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A novel focal adhesion‑related risk model 
predicts prognosis of bladder cancer —— 
a bioinformatic study based on TCGA and GEO 
database
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Abstract 

Background:  Bladder cancer (BLCA) is the ninth most common cancer globally, as well as the fourth most common 
cancer in men, with an incidence of 7%. However, few effective prognostic biomarkers or models of BLCA are avail-
able at present.

Methods:  The prognostic genes of BLCA were screened from one cohort of The Cancer Genome Atlas (TCGA) 
database through univariate Cox regression analysis and functionally annotated by Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis. The intersecting genes of the BLCA gene set and focal adhesion-
related gene were obtained and subjected to the least absolute shrinkage and selection operator regression (LASSO) 
to construct a prognostic model. Gene set enrichment analysis (GSEA) of high- and low-risk patients was performed 
to explore further the biological process related to focal adhesion genes. Univariate and multivariate Cox analysis, 
receiver operating characteristic (ROC) curve analysis, and Kaplan–Meier survival analysis (KM) were used to evaluate 
the prognostic model. DNA methylation analysis was presented to explore the relationship between prognosis and 
gene methylation. Furthermore, immune cell infiltration was assessed by CIBERSORT, ESTIMATE, and TIMER. The model 
was verified in an external GSE32894 cohort of the Gene Expression Omnibus (GEO) database, and the Prognoscan 
database presented further validation of genes. The HPA database validated the related protein level, and functional 
experiments verified significant risk factors in the model.

Results:  VCL, COL6A1, RAC3, PDGFD, JUN, LAMA2, and ITGB6 were used to construct a prognostic model in the 
TCGA-BLCA cohort and validated in the GSE32894 cohort. The 7-gene model successfully stratified the patients into 
both cohorts’ high- and low-risk groups. The higher risk score was associated with a worse prognosis.

Conclusions:  The 7-gene prognostic model can classify BLCA patients into high- and low-risk groups based on the 
risk score and predict the overall survival, which may aid clinical decision-making.
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Background
According to Cancer Statistics 2021, published by 
American Cancer Society, bladder cancer (BLCA) is 
the ninth most commonly diagnosed cancer globally 
and is the fourth most common malignancy in men [1]. 
Over 570,000 new cases of BLCA and 210,000 deaths 
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were recorded in 2020 alone, indicating poor prognosis 
[2]. Men are at four times the risk of developing BLCA 
than women [3]. The significant risk factors of BLCA are 
advanced age (between 70 and 84  years) and cigarette 
smoking. In fact, approximately 50% of BLCA patients 
are smokers [4]. Furthermore, almost 3/4th of the diag-
nosed cases are non-muscular invasive bladder cancer 
(NMIBC), often treated with transurethral resection of 
bladder tumors (TRUBT) and intravesical therapy. Mus-
cular invasive bladder cancer (MIBC) is relatively rare 
and is generally treated by radical cystectomy and neoad-
juvant chemotherapy [5, 6]. Although pathological biop-
sies and cystoscopies are routinely used to detect BLCA, 
these methods are invasive and inconvenient. Although 
several urine biomarkers of BLCA have been confirmed 
by the US Food and Drug Administration (FDA), they 
lack the diagnostic accuracy to replace cystoscopy [4]. 
Therefore, this study aimed to identify novel, effective 
diagnostic biomarkers of BLCA.

Focal adhesion (FA) is a group of macromolecular pro-
teins that connect the ends of specialized actin fibers to 
the extracellular matrix (ECM) and enable cell migration, 
which is critical to the process of tumor metastasis [7]. 
FAs are frequently downregulated during cancer metas-
tasis, although some FA components are upregulated 
in some invasive tumors [8]. Thus, FAs are increasingly 
being considered therapeutic targets of cancer.

Analysis of gene expression datasets from The Cancer 
Genome Atlas (TCGA) and Gene Expression Omnibus 
(GEO) have helped identify prognostic gene signatures 
of various cancers. For instance, a predictive model con-
sisting of hypoxia gene signatures was constructed for 
BLCA based on TCGA and GEO databases [9]. In addi-
tion, a risk score model of epithelial-mesenchymal tran-
sition (EMT)-related gene signature was also developed 
to predict BLCA prognosis based on the two databases 
[10]. A recent study established an 11-gene prognostic 
signature of BLCA based on five cohorts from TGCA and 
GEO [11]. However, the prognostic value of FAs has not 
been ascertained by any study so far. Therefore, this study 
aimed to explore the relationship between FAs and BLCA 
prognosis using the bioinformatics approach and estab-
lish a predictive model based on the risk score.

Materials and methods
Data source and processing
TCGA and GEO databases were screened for BLCA 
cohorts with a sample size > 150, including clinical data 
such as overall survival duration, survival status, gender, 
age, histological grade, pathological stage, TNM stage, 
and lymphatic stage metastasis. The GEO cohorts were 
further screened based on additional requirements for 
the verification set. The gene expression matrix dataset 

(HTSeq-FPKM) of bladder cancer (n = 430) was down-
loaded from TCGA on UCSC Xena, and the clinical 
data were obtained from cBioPortal (http://​www.​cbiop​
ortal.​org). The external GSE32894 cohort (n = 308) with 
expression matrix and clinical data [12] was acquired 
from the GEO database.

Selection of FA‑related differentially expressed genes 
(DEGs)
TCGA-BLCA cohort was set as the training set, and 
prognostically relevant genes were screened using the 
univariate Cox analysis with a p-value < 0.01 as the cri-
terion. R software package “limma” was used to identify 
DEGs between the BLCA and normal bladder samples 
in the same cohort from these selected genes [13]. The 
threshold was set as |log (fold change) |> 1, and the 
adjusted p-value < 0.01. The significant DEGs related 
to BLCA prognosis intersected with 199 FA-related 
genes obtained from the Molecular Signatures Database 
(MSigDB) of GSEA using keywords KEGG_FOCAL_
ADHESION [14] using a Venn diagram.

Establishment of the predicting model related to risk score
A prognostic model was constructed with the intersecting 
genes identified as above by LASSO regression using the 
R software packages “glmnet” [15] and “survival”. The “CV.
glmnet” function can randomly simulate 1000 times for 
k-fold cross-validation (k = 10). The dataset was automati-
cally divided into 10 equal portions in the tenfold cross-
validation. One random part was selected as the validation 
set, and the remaining 9 parts as training sets. The devi-
ance of the 10 tests was used to evaluate the accuracy of 
the tenfold CV, and minimum deviance indicated the best 
performance of the model. The regression coefficients of 
individual genes were determined, and genes with regres-
sion coefficient approaching 0 with the increase in Lambda 
were excluded. The remaining candidate genes were used 
to construct the model, and the risk score of each patient 
in the TGCA-BLCA cohort was calculated as ∑7i(mi · ni ), 
where 7 is the number of candidate genes, mi is the gene 
expression value and ni is regression coefficient.

KEGG enrichment analysis
The latest KEGG Pathway gene annotations were 
obtained through KEGG rest API ( https://​www.​kegg.​jp/​
kegg/​rest/​kegga​pi.​html) in the KEGG official database 
[16]. KEGG pathway enrichment analysis was then per-
formed using the R software package “clusterProfiler” 
through an online tool called Sangerbox (http://​www.​
sange​rbox.​com/​tool). The threshold for statistical signifi-
cance were p < 0.05 and FDR of < 0.1.

http://www.cbioportal.org
http://www.cbioportal.org
https://www.kegg.jp/kegg/rest/keggapi.html
https://www.kegg.jp/kegg/rest/keggapi.html
http://www.sangerbox.com/tool
http://www.sangerbox.com/tool
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Gene set enrichment analysis (GSEA)
GSEA software and predefined gene set files were 
downloaded from https://​www.​gsea-​msigdb.​org, 
and the samples were divided into high- and low-risk 
groups based on the risk score. The number of permu-
tations was set as 1000.

Univariate and multivariate Cox regression analyses
The R software package "survival" was used for univari-
ate and multivariate Cox regression analysis of the risk 
score and clinicopathological factors, including age, 
gender, pathological stage, T stage, histological grade, 
lymphatic metastasis, and angio-lymphatic invasion. 
Only the statistically significant factors in the univari-
ate Cox analysis were included in the multivariate Cox 
model.

ROC analysis
The R software package “pROC” was used for receiver 
operating characteristic (ROC) analysis. The area under 
the curve (AUC) was obtained, and the confidence 
interval was evaluated. The cut-off values for 1-, 3- and 
5-year overall survival (OS) were calculated.

Kaplan–Meier analysis
The R software package “Survival” was used to inte-
grate the OS rate and duration with the gene expres-
sion data of both TCGA-BLCA and GSE32894 cohorts. 
The prognostic significance of each gene was evaluated 
by the Cox method. The patients were divided into the 
high- and low-risk groups using the cut-off value of 
3-year OS. For the subgroups based on clinical vari-
ables and the expression levels of the 7 candidate genes, 
the best cut-off value for the risk score was calculated 
using the R software package “Maxstat”. The minimum 
sample size was set at > 25%, and the maximum sample 
size at < 75%, and the patients were divided into high- 
and low-risk groups.

DNA methylation analysis
It is believed that DNA methylation is responsible 
for influencing prognosis in cancer development. An 
online tool MethSurv (https://​biit.​cs.​ut.​ee/​meths​urv/) 
was used to explore the prognostic patterns of single 
CpG methylation of the 7 genes in bladder cancer [17]. 
Only the most significant prognostic p-values were 
selected (likelihood ratio (LR) test p-value).

Immune environment evaluation
The R packages “CIBERSORT” (used to calculate the 
cell composition as a function of gene expression pro-
file) and “ESTIMATE” (used to calculate the fraction of 

stromal and immune cells according to gene expression 
level) were used to calculate the number of infiltrating 
immune cells, immune score, stromal score and tumor 
purity in each patient from TCGA-BLCA cohort [18, 
19]. Twenty-two immune cell genotypes were obtained 
by combining CIBERSORT with LM22, a gene matrix 
downloaded from the CIBERSORT website (https://​
ciber​sort.​stanf​ord.​edu/), within the R software. The dif-
ferences between the risk groups were analyzed, and 
the immune score and risk score were combined for 
survival analysis. Besides, the TIMER platform (http://​
timer.​cistr​ome.​org/) was also used to verify the immune 
infiltration analysis completed by CIBERSORT. The 
“gene module” of immune association was presented 
to evaluate the correlation between immune cells and 
every 7 genes in the prognostic model [20].

Verification of the prognostic model
The accuracy of the prognostic model was tested on the 
external GSE32894 dataset. Besides, the Prognoscan 
database (www.​progn​oscan.​org) was also applied to vali-
date further the correlation between gene expression and 
overall survival time [21], where GSE5287 and GSE13507 
were utilized. The protein expression of individual genes 
in the model in cancer and normal tissues was also 
observed in the Human Protein Atlas (HPA) database 
(http://​www.​prote​inatl​as.​org/), so as further to validate 
the genes in our model [22].

Cell culture and small interfering RNA (siRNA) transfection
The human BLCA cell line T24 was used in this study, 
purchased from the Chinese Academy of Sciences cell 
bank. T24 was cultured in RPMI-1640 medium (Procell) 
with 10% fetal bovine serum. The sequence of siRNA tar-
geting COL6A1 and LAMA2 purchased from JTSBIO 
Co., were listed in Supplementary Table 5.

RNA extraction and quantitative real‑time PCR (qRT‑PCR)
Extraction of RNA was performed with RNAiso Plus 
(Takara). Prime Script RT Master Mix (Takara) was used 
to reverse transcription then cDNA was produced. The 
SYBR kit (Takara) was used to perform qRT-PCR. The 
relative expression of the gene was calculated by the 2−
ΔΔCt method. The primer sequences targeting COL6A1, 
LAMA2 and GAPDH were listed in Supplementary 
Table 6.

Wound‑healing assay
The BLCA cells were seeded in a six-well plate. When the 
density reached more than 90%, a straight line was drawn 
with a 200-ul tip. Cultivation of cells was continued with 

https://www.gsea-msigdb.org
https://biit.cs.ut.ee/methsurv/
https://cibersort.stanford.edu/
https://cibersort.stanford.edu/
http://timer.cistrome.org/
http://timer.cistrome.org/
http://www.prognoscan.org
http://www.proteinatlas.org/
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a low-serum medium containing 3% serum. Photographs 
were taken at 0 h and 48 h, and then the speed of scratch 
healing was compared between the different groups.

Transwell assay
Six hundred ul of medium containing 10% serum was 
added to the lower chamber of a 24-well plate. Each 200 
ul BLCA cell suspension was inoculated in the upper 
chamber. Transwell chambers with 8-μm-pore were used 
for cell migration assay. Following incubation for 24  h, 
cells beneath the membrane were stained with crystal 
violet, and cells above the membrane were washed off 
and imaged by microscopy.

Statistical analysis
All the statistical analysis was completed by software R. 
The Logrank test was used to assess the significance of 
prognostic differences between different groups in the 
Kaplan–Meier analysis. The Kruskal–Wallis rank sum 
test was used in multiple groups comparisons of clinical 
sub-group analysis. Univariate analysis and multivari-
ate analysis were performed using Cox regression analy-
sis with the R package “survival”. The R package “limma” 
was used to identify DEGs between the tumor and nor-
mal samples in the same TCGA-BLCA cohort from 
these selected genes. The R package “glmnet” was used 
in LASSO regression to establish the predicting model. 
A p-value < 0.05 was considered as statistically significant.

Results
Data extraction
The gene expression and clinical data of BLCA samples 
were retrieved from TCGA (n = 430) and GSE32894 
(n = 308). After filtering the data, there were 403 cases in 
the TCGA-BLCA cohort and 224 cases in the GSE32894 
cohort. The flow chart is shown in Fig.  1. Clinical data 
regarding age, gender, histological grade, WHO grade, 
pathological stage, T stage, lymphatic node metastasis, 
and angiolymphatic invasion of the two cohorts are sum-
marized in Table 1.

Establishment of a prognostic model based on the risk 
score
Univariate Cox analysis of the TCGA-BLCA cohort 
identified 2461 genes (p < 0.01), of which 274 were dif-
ferentially expressed between the tumor and non-tumor 
samples (Fig.  2a). Sixteen DEGs intersected with FA-
related genes (Fig.  2b), and were functionally annotated 
by KEGG pathway enrichment analysis (Fig.  2c). The 
detailed information of these genes is listed in Sup-
plementary Table  1. The above DEGs were subjected to 
Lasso regression, and 7 genes with the smallest deviance 
were included in the prognostic model (Figs. 3a, b). The 

coefficient values and other details of these genes are 
listed in Supplementary Table  2, and outcomes of uni-
variate regression analysis are summarized in Supple-
mentary Table  3. The risk score was calculated as VCL 
* 0.1452—ITGB6 * 0.0832 + COL6A1 * 0.0077 + RAC3 
* 0.2404 + PDGFD * 0.0817 + JUN * 0.1192 + LAMA2 * 
0.1927. Furthermore, we performed a matrix correlation 
analysis to determine any collinear relationship between 
these genes. As shown in Fig.  3c, apart from COL6A1 
and LAMA2, the co-expression indices of the other gene 
pairs were all < 0.5.

Gene set enrichment analysis (GSEA)
The 403 samples in the TCGA-BLCA cohort were strati-
fied into high- and low-risk groups based on the 7-gene 
risk score. GSEA further indicated that the high-risk 
group was significantly associated with biosynthesis of 
unsaturated fatty acids, tight junction, lysine degradation, 
and ubiquitin-mediated proteolysis (p < 0.005; Fig. 4).

Kaplan–Meier analysis of 7 genes
The patients in the TCGA-BLCA cohort were stratified 
into high- and low-expression subgroups for each of the 7 
prognostic genes and subjected to Kaplan–Meier analysis 
to determine their impact on survival. These seven genes 
include COL6A1 (Fig. 5a), ITGB6 (Fig. 5b), JUN (Fig. 5c), 
LAMA2 (Fig. 5d), PDGFD (Fig. 5e), RAC3 (Fig. 5f ) and 
VCL (Fig.  5g). And the GSE32894 cohort was divided 
with the same criterion for validation. These seven genes 
include VCL (Fig. 6a), COL6A1 (Fig. 6b), ITGB6 (Fig. 6c), 
JUN (Fig.  6d), LAMA2 (Fig.  6e), PDGFD (Fig.  6f ) and 
RAC3 (Fig.  6g). The heatmap demonstrated correlation 
between gene and survival (Fig. 6h), except for JUN and 
PDGFD in GSE32894; all genes comprising the prog-
nostic model were significantly associated with the sur-
vival of BLCA patients (p < 0.05). The high expression of 
ITGB6 indicated a better prognosis in both the training 
and validation sets. In contrast, increased expression of 
RAC3, COL6A1, and LAMA2 was correlated with worse 
prognosis in both sets. Interestingly, high expression of 
VCL was associated with a worse prognosis in the train-
ing set but indicated a favorable prognosis in the valida-
tion set. Taken together, ITGB6, RAC3, COL6A1, and 
LAMA2 could accurately predict patient prognosis.

Univariate and multivariate Cox regression analysis
Univariate and multivariate Cox regression analy-
ses identified age, angiolymphatic invasion, and the 
risk score as independent prognostic factors of BLCA 
(Table  2). Furthermore, ROC curve analysis of the 
three factors indicated that the AUC of the risk score 
was greater than that of the other two factors (Supple-
mentary Fig. 1), suggesting more substantial predictive 
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accuracy. Furthermore, higher risk scores correlated 
with more advanced angiolymphatic invasion, T stage, 
pathological stage, and lymphatic node metastasis. 
The patients were divided into subgroups based on 
these clinical factors, and the expression levels of the 
7 prognostic genes were compared. As shown in Fig. 7, 

the expression levels of COL6A1 and LAMA2 were sig-
nificantly different across all subgroups. Furthermore, 
the high- and low-risk groups had very different sur-
vival rates in subgroups demarcated by age, gender, his-
tological grade, lymphatic node metastasis, and T stage 
(Fig.  8), indicating that the risk score can predict the 

Fig. 1  Flow chart of the study process
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prognosis in clinical sub-groups and may assist in clini-
cal decision making.

DNA methylation analysis of 7 genes
We presented prognostic values of DNA methylation 
clustering the expression levels of each 7 genes of the 
prognostic model in the TCGA-BLCA cohort by KM 
curves (Supplementary Fig.  2). The CpG islands corre-
sponding to the smallest likelihood ratio (LR) test p-value 
were chosen in all 7 genes to ensure the statistical sig-
nificance. The specific CpG resource of each gene was 
depicted in the figure. Besides, the relationship between 

DNA methylation and the prognosis of ITGB6 demon-
strated its protective effect, displaying the same trend 
as it does in the 7-gene prognostic model. prognosis of 
ITGB6 demonstrated its protective effect, displaying the 
same trend as in the 7-gene prognostic model.

Immune cell infiltration
The infiltration ratio of 22 immune cell types was ana-
lyzed in the TGCA-BLCA cohort using CIBERSORT 
(Fig.  9a) and compared between the high- and low-risk 
groups. As shown in Fig.  9b, the predominant infiltrat-
ing immune cells in the high-risk groups were activated 
CD4 memory T cells, resting dendritic cells (DCs), and 
activated mast cells, whereas the M1 macrophages and 
activated DCs showed higher infiltration in the low-risk 
group (p < 0.0001). Kaplan–Meier survival analysis fur-
ther showed that high infiltration of resting DCs activated 
mast cells and activated CD4 memory T cells, along with 
a high-risk score, which portended the worst progno-
sis. In addition, low infiltration of M1 macrophages and 
activated DCs in the high-risk group was associated with 
the worst prognosis (Supplementary Fig. 3). The immune 
score and tumor purity in TCGA-BLCA cohort were 
evaluated using the “ESTIMATE” R package (Supple-
mentary Table 4). The patients’ samples were divided into 
4 clusters using the median risk and immune scores. As 
shown in Fig. 9c, patients with the lowest immune score 
and highest risk score had the worst prognosis. Besides, 
M0, M2 macrophages, and neutrophils were also statisti-
cally significant (p < 0.05), thus these immune cells were 
also selected for further analysis on the TIMER platform. 
After filtering associated immune cells, M2 macrophages 
were ultimately chosen to explore further the relation-
ship with the 7 genes (Supplementary Fig. 4). Apart from 
ITGB6, which showed a negative correlation as a protec-
tive factor, the other genes were all positively correlated 
with Macrophages M2_CIBERSORT as risk factors, 
demonstrating the same trend as the prognostic model. 
COL6A1, RAC3, LAMA2, and VCL showed significant 
statistical meanings (p < 0.05).

Verification of the prognostic model
The optimum cut-off value of the risk score for 3-year 
OS was -2.2174 and was used to divide the patients in 
the TCGA-BLCA cohort into the high- and low-risk 
groups. Likewise, the optimum cut-off value of the vali-
dation cohort (GSE32894) was calculated as -0.1290. As 
shown in Figs.  10a,  b, patients in the high-risk group 
had significantly worse survival than the low-risk group 
in both the training and verification sets (p < 0.05). Fur-
thermore, the AUC values of the risk score for 1-, 3- and 
5-year OS were respectively 0.66, 0.68, and 0.69 in the 
training set, and 0.66, 0.73, and 0.72 in the validation 

Table 1  Clinical information table. The major clinical factors 
related to prognosis were listed as following

Clinical factors TCGA-BLCA
n = 403%

GSE32894
n = 224%

Age
   > 60 296 73.45 178 79.46

   ≤ 60 107 26.55 46 20.54

Gender
  Male 298 73,95 163 72.77

  Female 105 26.05 61 27.23

Pathological stage
  Stage I&II 130 32.26 - -

  Stage III 140 34.74 - -

  Stage IV 131 32.51 - -

  unknown 2 0.49 - -

T stage
   ≤ T2 121 30.02 216 96.43

  T3 191 47.39 7 1.74

  T4 57 14.14 1 0.25

  unknown 34 8.44 - -

Lymphatic node metastasis
  Negative 235 58.31 - -

  Positive 125 31.02 - -

  Unknown 43 10.67 - -

Angiolymphatic Invasion
  Negative 127 31.52 - -

  Positive 148 36.72 - -

  unknown 128 31.76 - -

Histological grade
  High 380 94.53 - -

  Low 20 4.98 - -

Vital status
  Alive 225 55.83 199 88.84

  Dead 178 45.17 25 11.16

Grade (WHO1999)
  G1 - - 45 20.09

  G2 - - 84 37.50

  G3 - - 93 41.52
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set (Figs. 10c, d). We analyzed the relationship between 
the risk scores and OS duration and the changes in the 
expression of various genes in both cohorts (Figs.  10e, 
f ). As expected, ITGB6 was identified as a protective 
factor in both cohorts. It was downregulated with the 
increasing risk score. Besides, limited by the sample 
size of the Prognoscan online tool, RAC3 and COL6A1 
were the only risk factors that demonstrated a signifi-
cant statistical correlation with the overall survival time 
of patients (Supplementary Figs.  5 and 6, p < 0.05) in 
external dataset GSE13507 and GSE5287, respectively. 
Though KM curves of ITGB6 in the GSE13507 cohort 

(Supplementary Fig. 7) still showed a tendency as a pro-
tective factor, the p-value was > 0.05, with no statisti-
cal significance. Taken together, the 7-gene risk model 
can successfully stratify BLCA patients into prognostic 
groups. Furthermore, In the validation of protein level 
on the HPA database, VCL, COL6A1, RAC3, PDGFD 
and JUN showed higher protein expression in BLCA tis-
sue than in normal tissue. In comparison, ITGB6 showed 
higher protein expression in normal tissue than in BLCA 
tissue. In this database, LAMA2 expression was not 
detected in normal or cancerous tissues (Supplementary 
Fig. 8).

Fig. 2  Identification of Focal Adhesion (FA)-related prognostic genes. a Volcano plot showing the differentially expressed genes (DEGs) between 
the tumor and normal tissue samples in the TCGA-BLCA cohort. The red dots indicate a higher expression of genes in tumor tissues, and the green 
dots indicate a lower expression of genes in tumor tissues. b Venn diagram showing the intersection of FA-related genes and BLCA DEGs. c Bubble 
plot showing the enriched KEGG pathways of DEGs (www.​kegg.​jp/​kegg/​kegg1.​html). The circle size indicates gene ratio, and the color refers to the 
p-value

http://www.kegg.jp/kegg/kegg1.html
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COL6A1 and LAMA2 significantly promotes BLCA cell 
migration
To further investigate the effect of COL6A1 and LAMA2 
on the biological function of bladder cancer cells, a series 
of functional experiments were performed to verify its 
effect. After knocking down the expression of COL6A1 

(Fig.  11a) and LAMA2 (Fig.  11b), the Transwell assay 
showed that the migration ability of bladder cancer 
cells was down-regulated (Figs.  11c, d). The result of the 
wound-healing assay is consistent with that of the Tran-
swell assay (Figs. 11e, f ). COL6A1 and LAMA2 were again 
validated to promote the migration of bladder cancer cells.

Fig. 3  LASSO Cox regression analysis. a Line graph of regression coefficients and Lambda value. Different colors represented different genes. The 
regression coefficients of some genes dropped to 0 with an increase in Lambda, indicating that they may not affect the model. b The deviance of 
the cross-validation. Minimum deviance indicates optimal model performance. c The co-expression heat map of 11 genes. Red indicates positive 
correlation, and green indicates negative correlation
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Discussion
Bladder cancer is a common malignancy of the urinary 
system with unpredictive outcomes. Several bioinformat-
ics studies in recent years have established prognostic 
models, including an immune genes-related model [23] 
and an 11-gene model based on 5 cohorts [11], for clini-
cal decision-making. Furthermore, hypoxia-related risk 

factors [9] and immune landscapes [24] have also been 
associated with bladder cancer prognosis. In this study, 
we successfully established a reliable 7-gene focal adhe-
sion-related prognostic model for BLCA using RNA-seq 
data from the TCGA-BLCA cohort. We verified it on the 
external GSE32894 dataset. Given the regional differ-
ences between the two datasets, the former being from 

Fig. 4  Gene set enrichment analysis (GSEA) of high and low-risk score groups. a Enrichment plot of KEGG_BIOSYNTHESIS_OF_UNSATU​RAT​ED_
FATTY_ACIDS. b Enrichment plot of KEGG_UBIQUITIN_MEDIATED_PROTEOLYSIS. c Enrichment plot of KEGG_TIGHT_JUNCTION. (d) Enrichment plot 
of KEGG_LYSINE_DEGRADATION
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Europe and the latter from North America, we can con-
clude that the model can be applied universally.

The model comprises of 6 risk genes (VCL, 
COL6A1, RAC3, PDGFD, JUN, LAMA2) and 1 pro-
tective gene (ITGB6), all of which are closely related 
to focal adhesion. Among the 7 genes, COL6A1 and 
LAMA2 are the two most significant genes in either 

KM analysis for predicting prognosis or Kruskal–Wal-
lis rank sum test for combined analysis of expression 
level and clinical factors, thus, deserve to be further 
explored.

COL6A1, a gene encoding the collagen VI α1 chain, 
is widely present in the connective tissues of verte-
brates [25]. Collagen VI is a major extracellular matrix 

Fig. 5  Kaplan–Meier (KM) survival analysis of patients divided into the high- and low-expression groups of the 7 prognostic genes in the 
TCGA-BLCA cohort (training set). Blue represents high-risk group, red represents low-risk group. a COL6A1 b ITGB6 c JUN d LAMA2 e PDGFD f RAC3 
g VCL
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protein commonly used to support cell structures. 
Some studies have shown that collagen VI can regulate 
cell migration, apoptosis, and tumor progression [26, 
27]. Previous studies tend to focus on the function of 
collagen VI itself, due to its deficiency in myopathy and 
skeletal muscle diseases [28].

However, COL6A1 has been shown to stimulate prolif-
eration and prevent apoptosis of cancer cells, which has 
also been found to be related to different types of can-
cers. For instance, it was proved to be a potential marker 
of cervical cancer progression in Kazobinka G et  al.’s 
research. The over-expression of COL6A1 was correlated 

Fig. 6  Kaplan–Meier (KM) survival analysis of patients divided into the high- and low-expression groups of the 7 prognostic genes in the GSE32894 
cohort (test set). Blue represents high-risk group, red represents low-risk group. a VCL b COL6A1 c ITGB6 d JUN e LAMA2 f PDGFD g RAC3 h 
Heatmap of gene expression level and prognosis. Yellow indicates that high gene expression leads to worse prognosis, blue indicates that low gene 
expression leads to worse prognosis, and grey indicates a lack of significance (p > 0.05). The deeper color refers to smaller p-value
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Table 2  Univariate and multivariate Cox regression analysis of clinical factors. (HR: hazard ratio; CI: confidence interval)

HR (95%CI) P value HR (95%CI) P value

TCGA​

Age 1.035 (1.019 ~ 1.051) 1.82e-05* 1.039 (1.018 ~ 1.061)  < 0.001*

Gender-male 0.872 (0.630 ~ 1.206) 0.407

Pathological Stage 1.703 (1.405 ~ 2.064) 5.63e-08* 1.236 (0.615 ~ 2.485) 0.552

T stage 1.702 (1.353 ~ 2.142) 5.79e-06* 1.173 (0.806 ~ 1.706) 0.405

Histological grade 2.915 (0.721 ~ 11.78) 0.133

Lymphatic metastasis 2.227 (1.625 ~ 3.051) 6.29e-07* 0.967 (0.385 ~ 2.427) 0.942

Angiolymphatic invasion 2.339 (1.601 ~ 3.416) 1.1e-05* 1.711 (1.054 ~ 2.777) 0.030*

Risk score 3.584 (2.455 ~ 5.233) 3.84e-11* 2.521 (1.455 ~ 4.367)  < 0.001*

Fig. 7  Risk scores and expression levels of the 7 prognostic genes in the different clinical sub-groups of TCGA-BLCA cohort. Risk scores in 
subgroups of a pathological stages, c T stages, e angiolymphatic invasion, and g lymphatic node metastasis. Gene expression levels in subgroups of 
b pathological stages, d T stages, f angiolymphatic invasion, and h lymphatic node metastasis



Page 13 of 19Hu et al. BMC Cancer         (2022) 22:1158 	

with cervical patients’ prognosis and cell biological func-
tions [29]. Besides, the up-regulation of COL6A1 expres-
sion induces  tumorigenesis in prostate cancer cells 
in vivo has also been reported in a study about castration-
resistant prostate cancer [30] and enhanced probability 
of lung cancer cell metastasis in another research [31]. 
Some researchers also reported that the over-expression 
of COL6A1 contributed to poor prognosis of renal clear 
cell carcinoma and glioma patients and enhanced prob-
ability of lung cancer cell metastasis [32, 33]. In addition, 
Snipstad K et al. have reported an up-regulation of extra-
cellular  matrix proteins COL6A1 and LAMA4 in rectal 
cancer after radio‐chemotherapy [34]. All this evidence 
indicated that COL6A1 has a close relationship with 

tumor progression and was a novel biomarker of progno-
sis in different types of cancers, not a simple gene related 
to collagen anymore.

As a member of the cell adhesion family, LAMA2 also 
encodes components of extracellular matrix protein 
called laminin, a glycoprotein in the connective tissue 
basement membrane, and promotes cell adhesion [35]. 
Laminin-α2, encoded by LAMA2, is abundant in skeletal 
muscle, motor nerves, and the brain. It is a composition 
of trimeric laminin-211 [36] and is an essential constitu-
ent of tumor stromal, which can be associated with the 
malignancy of the tumor. Since damage to the basement 
membrane of tumor cells plays a vital role in tumor inva-
sion and transfer, many studies were conducted, and 

Fig. 8  Kaplan–Meier survival curves of high- and low-risk groups stratified based on a-b gender, c-d angiolymphatic invasion, e–f lymphatic node 
metastasis, g-h T stage, i-j age, and k histological grade. Blue high- represents risk group, red represents low-risk group



Page 14 of 19Hu et al. BMC Cancer         (2022) 22:1158 

evidence has shown that laminin expression was related 
to tumor progression [37]. LAMA2 belongs to the 
laminin family. However, seldom researchers paid atten-
tion to the direct correlation between LAMA2 overex-
pression and tumor progression. Most studies focused 
on LAMA2 deficiency leading to muscular disease, and 
it is known that mutations in LAMA2 produce a particu-
larly severe type of congenital muscular dystrophy, called 
LAMA2 chain deficient congenital muscular dystrophy 
(LAMA2-CMD) [38].

More importantly, seldom studies have explored the 
relationship between COL6A1, LAMA2, and bladder 
cancer, thus of great significance in our study.

Besides, other genes in the prognostic model are also 
related to tumors. For instance, Cheng C et  al. claimed 
RAC3 promoted proliferation, migration, and invasion 
through PYCR1/JAK/STAT signaling in bladder cancer [39]. 
VCL has been reported as an important prognostic bio-
marker in prostate cancer [40]. Satow R et al. reported that 
PDGFD promotes aggressiveness in prostate and colorectal 

Fig. 9  Immune infiltration status. a Bar chart showing the infiltration ratio of 22 immune cell types in high and low-risk groups samples. b Violin 
plot showing differences in immune cell types between the high and low-risk groups. c KM survival curves of patients stratified by immune score 
and risk score together
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cancer [41]. Previous research has reported that up-regula-
tion of JUN is associated with the invasiveness of colorectal 
cancer cells [42]. Singh A et al. reported in 2009 that ITGB6 
correlated with a  well-differentiated K-Ras-driven cancer 
such as lung, pancreatic and colon cancer [43].

GSEA of the high- and low-risk groups indicated sig-
nificant enrichment of biological processes including bio-
synthesis of unsaturated fatty acids, tight junction, lysine 
degradation and ubiquitin-mediated proteolysis. proteol-
ysis. Focal adhesion and tight junction commonly belong 
to enriched cell adhesion/junction pathways [44], indi-
cating that these biological processes can further explore 

the relationship between tumorigenesis in the future. The 
risk score also showed more substantial predictive power 
than multiple clinical factors. Furthermore, patients with 
advanced clinical features had higher risk scores. Sur-
vival analysis indicated that the prognosis of the high-risk 
group was worse in both the training set and validation 
set (p < 0.01), with respective 3-year AUC values of 0.68 
and 0.73, suggesting that the risk score model was capa-
ble of predicting BLCA prognosis independent of the 
clinical factors. The risk score distribution was also simi-
lar in both sets, which indicated good consistency and 
universality of the risk model.

Fig. 10  Kaplan–Meier survival curves of the low- and high-risk groups in a TCGA-BLCA and b GSE32894 cohorts. Blue represents high-risk, red 
represents low-risk. The ROC curves and corresponding AUC values of the risk score for 1-, 3- and 5-year OS in c TCGA-BLCA and d GSE32894 
cohorts. Risk score distribution, survival status, and gene expression in e TCGA-BLCA and f GSE32894 cohorts
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DNA methylation analysis of each 7 genes demon-
strated a strong correlation between the gene methyla-
tion and overall survival time in the TCGA-BLCA cohort. 
ITGB6 was a protective factor in our prognostic model 
and its protective effect was also provn by DNA meth-
ylation, as the lower methylation level indicated a better 

prognosis, which reflected the reliability of the 7-gene 
prognostic model to some extent. Anuraga G et  al. and 
Wang Z et  al. also reported DNA methylation analysis 
in their gene signature for predicting breast cancer and 
lung adenocarcinoma via MethSurv [45–47]. The valida-
tion of the HPA database on the protein level showed the 

Fig. 11  Validation of functional experiments on COL6A1 and LAMA2. a Relative mRNA level of COL6A1 after being knocked down. b Relative mRNA 
level of LAMA2 after being knocked down. c The number of migrated cells were lower in Si-COL6A1 group than that in NC group. d The number of 
migrated cells was lower in Si-LAMA2 group than that in NC group. e Relative wound healing area was lower in Si-COL6A1 group than that in NC 
group. f Relative wound healing area was lower in Si-LAMA2 group than that in NC group
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same tendency as the 7 genes in the prognostic model. 
Borowczak J et al. reported CDK9 in bladder cancer via 
the HPA database [48]. The functional experiments suc-
cessfully verified that COL6A1 promoted the migration 
of bladder cancer cells as a risk factor, and bladder can-
cer cells were down-regulated after knocking down the 
expression of COL6A1. This reflected the reliability of 
our bioinformatic predicting model.

Previous studies have established tumor-infiltrating 
lymphocytes as one of the immune-related prognostic 
factors [49], and CD20 B cell has been identified as a 
long-term survival factor in BLCA [50]. In this study, we 
found that both resting and activated DCs were relevant 
to prognosis. High infiltration of DCs and a high-risk 
score indicate the worst prognosis. Thus, the infiltration 
ratio of DCs is a potential new prognostic factor that 
can be combined with the risk score for more accurate 
prediction. Furthermore, the correlation between every 
single gene in the model and Macrophage M2 replen-
ished the evidence that immune cells can influence 
clinical outcomes, assist in specific immunotherapeutic 
responses, and help select suitable patients for immuno-
therapy combined with risk score. Previous studies have 
reported the relationship between gene and immune 
cells [51, 52].

However, our results are limited because we only ana-
lyzed data from TCGA and GEO databases. Though 
we validated the model on external cohorts, only the 
GSE32894 dataset showed an excellent result. GSE13507 
and GSE5287 did not establish statistically significant 
relationships between the expression of each 7genes in 
the model and survival time on the Prognoscan data-
base. Previous researchers have also drawn from such 
databases to determine the relationship between genes 
and prognosis [53, 54] Due to the lack of clinical cohorts, 
the model’s reliability cannot be verified clinically. And 
the best cut-off value was directly chosen as a 3-year 
OS value of ROC without calculating in a more accurate 
method. The two up-regulated key genes COL6A1 and 
LAMA2 were not confirmed for their significant roles on 
the basic experimental level.

Conclusions
The 7-gene FA-related prognostic model can accurately 
predict the prognosis of BLCA patients and aid in clinical 
decision-making. Further studies are needed to amend its 
accuracy and stability for clinical applications.
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