats with D-gal; HFV, high-fat diet fed rats with vehicle; HFDg, high-fat diet fed rats with D-gal. 

 

 
 

Figure 4. Effect of HBOT on heart rate variability and blood pressure in pre-diabetic rats after induction of aging by D-gal. (A) 
Heart rate variability. (B) Systolic blood pressure. (C) Diastolic blood pressure. (D) Mean arterial blood pressure. NDV, normal diet fed rats 
with vehicle; NDDg, normal diet fed rats with D-gal; HFV, high-fat diet fed rats with vehicle; HFDg, high-fat diet fed rats with D-gal; LF/HF, low 
frequency/high frequency ratio; SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure; HBOT, hyperbaric 
oxygen therapy. (n = 8/group). *P < 0.05. 
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ratio and were performed. Our results demonstrated 

that, TUNEL positive apoptotic cells were significantly 

decreased in HBOT-treated HFV and NDDg rats 

compared to sham-treated HFV and NDDg rats. HBOT-

treated HFDg rats had significantly reduced TUNEL 

positive cells when compared to sham-treated HFDg 

rats (Figure 5A–5C). Furthermore, Bax/Bcl-2 ratio and 

cleaved caspase 3/caspase 3 ratio were significantly 

reduced in all HBOT-treated rats compared to their 

respective sham-treated rats (Figure 6A, 6B). Cardiac 

TNF-α level was used as an inflammatory marker, and 

only HBOT-treated HFV and NDDg rats had restored 

TNF-α level to the same level as NDV rats. HBOT also 

attenuated the increased cardiac inflammation in HFDg 

rats, compared to sham-treated HFDg rats (Figure 6C).  

 

HBOT reduced D-galactose-induced aggravation of 

increased cardiac oxidative stress in pre-diabetic 

rats 

 

For oxidative stress status, cardiac tissue MDA was 

determined and the results indicated that sham-treated 

HFV, NDDg and HFDg rats showed significantly 

increased cardiac MDA level than those sham-treated 

NDV rats, among which sham-treated HFDg rats had 

higher MDA level than sham-treated HFV and NDDg 

rats. Interestingly, all HBOT-treated rats had 

significantly decreased cardiac MDA level compared to 

their respective sham groups and even restored to the 

same MDA level as NDV rats (Figure 6D). 

 

HBOT ameliorates D-gal induced aggravation of 

mitochondrial dysfunction in pre-diabetic rats 

 

Mitochondrial ROS production, depolarization, and 

swelling were evaluated as mitochondrial function 

assessment. Among sham-treated rats, HFDg rats showed 

the worst deterioration of mitochondrial function as 

revealed by increased mitochondrial ROS level, 

depolarization, and swelling. After HBOT, all HFV, 

NDDg and HFDg rats showed significantly reduced ROS 

production, depolarization, and swelling of mitochondria 

compared to their respective sham rats (Figure 7A–7C). 

Additionally, the morphology of cardiac mitochondria as 

represented by transmission electron micrographs (TEM) 

revealed that swelling of mitochondria in sham-treated 

HFV, NDDg rats and HFDg rats, as indicated by 

unfolding of cristae, were abolished after HBOT and even 

restored to normal morphology as NDV rats (Figure 7D). 

 

HBOT failed to attenuate the impaired 

mitochondrial dynamics processes in aging pre-

diabetic rats 

 

For mitochondrial fusion, MFN1 and MFN2 protein 

expressions were assessed. MFN1 and MFN 2 

expressions were significantly decreased in both sham-

treated HFV, NDDg, HFDg rats and HBOT-treated 

HFV, NDDg and HFDg rats, compared to NDV rats 

(Figure 8A, 8B). Regarding the process of 

mitochondrial fission, the phosphorylated form of 

cytosolic Drp1 expression at serine 616 (Figure 8C) and 

the mitochondrial fraction (Figure 8D) were evaluated. 

Our results showed that sham-treated HFDg rats had 

significantly increased cytosolic phosphorylated Drp1 

expression and mitochondrial Drp1 expression 

compared with the NDV rats, and HBOT could not 

attenuate this increased Drp1 expression in HFDg rats 

(Figure 8C, 8D).  

 

HBOT effectively alleviated the D-gal induced 

impairment of autophagy in pre-diabetic rats 

 

Cardiac autophagic processes were assessed by 

determination of Beclin-1, p62 and LC3II. The findings 

indicated that a significant reduction of Beclin-1 and an 

increased p62 were observed in sham-treated HFV, 

NDDg and HFDg rats compared to NDV rats. In 

contrast, all HBOT-treated groups showed significantly 

increased Beclin-1 and decreased p62 compared to their 

respective sham rats and even restored the same Beclin-

1 and p62 level as NDV rats (Figure 9A, 9B, 9D). 

However, there was no significant difference in LC3II 

level among the groups (Figure 9C, 9D). 

 

DISCUSSION 
 

The major findings from this study demonstrated that 

D-gal induced aging impaired cardiac function via 

increased cardiac oxidative stress, inflammation, 

apoptotic cells, metabolic and autophagic impairments, 

mitochondrial dysfunction, autonomic and 

mitochondrial dynamics imbalance. Secondly, these 

impairments were aggravated in high-fat diet induced 

pre-diabetic rats after induction of aging by D-gal. 

Thirdly, HBOT effectively restored the normal cardiac 

functions in high-fat vehicle rats (HFV) and normal diet 

fed rats with D-gal (NDDg) as the same level as in 

NDV rats. Finally, HBOT efficiently ameliorated the 

aggravation of cardiac dysfunctions in pre-diabetic rats 

after D-gal-induced aging.  

 

D-gal induced aging and cardiometabolic status 

 

In the present study, D-gal was used to induce aging 

process in rats. After injected with D-gal at a dose of 

150 mg/kg per day for 8 weeks, the insulin resistance 

was induced in normal diet fed rats as revealed by 

increased insulin level and HOMA index compared to 

NDV rats, and the SA-β-gal positive cells were 

significantly increased in NDDg rats. Accumulating 

evidence suggests that administration of D-gal led to  



 

www.aging-us.com 10961 AGING 

 
 

Figure 5. Effect of HBOT on apoptosis using TUNEL staining in cardiomyocytes of pre-diabetic rats after induction of aging by 
D-gal. (A) Representative figure of TUNEL positive cells in sham-treated rats. (B) Representative figure of TUNEL positive cells in HBOT-

treated rats. (C) Percentage of apoptotic index. NDV, normal diet fed rats with vehicle; NDDg, normal diet fed rats with D-gal; HFV, high-fat 
diet fed rats with vehicle; HFDg, high-fat diet fed rats with D-gal; TUNEL, Terminal deoxynucleotidyl transferase dUTP nick end labeling; HBOT, 
hyperbaric oxygen therapy. (n = 3/group). *P < 0.05, **P < 0.01 compared to other groups. 

 

 
 

Figure 6. Effect of HBOT on cardiomyocytes apoptosis, inflammation and oxidative stress in pre-diabetic rats after induction 
of aging by D-gal. (A) Bax/Bcl-2 ratio. (B) Cleaved caspase-3/caspase-3 ratio. (C) Inflammation. (D) Oxidative stress. NDV, normal diet fed 
rats with vehicle; NDDg, normal diet fed rats with D-gal; HFV, high-fat diet fed rats with vehicle; HFDg, high-fat diet fed rats with D-gal; Bax, B-
cell lymphoma 2 associated X protein; Bcl-2, B-cell lymphoma 2; TNF-α, tumor necrosis factor alpha; MDA, malondialdehyde; HBOT, 
hyperbaric oxygen therapy. (n = 5/group). *P < 0.05. 
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Figure 7. Effect of HBOT on mitochondrial functions in cardiomyocytes of pre-diabetic rats after induction of aging by D-gal. 
(A) Cardiac mitochondrial ROS production. (B) Cardiac mitochondrial membrane potential. (C) Cardiac mitochondrial swelling. (D) TEM 
representative images of cardiac mitochondria. NDV, normal diet fed rats with vehicle; NDDg, normal diet fed rats with D-gal; HFV, high-fat 
diet fed rats with vehicle; HFDg, high-fat diet fed rats with D-gal; ROS, reactive oxygen species; TEM, transmission electron microscopy; HBOT, 
hyperbaric oxygen therapy. (n = 8/group). *P < 0.05. 

 

 
 

Figure 8. Effect of HBOT on mitochondrial dynamics parameters in cardiomyocytes of pre-diabetic rats after induction of 
aging by D-gal. (A) Mitochondrial MFN1 level. (B) Mitochondrial MFN2 level. (C) Phosphorylated Drp1 at serine 616 in cytosol. (D) 

Mitochondrial Drp1 level. NDV, normal diet fed rats with vehicle; NDDg, normal diet fed rats with D-gal; HFV, high-fat diet fed rats with 
vehicle; HFDg, high-fat diet fed rats with D-gal; MFN1, mitofusin 1; MFN2, mitofusin 2; Drp1, dynamin-related protein 1; VDAC, voltage-
dependent anion channels; HBOT, hyperbaric oxygen therapy. (n = 5/group). *P < 0.05 compared to other groups. 
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cardiac dysfunctions due to increased oxidative stress, 

apoptotic cells, inflammation and decreased autophagy 

[6–8, 14, 23, 24]. In the present study, we demonstrated 

that D-gal administration for 8 weeks significantly 

increased oxidative stress, increased inflammation and 

sympathetic overactivity, increased apoptosis and 

decreased autophagy. In addition, NDDg rats had also 

developed mitochondrial dysfunctions as demonstrated 

by increased mitochondrial ROS production, 

depolarization, swelling, and reduced mitochondrial 

fusion (MFN1 and MFN2) compared to sham-treated 

NDV rats. All of the above impairments led to cardiac 

dysfunction as demonstrated by decreased %EF and 

%FS in NDDg rats (Table 2). In addition to aging, 

obesity is also the notable risk factor to induce the 

cardiac dysfunction. Furthermore, brown adipose tissue 

(BAT) has metabolic functions such as secretion of 

BATokines, thermogenesis and serves as metabolic sink 

for glucose and lipids resulting in decreased obesity and 

increased insulin sensitivity. BAT mass and activity 

decreases with aging and associated with metabolic 

syndrome and age-related diseases [25]. Accumulating 

evidence has shown that long-term high-fat diet fed pre-

diabetic rats developed obesity and insulin resistance, 

and had mitochondrial dysfunction, cardiac autonomic 

imbalance, leading to cardiac dysfunction [10, 11]. 

Additionally, we have previously shown that high-fat 

diet fed rats for 16 weeks showed an increase in 

oxidative stress, apoptosis, impaired mitochondrial 

function when compared to normal diet fed 

counterparts, resulting in LV dysfunction, and more 

deterioration of LV dysfunction was observed in high-

fat diet receiving rats for 20 weeks [14, 26]. 

Consistently, our data also revealed that sham-treated 

HFV rats showed significant increase in oxidative 

stress, inflammation, apoptotic cells and impaired 

mitochondrial function resulting in deterioration 

 of cardiac function when compared to sham-treated 

NDV rats. 

 

Prediabetes with aging induced by D-gal and 

cardiometabolic status 

 

Currently, the occurrence of obese-insulin resistance is 

rising sharply amongst adolescents and adults 

throughout the world. However, the effects of D-gal 

induced aging on cardiometabolic impairments in pre-

diabetic condition are not well-established. The current 

study investigated the effect of D-gal induced aging on 

cardiometabolic parameters in high-fat diet induced pre-

diabetic rats. In accordance with our recent report [14], 

we found that HFDg rats developed insulin resistant 

condition about the same level as NDDg rats (Table 1) 

and impaired lipid metabolism as indicated by increased

 

 
 

Figure 9. Effect of HBOT on autophagy in cardiomyocytes of pre-diabetic rats after induction of aging by D-gal. (A) Beclin-1 
expression. (B) p62 expression. (C) LC3II expression. (D) Representative images of western blotting bands. NDV, normal diet fed rats with 
vehicle; NDDg, normal diet fed rats with D-gal; HFV, high-fat diet fed rats with vehicle; HFDg, high-fat diet fed rats with D-gal; p62, 
Sequestosome-1 (ubiquitin-binding protein); LC3II, microtubule associated light chain 3II; HBOT, hyperbaric oxygen therapy. (n = 5/group). *P 
< 0.05. 



 

www.aging-us.com 10964 AGING 

Table 2. Summarized effect of HBOT on cardiometabolic impairment in pre-diabetic rats after induction 
of aging by D-gal. 

Cardiometabolic 

impairments 

Sham  HBOT 

NDV HFV NDDg HFDg  HFV NDDg HFDg 

Metabolic disturbance 

 

    
 

   

Aging Marker 

 
    

   
 

Autonomic imbalance 

 
    

    

LV dysfunction 

 
 

   
    

Mitochondrial impairment    
  

   

Inflammation 

 
    

 
 

  

Apoptosis  
   

    

Oxidative stress 

 
    

 
   

Autophagy 

 
    

  
  

NDV, normal diet fed rats with vehicle; NDDg, normal diet fed rats with D-gal; HFV, high-fat diet fed rats with vehicle; 
HFDg, high-fat diet fed rats with D-gal; HBOT, hyperbaric oxygen therapy.  
One up arrow indicates impairment of cardiometabolic parameters, two up arrows indicate severe impairment of 
cardiometabolic parameter and double headed arrow indicates no significant change in cardiometabolic parameters 
compared to NDV rats. 

 

total cholesterol level, LDL level and decreased HDL 

level compared to NDV rats. Moreover, HFDg rats 

showed an increase in oxidative stress, dysfunctional 

mitochondria, inflammation, apoptotic cells and 

decreased autophagy when compared to NDV rats, 

and these impairments were much more aggravated 

than HFV and NDDg rats, leading to the exacerbation 

of cardiac dysfunction in HFDg rats (Table 2). 

Therefore, highly effective strategies and novel 

alternative treatment are required to prevail over the 

bad consequences of this elderly pre-diabetic 

condition.  

 

HBOT intervention in D-gal induced aging and 

cardiometabolic improvement 

 

The therapeutic efficacy of hyperbaric oxygen therapy 

(HBOT) is widely observed in carbon monoxide 

poisoning and O2 toxicity is rare in clinical use of HBOT 

[27]. Furthermore, previous studies have demonstrated 

that HBOT significantly reverses D-gal induced learning 

and memory impaired mice by upregulating antioxidant 

enzymes and reducing oxidative stress, inflammation, 

apoptosis and aging-related proteins expression [19, 20]. 

Therefore, we sought to evaluate the effect of HBOT on 

cardiometabolic parameters in D-gal induced cardiac 

aging rats. We found that HBOT significantly alleviated 

metabolic impairments in NDDg rats as indicated by 

decreased plasma insulin level and HOMA index 

compared to sham-treated NDDg rats, and even restored 

to the same level as NDV rats in the present study (Table 

1). The roles of HBOT on senescence markers have been 

reported. It has been shown that HBOT effectively 

decrease hippocampal senescence marker expressions 

(p21 and p53) in D-gal induced brain aging mice [20]. In 

our study, HBOT significantly reduced cardiac 

senescence marker expression in NDDg and even 

restored to the same level of NDV rats (Table 2). These 

findings suggested that HBOT could attenuate the 

cardiometabolic impairments and reduced the aging 

process in the heart in D-gal induced aging rats.  

 

The mechanism responsible for these benefits might be 

attributable to the findings that HBOT could reduce the 

ROS production, depolarization, and swelling of the 

cardiac mitochondria in NDDg rats compared to its 
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respective sham-treated rats, and had the similar levels 

of mitochondrial functions and morphology as found in 

NDV rats (Table 2). A recent study has shown that 

HBOT could lead to a production of enzymatic and 

non-enzymatic antioxidants, resulting in decreased 

oxidative stress and damage [27]. In addition, through 

restoration of oxygen tension and cellular energy 

production, HBOT increased mitochondrial oxidative 

phosphorylation, ATP production and decreased 

mitochondrial DNA damage [28]. In rats with focal 

brain injury, HBOT (100% O2, 2.8 atmosphere absolute 

(ATA) for 45 minutes, twice per day for 3 days) could 

provide neuroprotective effect through decreasing 

mitochondrial membrane depolarization and apoptotic 

markers [29]. These could lead to improved 

mitochondrial function in HBOT treated NDDg rats in 

our study. In addition, HBOT effectively decreased 

apoptosis and increased autophagy in NDDg rats 

compared to its sham-treated counterpart, and even 

restored them to the same apoptotic level and autophagy 

level as found in NDV rats (Table 2). Consistently, a 

recent study has shown that HBOT (2ATA, 60 minutes, 

once daily for 5 days) significantly increased 

autophagic flux as indicated by increased LC3-II and 

decreased p62 via inhibiting the mechanistic target of 

the rapamycin (mTOR) pathway in rats with spinal 

nerve ligation (SNL) compared to sham-SNL rats [30]. 

Contrary to our findings, HBOT preconditioning 

(2.5ATA, 1hr, one time per day for 14days) could 

reduce Beclin-1 and increased mTOR expression 

resulting in the inhibition of exaggerated autophagy in 

rats with myocardial ischemia reperfusion injury [31]. 

The discrepancy between a previous study and ours 

might be owing to the difference between the models 

(MIRI vs aging rats) and the pressure used for HBOT 

(2.5ATA vs 2ATA). Therefore, our study demonstrated 

that HBOT effectively provided cardiometabolic 

protection through attenuation of cardiac oxidative 

stress, inflammation, apoptotic cells, dysfunctional 

mitochondria, and increased autophagy in NDDg rats, 

leading to the restoration of cardiac functions in the 

present study (Table 2). Consistently, a recent clinical 

study has demonstrated that %LVEF from 

echocardiographic result was significantly increased in 

elderly men after receiving HBOT (2ATA for 90 

minutes (with 5 minutes air breaks every 20 minutes), 

once a day, 5days per week for 60days) when compared 

to %LVEF before receiving HBOT [32].  

 

HBOT intervention in prediabetes and prediabetes 

with aging and cardiometabolic improvement 

 

In pre-diabetic rats, our results demonstrated that HBOT 
decreased oxidative stress, inflammation, apoptotic cells 

and dysfunctional mitochondria compared to sham-

treated HFV rats leading to effectively restored cardiac 

functions (Table 2). Furthermore, HBOT also 

ameliorated glucose metabolism impairments as revealed 

by decreased plasma insulin level and HOMA index in 

pre-diabetic rats compared to sham-treated HFV rats and 

even restored to the same level as NDV rats (Table 1). 

Consistently, a previous study has shown that 

streptozotocin induced diabetic rats which received 

HBOT (2.3ATA for 1 h/day) for 10 days showed 

significantly reduced blood glucose level which was 

associated with significant decrease in the percentage of 

β-cell damage compared to diabetic rats without HBOT 

[33]. In diabetic rats with obesity, HBOT could enhance 

the metabolism of glucose and lipid in the skeletal 

muscle, suggesting that HBOT can prohibit an elevated 

glucose level and adipocyte hypertrophy [22]. 

Additionally, a previous study demonstrated reduced 

blood glucose and insulin levels, increased skeletal IL-10 

level and decreased adipose tissue TNF-α level in HBOT 

(1.3ATA) treated obese type 2 diabetic rats when 

compared with no HBOT rats [21].  

 

In pre-diabetic aging rats, the worsening of cardiac 

dysfunction was found, compared to either aging rats or 

pre-diabetic rats as demonstrated in the present study. 

To attenuate these detrimental effects of combined 

aging and prediabetes, the HBOT was used to alleviate 

the adverse effects of such combined conditions. 

Regarding metabolic impairments, HBOT only 

effectively attenuated the increased plasma insulin level 

and HOMA index in HFDg rats compared to sham-

treated HFDg rats (Table 1). However, the increased 

total cholesterol level, LDL level and decreased HDL 

level found in HFDg rats were not alleviated by HBOT 

(Table 1). Consistent with a previous study, treatment 

with HBOT (2.5ATA for 60minutes per day) for 

2weeks, 2 cycles in MSG induced obese mice showed 

no significant difference in total cholesterol, LDL and 

HDL levels when compared to that of the sham-treated 

MSG mice [34]. Our findings indicated that HBOT-

treated high-fat diet D-gal (HFDg) rats had significantly 

reduced cardiac oxidative stress, metabolic and 

autophagic impairments and mitochondrial dysfunction 

compared to sham-treated HFDg rats, and even restored 

them to the same levels as NDV rats. However, 

although HBOT-treated HFDg rats showed significantly 

increased LV functions compared to its sham-treated 

rats, it did not reach the same level of cardiac function 

found in NDV rats. This may be explained by that fact 

that the severity of mitochondrial dysfunctions and 

cardiac impairments was worse in sham-treated HFDg 

rats, compared to sham-treated HFV and NDDg rats. 

Moreover, mitochondrial dynamics impairments in 

HFDg rats were not diminished after HBOT. It is well-
known that cellular senescence is a notable factor which 

contributes to inflammation and accelerates the aging 

process [35, 36]. A growing body of evidence has 



 

www.aging-us.com 10966 AGING 

revealed that senescent cells could yield inflammatory 

cytokines, for instance TNF-α, IL-6 resulting in 

mitochondrial dynamics impairments [35, 37, 38]. 

Cardiac senescent cells were indicated as an increased 

expression of SA-β-gal positive cells and cardiac 

inflammation was demonstrated by an increased 

expression of TNF-α level in the heart in the current 

study. HBOT could only alleviate the increased SA-β-

gal positive cells and cardiac TNF-α in HFDg rats, but 

could not bring back the senescent and inflammatory 

level to the same as that of the NDV rats (Table 2). 

These results might be one of the reasons why HBOT 

could not mitigate the impairments of mitochondrial 

dynamics in HFDg rats. Additionally, rats in the current 

study received HBOT only at 2ATA for 1hr, one time 

per day for 2weeks. However, earlier experiments of D-

gal induced brain aging mice received HBOT at 

2.5ATA for 1hr, one time per day for 2weeks [19, 20]. 

Furthermore, HBOT preconditioning at 2.5ATA, 1hr, 

one time per day for 2weeks could effectively decrease 

infarct size compared to sham-treated rats [39]. Hence, 

the increased severity of impairments found in high-fat 

D-gal rats and the variation in given HBOT pressure 

might be the reasons why HBOT could not bring back 

the cardiac function level to the same level as NDV rats 

in HFDg rats. Consequently, HBOT could only 

decrease inflammation and apoptotic cells in HFDg rats 

compared to sham-treated HFDg rats, but not reach the 

same level to that of NDV rats (Table 2).  

 

CONCLUSIONS 
 

Our results indicated that HBOT could restore the 

normal cardiac function in either aging induced by D-

gal rats or high-fat diet induced pre-diabetic rats. 

Mechanistically, HBOT effectively alleviated the 

cardiac dysfunction in aging pre-diabetic rats through 

decreased oxidative stress, inflammation, apoptosis, 

dysfunctional mitochondria, metabolic and autophagic 

impairments. Thus, HBOT could be a potential 

therapeutic intervention in aging pre-diabetic people 

with impaired cardiac function. 

 

Limitations 

 

From a clinical translation point of view, the HBOT-

treated NDV group was not performed in the present 

study. In clinical settings particularly, HBOT is 

prescribed for patients under specific pathological 

conditions. In addition, a recent study has indicated that 

glucose profile, plasma MDA level and cardiac 

functions were not different between HBOT-treated 

control rat and no HBOT-control rat [40]. Regarding the 

hallmarks of alterations of cardiac structures, an earlier 

investigation has shown that cardiac architecture was 

not altered according to H and E staining. Furthermore, 

Masson’s Trichrome staining revealed that cardiac 

fibrosis was not observed in D-gal injected mice when 

compared to their control counterparts [6]. As a result, 

we did not determine cardiac collagen deposits and 

coronary density in the present study. In this study, the 

arterial blood gas was not measured to verify the change 

of PaO. However, a previous HBOT related 

investigation has revealed that arterial blood was 

collected through right carotid puncture in the model of 

acute lung injury rats with HBOT treatment [41], and 

the results revealed that PaO2 was significantly 

increased and PaCO2 was decreased in HBOT treated 

rats compared to non-HBOT rats. Consistently, an 

earlier study has described that HBOT treated rats 

showed significantly increased PaO and decreased 

PaCO2 compared to non-HBOT rats in carbon dioxide 

poisoning rat model [42]. These findings demonstrated 

the significant changes in improved arterial blood gas 

due to HBOT.  

 

In addition, although this study did not investigate the 

dose-dependent effects of HBOT, previous studies have 

already demonstrated it in different models. In the rat 

model of burn-induced neuropathic pain, rats treated 

with two-week HBOT had lower expressions of the 

pain-related neuropeptides (Substance P and CGRP) in 

the hind paw skin compared to rats treated with HBOT 

for one-week rats [43]. Future studies are needed to 

investigate the dose-dependent effects for an optimal 

HBOT dose with greatest protective efficacy. ROS is 

known to affect cardiac pathological remodeling, and 

could alter cardiomyocyte size and degree of fibrosis in 

cardiac tissues. However, we did not determine these 

parameters. Future studies need to determine whether 

HBOT effectively alter cardiomyocyte size and fibrosis 

in this model. 

 

MATERIALS AND METHODS 
 

Animals 

 

All rats were conducted in accordance with ethical 

procedures approved by Faculty of Medicine, Chiang 

Mai University, Thailand (Institutional Animal Care 

and Use Committee, with the approval number. 

43/2562). Fifty-six male Wistar rats weighing 200-220 

g were acquired from Bangkok, Thailand (Nomura 

Siam International Co., Ltd.). The rats were provided 

with normal rat chow, water ad libitum.  

 

Experimental design and hyperbaric oxygen therapy 

(HBOT) 

 

One week after acclimatization period, male Wistar rats 

were allocated to receive a normal diet (ND) with 

19.77% energy, as well as a high-fat diet (HFD) with 
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52.98% energy, for 12 weeks to induce obese-insulin 

resistant condition [44]. After that, rats were separated 

into a vehicle group (0.9% normal saline, subcutaneous 

injection (SC)) and a D-gal group (150 mg per kg/day, 

SC) for further 8 weeks and continued their respective 

diets; ND and HFD up to week 20. Rats were further 

randomly subdivided into sham-treated and HBOT-

treated rats at week 21. For sham-treated rats, they were 

divided into 4 groups as follows: normal diet fed rats 

with vehicle (NDV), high-fat diet fed rats with vehicle 

(HFV), normal diet fed rats with D-gal (NDDg) and 

high-fat diet fed rats with D-gal (HFDg) rats. For 

HBOT-treated rats, they were divided into 3 groups as 

follows: HFV, NDDg and HFDg rats. For HBOT-

treated rats, they were put in the hyperbaric chamber 

and 100% oxygen (O2) with 250 L/min flow rate, 2ATA 

were given to the rats for 60 minutes with pre-10 

minutes for compression phase and decompression 

phase for 10 minutes, total duration: 80 minutes. 

Regarding sham groups, rats were given oxygenation at 

ambient pressure with 80 L/min flow rate for 80 

minutes. Both HBOT and sham were given to the rats 

once daily for 14 days [19, 20]. 

 

Throughout the experimental period, body weight and 

food intake of all rats were recorded. About 24 hours 

after sham and HBOT treatment, blood pressure 

measurement, echocardiography and heart rate 

variability for determining autonomic activity were 

performed. Blood was collected from the rats’ tail veins 

for metabolic assessment. Rats were anesthetized using 

Zoletil (50 mg/kg) and Xylazine (0.15 mg/kg) via 

intramuscular injection at the end of the study protocol, 

and a pressure-volume (P-V) loop recording system was 

used to determine left ventricular (LV) function. Rats 

were then sacrificed and mitochondrial function and 

biochemical studies were determined after the removal 

of the heart. The experimental design is illustrated in 

Figure 10. Heart tissues from 8 rats/group were utilized 

for determining the cardiac and mitochondrial

 

 
 

Figure 10. Study design. Fifty-six Wistar rats were fed normal diet or high-fat diet for 12 weeks. For subsequent 8 weeks, they were 

subcutaneously injected either vehicle (0.9% normal saline) or D-gal (150mg/kg/day). Rats were randomly subdivided into 7 groups at week 
21: sham-treated (normal diet fed rats with vehicle (NDV), high-fat diet fed rats with vehicle (HFV), normal diet fed rats with D-gal (NDDg), 
high-fat diet fed rats with D-gal (HFDg)) and HBOT-treated (HFV, NDDg, HFDg). Sham rats received ambient pressure of oxygen while HBOT-
treated ones received 100% oxygen given once daily for 60 minutes at 2 ATA. ND, normal diet; HFD, high-fat diet; SC, subcutaneous; NSS, 
normal saline; NDV, normal diet fed rats with vehicle; NDDg, normal diet fed rats with D-gal; HFV, high-fat diet fed rats with vehicle; HFDg, 
high-fat diet fed rats with D-gal, ATA, atmosphere absolute; HBOT, hyperbaric oxygen therapy. 
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functions. As regard to senescence associated β 

galactosidase and TUNEL staining, heart tissues from 3 

rats/group were determined. For the rest of the other 

parameters, heart tissues from 5 rats/group were utilized. 

 

Metabolic parameters assessment 

 

Plasma glucose and triglyceride (TG) levels were 

detected by colorimetric assay using a commercially 

available kit (Biotech, Bangkok, Thailand). Plasma 

insulin level was evaluated by a sandwich ELISA kit 

(Millipore, MI, USA). Insulin resistant degree was 

evaluated by homeostasis model assessment (HOMA); 

which is determined from the formula using fasting 

plasma glucose and insulin levels. Fasting plasma 

high-density lipoprotein (HDL) and total cholesterol 

(TC) levels were assessed with the commercially 

available kit purchased from ERBA diagnostic, 

Mannheim, Germany [14]. 

 

Tail-cuff blood pressure determination and 

assessment of echocardiography 

 

Systolic blood pressure (SBP), diastolic blood pressure 

(DBP) and mean arterial pressure (MAP) were obtained 

from the non-invasive CODA2 channel system 

according to our recent study [14]. 

 

Echocardiography, non-invasive method, was used to 

assess LV function. Rats received light anesthesia with the 

use of isoflurane 2% with 2 L/min of O2. An 

echocardiography probe was placed at the parasternal 

short axis of the chest, which was connected to a machine. 

At the papillary muscles, M mode echocardiography was 

determined. Percent ejection fraction (%EF) and % 

fractional shortening (%FS) were evaluated [14].  

 

Assessment of heart rate variability (HRV) 

 

HRV was assessed via restraining the limbs of the rats 

under inhalational anesthesia (2.5% isoflurane) in a 

prone position. A needle electrode was subcutaneously 

placed into the limbs. When the rats gained full 

consciousness, ECG recording was performed. 20 

minutes of ECG signals were recorded by using signal 

transducer, and functioned via a Chart 5.0 program. For 

HRV data analysis, selection of 300 consecutive RR 

intervals obtained from tachogram was performed. LF 

and HF from HRV were determined and an increase in 

LF/HF ratio demonstrates the imbalance of cardiac 

sympathovagal activity [14]. 

 

Assessment of pressure-volume (P-V) loop study 

 

P-V loop study was performed and analyzed following 

the steps as reported in our recent study [14]. The 

investigated parameters gained from the P-V loop study 

involved end-systolic pressure (ESP), end-diastolic 

pressure (EDP), maximum and minimum dP/dt 

(dP/dtmax and dP/dtmin), and heart rate (HR).  

 

Evaluation of senescence-associated β-galactosidase 

(SA-β-gal) staining 

 

SA-β-gal staining was determined following the 

manufacturer’s instructions (Cell Signaling 

Technology) and the steps shown in our previous study 

[14]. The senescent cells were detected as blue 

precipitated cells in the cytoplasm with magnification of 

x200 [8]. SA-β-gal positive cells numbers were 

determined in three fields using Image J software as 

previously described in a recent study [14]. 

 

Cardiac mitochondrial function assessment 

 

Cardiac mitochondrial functions were evaluated by 

assessing mitochondrial ROS production, mitochondrial 

membrane potential changes, and mitochondrial 

swelling following the steps outlined in our recent 

report [14]. By using transmission electron microscope 

(TEM), mitochondrial morphology from cardiac tissue 

was evaluated [14]. 

 

Assessment of cardiac mitochondrial dynamics 

 

Regarding the dynamic processes of mitochondria, 

western blot analysis was performed in order to detect 

the expressions of the mitochondrial fusion proteins; 

mitofusin 1/2 (MFN1/2), and fission protein; 

mitochondrial dynamin-related protein 1 (Drp1) from 

the isolated crude mitochondrial fraction and the 

cytosolic phosphorylated Drp1expression according to 

the steps as reported in our recent study [14]. 

 

Assessment of cardiac oxidative stress and 

inflammation 

 

Oxidative stress in cardiac tissue was assessed by 

malondialdehyde (MDA) level with the use of high-

performance liquid chromatography (HPLC) system 

and inflammation in heart tissue was evaluated with the 

use of an ELISA kit as shown in a previous study [14] 

according to the protocol from manufacturer (Thermo 

Fisher Scientific). 

 

TUNEL assay for cardiomyocyte apoptosis 

quantification 

 

 Cardiomyocyte apoptosis was evaluated by Terminal 

deoxynucleotidyl transferase nick-end labeling 

(TUNEL) positive nuclei colocalized with DAPI 

staining with the use of in situ cell death detection kit. 
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Percent of the number of TUNEL-positive apoptotic 

cells divided by the total number of DAPI stained cells 

(nucleated cells) was determined as the apoptosis index 

as described in previous studies [14, 45, 46]. 

 

Cardiac expression of apoptotic and autophagy 

proteins 

 

Western blot analysis was carried out for measuring the 

expression of proteins; Bax, Bcl-2, caspase 3, and 

Cleaved-caspase 3, p62, Beclin 1, LC3II using anti- 

p62, Beclin 1, LC3II, caspase 3, Cleaved-caspase 3 and 

anti-GAPDH. Bound antibody was detected by the use 

of horseradish peroxidase conjugated with anti-rabbit or 

anti-mouse IgG. For visualization of the peroxidase 

reaction products, ECL detection reagent was used [14]. 

 

Statistics 

 

Data have been expressed as mean ± standard error of 

mean (SEM). Comparisons of variables among the 

groups were evaluated with the use of one-way-

ANOVA with LSD post-hoc test and statistical 

significance was considered at P value < 0.05. 
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