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INTRODUCTION

Radiomics involves the extraction of high-dimensional 
quantitative data reflecting imaging phenotypes. The 
methods currently adopted in oncologic imaging studies 
rely strongly on machine learning (1, 2). Deep learning, 
a form of machine learning involving a special type of 
artificial neural network (3), is gaining much attention for 
its use in image-based pattern recognition in oncologic 
imaging. The goals of radiomics and deep learning studies 
in oncology are as follows: 1) classification of tumors, 2) 
providing links to genomics, 3) prediction of outcomes, 
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and 4) response monitoring. Potential applications for deep 
learning and radiomics have been discussed and published 
in leading peer-reviewed neuro-oncologic journals, but none 
of these potential applications has yet been realized in 
clinical practice. This may be because of the rare occurrence 
of many brain tumors and the low availability of the 
source material, with magnetic resonance imaging (MRI) 
being used as the main diagnostic tool. More importantly, 
the implementation of deep learning and radiomics is 
technically challenging and complicated to integrate into 
the clinical workflow, and there is not enough consideration 
of evidence-based medicine in deep learning and radiomics 
research. Because “if it was never used, it did not exist” 
(4), this article reviews the potential clinical applications 
of radiomics and deep learning, and discusses the special 
considerations in neuro-oncology, with the hope of yielding 
more actionable change to clinical workflows. 

Trends of Radiomics and Deep Learning 
Research in Neuro-Oncology 

Deep learning involves a special type of artificial neural 
network that resembles the human cognitive system and 
is a form of machine learning. Deep learning methods, 
especially convolutional neural networks (CNNs), excel 
at pattern recognition and finding complex patterns 
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in imaging data, and are generally more effective than 
previous algorithms (3). Deep learning algorithms use a 
data-driven approach and do not require prior definition by 
human experts. 

Radiomics approaches involve the extraction of hundreds 
of quantitative features from images to assess the entire 
three-dimensional (3D) tumor phenotype. The resulting 
features may then be used as quantitative imaging 
biomarkers. Briefly, morphologic features (volume/shape), 
histogram features (first-order), texture features (second-
order), and transform-based features are the most commonly 
used radiomics features (1, 5). Typically, machine-learning 
techniques are subsequently applied to the extracted 
radiomics features in a feature selection step to reduce the 
dimensions of the data.

Figure 1 demonstrates imaging-based radiomics and 

deep learning tasks in neuro-oncology. Extensive research 
articles using deep learning and radiomics in neuro-
oncology have been published. The clinical situations 
include the differential diagnosis of neoplasms, prognosis 
determination at initial imaging, distinguishing tumor 
recurrence from post-treatment contrast enhancement 
due to pseudoprogression or early tumor progression in 
glioblastoma (6) on post-therapeutic imaging after first-line 
treatment regimens, and predicting the treatment response 
to anti-angiogenic (7, 8) and immunotherapies (9) at the 
time of recurrence. Representative applications of deep 
learning and radiomics in neuro-oncology are summarized in 
Table 1. Later in this review, we will demonstrate the utility 
of radiogenomics as a supplement to preexisting diagnostic 
techniques. 
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Fig. 1. Imaging-based radiomics and deep learning tasks in neuro-oncology. Deep learning can be applied to automated tumor 
segmentation to track tumor volumetry and pattern recognition to conduct various end-to-end classification tasks. Radiomics approaches using 
engineered features and machine learning-based feature selection have also been applied to radiogenomics classification tasks, differential 
diagnoses, and diagnosis of early tumor progression. Imaging phenotypes identified using deep learning and radiomics could ultimately be 
combined with clinical characteristics to assess prognosis and treatment response of individual patients. 
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Table 1. Representative Applications of Radiomics and DL in Neuro-Oncology 

Topic Methods References
Data

(Train:Test)
Outcomes Test Performance

External 

Validation

Imaging 

Modalities

Differential

  diagnosis

Radiomics Artzi et al. 

  (10)

439 (351:88) Glioblastoma, 

  metastasis

Accuracy = 85%

AUC = 0.98

No Conventional 

  MRI

Radiomics Kang et al. 

  (11)

154 (112:42) PCNSL, 

  glioblastoma

AUC = 0.94 (external 

  validation)

Yes Conventional 

  MRI, DWI

Radiomics Kniep et al. 

  (12) 

189 Metastasis cell 

  type

AUC = 0.64 for non-small 

  cell lung cancer AUC 

  0.82 for melanoma

No Conventional 

  MRI

Prognostication Radiomics Kickingereder 

  et al. (14)

119 (179:40) Glioblastoma 

  survival

C-index = 0.696 

  (radiomics + clinical)

C-index = 0.637 

  (radiomics only)

No Conventional 

  MRI

Radiomics Kickingereder 

  et al. (16)

181 (120:61) Glioblastoma 

  survival

IBS = 0.103 (molecular + 

  clinical + radiomics)

IBS = 0.127 (radiomics 

  only)

No Conventional 

  MRI

Radiomics Bae et al. 

  (15) 

217 

  (split-sample)

Glioblastoma 

  survival

Integrated AUC = 0.652 No Conventional 

  MRI

DL Lao et al. 

  (19)

102 (75:37) Glioblastoma 

  survival

C-index = 0.739 

  (clinical + radiomics)

C-index = 0.710 

  (radiomics only)

No Conventional 

  MRI

DL Nie et al. 

  (20)

69 WHO grade II 

  and III

Accuracy = 89.9% 

  (low- and high-risk)

No Conventional 

  MRI, fMRI, DTI

Pseudoprogression 

  vs. progression

Radiomics Kim et al. 

  (6)

118 (61:57) Glioblastoma 

  pseudoprogression

AUC = 0.96 (internal 

  validation), 0.85 

  (external validation)

Yes Conventional 

  MRI, DWI, DSC

DL Hu et al. 

  (21)

31 Glioblastoma 

  pseudoprogression

AUC = 0.95 No Conventional 

  MRI, DWI, DSC

DL Qian et al. 

  (24)

35 Glioblastoma 

  pseudoprogression

AUC  = 0.867 No DTI

DL Jang et al. 

  (25)

78 (59:19) Glioblastoma 

  pseudoprogression

AUC  = 0.83 Yes Conventional 

  MRI

Treatment response

  assessment

Radiomics Kickingereder 

  et al. (7)

172 (112:60) Glioblastoma 

Anti-angiogenic 

  treatment

Stratification between 

  low- and high-risk

HR = 1.85 (PFS)

HR = 2.60 (OS)

No Conventional 

  MRI

Radiomics Grossmann 

  et al. (8)

293 (126:167) Glioblastoma 

Anti-angiogenic

  treatment

Stratification between 

  low- and high-risk

HR = 4.5 (PFS)

HR = 2.5 (OS)

Yes Conventional 

  MRI

Radiomics Bhatia et al. 

  (9)

88 Metastasis 

  (melanoma) 

Immune checkpoint 

  inhibitor

HR = 0.68 (OS) No Conventional 

  MRI

AUC = area under receiver operating characteristic curve, Conventional MRI = to T1-weighted, T2-weighted, fluid-attenuated inversion 
recovery, or contrast-enhanced T1-weighted imaging, DL = deep learning, DSC = dynamic susceptibility contrast, DTI = diffusion-tensor 
imaging, DWI = diffusion-weighted imaging, fMRI = functional MRI, HR = hazard ratio, IBS = integrated Brier score, OS = overall survival, 
PCNSL = primary central nervous system lymphoma, PFS = progression-free survival, WHO = World Health Organization
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Initial Diagnosis: Differential Diagnosis Using Radiomics

Radiomics
Radiomics has been applied to cases of differential 

diagnoses that were challenging even for radiologists. 
Furthermore, studies have assessed the added value 
of radiomics over the performance of radiologists. The 
differential diagnosis between a single brain metastasis and 
glioblastoma for a solitary contrast-enhancing (CE) mass 
is challenging. However, radiomics based on conventional 
post-contrast T1-weighted imaging showed an accuracy of 
85% and an area under the receiver operating characteristic 
curve (AUC) of 0.96 (10). Primary central nervous 
system lymphoma (PCNSL) may exhibit internal necrosis 
and heterogeneous contrast enhancement that mimics 
glioblastoma. The potential of radiomics from the apparent 
diffusion coefficient (ADC) has been shown to differentiate 
PCNSL from glioblastoma (11), showing high performance 
on both internal (AUC 0.984) and external (AUC 0.944) 
validation sets. Radiomics was shown to be feasible for 
classifying the subtype of brain metastases (12), with its 
performance ranging from an AUC of 0.64 for non-small-cell 
lung cancer to 0.82 for melanoma. As diagnostic decision-
making for patients with unknown primary lesion sites 
requires extensive steps, early differential diagnoses may be 
helpful to narrow down the diagnostic processes. However, 
few studies have been conducted regarding using deep 
learning for differential diagnoses, which may be due to the 
low availability of MRI source data from patients.

Survival Prediction 

Radiomics
The prognostication of glioblastoma is of particular 

interest, as the prognosis for patients with glioblastoma 
remains poor, with a median survival of 15 months (13). The 
poor prognosis may arise from intratumoral heterogeneity, 
with resistance to treatment occurring both spatially 
and temporally. Radiomics allows for the noninvasive 
quantitative characterization of tumors, and studies have 
shown the added value of radiomics to the well-established 
prognostic markers of age, the extent of surgery, Karnofsky 
performance score, and methylation status of the O6-
methylguanine-DNA methyltransferase (MGMT) gene. Using 
standard-of-care imaging, radiomic analysis improved 
survival prediction when combined with clinical data 
(C-index improving from 0.637 to 0.696) (14) or genetic 

data (15, 16). One study emphasizes the automatization 
and reproducibility of a radiomics model (17).

Deep Learning
To overcome the problem of small datasets, transfer 

learning, and fine-tuning has been adopted (18) for 
survival prediction in glioma patients. A deep feature-based 
radiomics model using transfer learning to extract a large 
number of deep features from hidden layers of the CNN was 
applied to glioblastoma (19) and showed a C-index of 0.710 
using radiomics features alone and 0.739 using radiomics 
and clinical predictors. Using multimodal imaging, including 
conventional MRI, functional MRI, and diffusion-tensor 
imaging (DTI), a deep learning architecture involving a 3D 
CNN extracted defining features from high-grade gliomas 
(20). This CNN showed an accuracy of 89.9% for predicting 
overall survival (OS) in 69 patients with high-grade gliomas, 
although it was without independent validation. The above 
findings suggest the feasibility of deep learning methods 
coupled with traditional radiomics features and machine 
learning classifiers for predicting survival. Nonetheless, 
studies are limited to showing the technical feasibility of 
deep learning applied for glioma survival prediction with 
small datasets, with or without an independent validation 
set. The proof of real-world performance on a large dataset 
is ultimately needed.

Follow-Up: Pseudoprogression vs. Tumor Progression

Radiomics
The differentiation of true progressive disease from 

pseudoprogression is challenging on conventional MRI. 
Before the advent of radiomics, machine learning classifiers 
(21) and clustering (22) methods have been adopted 
to solve this question using multiparametric imaging 
parameters, not with radiomics but with the quantitative 
value obtained from diffusion-weighted and perfusion-
weighted imaging. Using high-dimensional radiomics 
features, multiparametric MRI can include physiologic 
information that helps improve the differentiation of 
pseudoprogression from tumor progression. MR perfusion 
radiomics using relative cerebral blood volume (CBV) 
and the capillary permeability measure Ktrans showed 
the diagnostic ability for pseudoprogression in a multi-
institution setting (23). A multiparametric radiomics model 
including the ADC and CBV showed better performance on 
external validation (AUC, 0.90) than a single ADC or CBV 
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parameter (AUC, 0.57–0.79), or a radiomics model based on 
T1-weighted images (T1WIs), or T2-weighted images (T2WIs; 
AUC, 0.76) (6). 

Deep Learning
Deep learning applications have adopted multiparametric 

MRI, with both conventional and physiologic MRIs being 
frequently used. One study used longitudinal DTI, dictionary 
learning, and feature pooling to characterize two conditions 
(24), and showed an AUC of 0.867 for 35 patients without 
an independent validation set. More recently, a CNN with 
long short-term memory (25) was applied to differentiate 
tumor progression from pseudoprogression based on post-
contrast T1-weighted MRI data from two institutions, with 
59 patients in the training set and 19 patients in the 
external validation set, yielding an AUC of 0.83. The above 
deep learning applications were designed as proof-of-
concept studies with small numbers of patients and a cross-
sectional design.

Before Second-Line Treatment: Predicting Treatment 
Response Using Radiomics 

The anti-angiogenic agent bevacizumab is the single most 
widely used second-line therapeutic option for recurrent 
glioblastoma. However, no validated imaging biomarker is 
available to identify patients for whom this agent is likely 
beneficial. Two articles demonstrated the application of 
radiomics approaches to anti-angiogenic treatment. Using 
4842 radiomics features of T1WI, T2WI, and contrast-
enhanced T1WI and analyzed with a supervised principal-
component analysis, Kickingereder et al. (7) stratified 
patients into those with a low- or high-risk of recurrent 
glioblastoma (hazard ratio [HR] = 1.85 for progression-free 
survival [PFS] and HR = 2.60 for OS), and the low-risk group 
(172 patients, training:validation = 2:1). Using 65 radiomics 
features extracted from T1WI, T2WI, and contrast-enhanced 
T1WI of the multicenter BRAIN trial data, another study (8) 
showed successful stratification of recurrent glioblastoma 
patients according to OS (HR = 2.5) and PFS (HR = 4.5).

A recent study (9) showed the potential of the radiomics 
approach with contrast-enhanced T1WI brain metastasis 
treated with immune checkpoint inhibitors. In a total of 
196 melanoma brain metastases from 88 patients, multiple 
radiomics features were found to be associated with OS, and 
the Laplacian of the Gaussian features best explained the 
OS (HR = 0.68), which was also confirmed in a validation 
dataset consisting of 17 patients. 

Evidence-Based Medicine: Challenges for 
Radiomics and Deep Learning in the Clinical 
Workflow

The critical assessment of deep learning and radiomics 
studies should be based on the widely recognized principles 
of evidence-based medicine. Although these requirements 
are not always paid much attention in technical papers, 
they have paramount importance in clinical studies and 
applications. Prediction models developed from radiomics 
and deep learning aim to support clinical decision-making 
by the use of large amounts of complex data, and the 
validation and transparent reporting of results is important.

Validation in Deep Learning and Radiomics
For external validation, it is recommended to use 

adequately sized datasets that are collected either from 
newly recruited patients or from institutions other than 
those that provided the training data from which the deep 
learning and radiomics was developed (26). 

A prospective diagnostic cohort design is a way to 
adequately represent the manifestation spectrum of target 
patients in real-world clinical settings, with a before-after 
study design being applied (27). In this design, patients 
undergo evaluation both without (before) and with (after) 
a diagnostic or predictive deep learning/radiomics tool, 
and the clinical decisions, instead of patient outcomes, are 
compared between the two diagnostic evaluation sessions 
(28, 29).

One study evaluated radiomics studies (30) published 
up until 2018 using the search terms “radiomics” and 
“radiogenomics” in the PubMed, MEDLINE, and EMBASE 
databases. Among 77 studies with impact factors above 7.0, 
only 18.2% (14 studies) performed external validation. Only 
three studies performed prospective validation, but even 
this was a post-hoc analysis of the prospective registry 
or database. None of the studies used a diagnostic cohort 
design or performed a cost-effectiveness analysis.

A similar trend was found for deep learning studies in 
an article that evaluated the design characteristics of 
general artificial intelligence (AI) studies (31) using the 
search terms “artificial intelligence” OR “machine learning” 
OR “deep learning” OR “convolutional neural network” for 
articles published up to 2018 in the PubMed, MEDLINE, and 
EMBASE databases. This review found that most studies 
that evaluated the performance of AI algorithms for the 
diagnostic analysis of medical images were designed as 
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proof-of-concept technical feasibility studies. Only 31 (6%) 
of the 516 studies performed external validation, and none 
of the 31 studies adopted all three design features of a 
diagnostic cohort design, inclusion of multiple institutions, 
and prospective data collection for external validation. 

A model built with radiomics, and deep learning should 
not be limited to the patient population used for model 
construction. A high standard for the validation of 
radiomics and deep learning must be encouraged to transfer 
the techniques to routine clinical practice and prevent them 
from being stranded in the research domain (26). 

Reporting Guidelines
Radiomics and deep learning applications in radiology 

may be sensitive to the characteristics of the study 
population, predictors, and choice of the reference standard. 
Comprehensive and transparent reporting is required 
to ensure that the performance of prediction models is 
generalizable. For predictive models, the transparent reporting 
of a multivariable prediction model for individual prognosis 
or diagnosis (TRIPOD) statement (32) emphasizes the 
transparent reporting of the study settings, outcome follow-
up intervals, and precise definitions of the study design 
elements and how outcomes were defined and measured. 

In a review of 77 radiomics studies (30), the mean 
number of TRIPOD items reported was 18.51 ± 3.96 (mean 
± standard deviation; range, 11–26). All articles clearly 
defined all predictors (item 7a) and described how predictors 
were handled (item 10a), but no article described the 
recalibration of the coefficients in the preexisting model 
in the methods (item 10e) or results (item 17) section. 
The radiomics studies showed less than 25% adherence to 
“explicitly describe the development/validation of the model 
or both in ‘title’ (2.6%, item 1), ‘abstract’ (7.8%, item 2), ‘or 
introduction’ (16.9%, item 3b).” Furthermore, the radiomics 
studies did not adhere to “calculate sample size” (6.5%, 
item 8) and “describe missing data” (11.7%, item 9).

Recently, the importance of adhering to established 
methodological standards has been identified for machine 
learning techniques. Although many aspects of the 
TRIPOD statement apply to radiomics/deep learning-based 
prediction model studies, TRIPOD focuses on regression-
based prediction model approaches (33). TRIPOD has not 
been widely adopted by the AI community. A new initiative 
to develop a version of the TRIPOD statement specific to 
machine learning will be announced in the near future. 

Comparative Accuracy: Potential Applications 
of Radiomics and Deep Learning in Clinical 
Workflow in Neuro-Oncology 

To be adopted in clinical practice, deep learning and 
radiomics must address unmet needs or improve existing 
situations. A conceptual framework for evaluation of the 
comparative accuracy of new diagnostic tests was developed 
by Bossuyt et al. (34), and it consists of the following: 
1) replacement situation, 2) triage situation, and 3) add-
on situation. The replacement situation is when a new test 
differs from existing methods in various ways, including 
improved accuracy, ease, comfort, and speed, and may 
replace existing tests. In triage, the new test is used before 
the existing test or testing pathway, and only patients with 
a particular result on the triage test continue on the testing 
pathway. This may be less accurate than existing tests and 
is not meant to replace them. Add-on test scenarios may 
also be positioned after the existing pathway, and the use 
of these tests may be limited to a subgroup of patients. The 
new test is more accurate but is otherwise less attractive 
than the existing tests. The matched clinical scenarios in 
neuro-oncology are tumor segmentation to replace manual 
segmentation, detection-based triage in brain metastasis, 
and radiomics to supplement existing information. Figure 
2 demonstrates radiomics and deep learning in the clinical 
workflow and their roles in existing diagnostic pathways.

Replacement: Deep Learning-Based Automatic Tumor 
Volumetry and Tumor Response Assessment

Deep learning-based segmentation may replace manual 
segmentation. This would be beneficial as computers do not 
tire and can provide fast and reproducible segmentation. 
Deep learning-based segmentation approaches for brain MRI 
are gaining interest in their self-learning and generalization 
abilities with large amounts of data (35-37). Most neuro-
oncologic imaging studies are based on MRI, which is 
particularly challenging with respect to the generalizability 
and robustness of radiomics analysis, as MRI has non-
standardized pixel values and typically shows large 
variations in signal intensities. The robust segmentation 
required for the determination of tissue volumes imposes 
a great challenge for quantitative imaging analysis (5). 
Even expert readers show high inter-reader variability in 
segmentation, which can affect quantitative analysis (38, 
39) and the extraction of high-dimensional radiomics 
features (1, 2, 40, 41). 
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Deep learning-based segmentation of brain tumors has 
been a long-standing topic of interest in the field of neuro-
oncology and has mainly been driven through the Brain 
Tumor Segmentation (BraTS) challenge (42). Specifically, 
the annual BraTS challenge provides an important forum 
for evaluating state-of-the-art methods for the volumetric 
segmentation of brain tumors using multiparametric MRI 
scans. However, despite recent developments, clinical 
translation of the volumetric assessment of brain tumors 
(e.g., for assessing treatment response) is lacking. Currently, 
the Response Assessment in Neuro-Oncology (RANO) 
criteria, which primarily rely on manual two-dimensional 
(2D) measurements of CE target lesions on MRI, are the 
standard method for assessing the treatment response of 
brain tumors. Underlying the use of RANO is the assumption 
that tumors grow spherically and that the 2D measurement 
of a lesion’s largest diameter on MRI is a surrogate marker 
of tumor volume. However, this assumption is not always 
accurate in clinical practice, as brain tumors frequently 
display very complicated shapes and anisotropic growth, 
influenced in part by the surrounding anatomic boundaries, 
host tissue–tumor interface, and/or treatment-related 
effects (e.g., areas of necrosis and surgical cavities). 
Consequently, there has been a long-standing interest in 
using volumetric assessment of tumor burden (43-45), 
with studies indicating that volumetric measurements may 
be more reliable and accurate than 2D measurements (46, 
47). Nevertheless, although volumetric assessment may 

arguably be one of the most quintessential parameters for 
the accurate assessment of tumor burden and response 
(48), it lacks practicality in a clinical setting. Whereas 2D 
measurements of tumor diameter can be performed quickly 
and without dedicated software, volumetric measurements 
require sophisticated and time-consuming post-processing 
of MRI data with dedicated software (7, 16, 49).

Recently, the importance and meaningful clinical use 
of deep learning-based BraTS were demonstrated in 
terms of the automated and quantitative assessment of 
treatment response (49). Specifically, it was shown that 
automated deep learning-based volumetric assessment 
was highly accurate, with DICE coefficients of more than 
0.90 for the segmentation of CE tumor and non-enhancing 
T2/fluid-attenuated inversion recovery (FLAIR) signal 
abnormalities on independent multicenter testing (49). 
Using deep learning-based tumor volumes for quantitative 
volumetric tumor response assessment, it was shown 
that 1) the reliability (i.e., agreement in the quantitative 
volumetrically defined time to progression [comparison 
of the radiologist’s ground truth with the automated 
assessment with deep learning]) was significantly higher 
(by a margin of 36%) than the RANO assessment, and 
2) that the automated volumetrically defined time to 
progression was a better surrogate endpoint compared 
with RANO for the OS of the patients (49). These findings 
provide evidence that the automated and reliable 
assessment of tumor response in neuro-oncology with 

Deep learning-based
tumor volumetry

Deep learning-based
metastasis detection

Population Population

Human reading

Population

Human reading

Radiogenomics

Human manual
tumor measurement

Progression
(image-based)

+ +

+

- -

-

Metastasis
positive

Metastasis
negative

Read later

Replacement Triage Add-on

High-risk Low-risk

Non-progression
(image-based)

Fig. 2. Radiomics and deep learning in clinical workflow and their roles in existing diagnostic pathways. Replacement: deep learning-
based tumor volumetry has potential to replace human-derived manual tumor volumetry for defining image-based progression and non-progression. 
Triage: deep learning-based metastasis detection has potential to triage patients and identify those whose imaging needs to be read first and may 
increase radiologists’ specificity and reduce tiredness. Add-on: radiogenomics applications have potential to stratify further high-risk and low-risk 
groups and may help guide patient management. Adapted from Bossuyt et al. BMJ 2006;332:1089-1092 (34).
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a high-throughput of cases is feasible, and clinically 
important for providing high-quality imaging endpoints. 

Triage: Detecting Metastasis Using Deep Learning
Deep learning can be applied to the radiologists’ routine 

workflow to reduce the effort required for existing tests and 
improve the overall workflow. Previous studies suggested 
that in a triage framework, radiologists could control for 
false-positive classifications through manual inspection, 
thereby leaving the triaging system to prioritize, review and 
benefit the workflow, even without accuracy improvements 
(50, 51). One study demonstrated the utility of CNN-
based analysis of computed tomography for triage of acute 
neurological illnesses in the emergency department (52). 
After applying CNN-based triage, the urgent cases appeared 
earlier in the queue in the prioritized list than in the 
routine list without the application of CNN. 

In neuro-oncology, computer-assisted triage may 
augment the clinician’s detection and shorten the reading 
time. The detection of brain metastases is a tedious and 
time-consuming task for many radiologists, particularly 
with the growing use of thin-section multi-sequence 
3D imaging. Technical developments have shown the 
feasibility of using 3D template matching (53, 54) and 
CNNs (55). One study (54) showed improvement of the 
radiologist’s performance for detecting metastasis less 
than 100 mm-size from 89.83% to 100%. Imaging only-
based detection and diagnosis of brain metastases without 
radiologists would be unacceptable under the current 
regulations. Furthermore, algorithms will generally be 
overfitted to the training data and the performance will be 
suboptimal. Instead, an algorithm for automated detection 
of brain metastases may be initially used, with radiologists 
then validating the result to ensure that the final 
diagnoses are correct. Even high-quality weak labels would 
lead to improved classifier performance, and consequently 
to superior triage results.

Add-On: Super-Diagnostics for Genetic Mutations Using 
Deep Learning and Radiomics

Other new tests may be positioned after the existing 
pathway. The use of these tests may be limited to a 
subgroup of patients, for example, when the new test 
is more accurate but otherwise less attractive than the 
existing test. Add-on tests can increase the sensitivity of 
the existing pathway, possibly at the expense of specificity. 
Image-based diagnosis of genetic mutations is of great 

interest for glioma, and new deep learning or radiomics 
applications may provide more accurate diagnosis than 
preexisting methods. 

The key genomic landscapes seen in diffuse gliomas 
(56) are isocitrate dehydrogenase (IDH) mutation, 1p/19q 
codeletions, MGMT-promoter methylation status, and 
epidermal growth factor receptor (EGFR) amplification 
mutation. According to the most recent 2016 World 
Health Organization classification, the hallmark molecular 
parameters for better classification of glioma are IDH and 
1p/19q co-deletion status (56). MGMT methylation status 
reflects the ability of tumor cells to repair DNA damage 
from temozolomide (57). EGFR amplification reflects the 
molecular pathogenesis of glioblastomas (58). Deep learning 
and radiomics tend to be focused on a single genomic or 
molecular classification, with IDH mutation status being the 
most popular topic, having been investigated with T2/FLAIR 
imaging (59), contrast-enhanced T1WI (60), diffusion- and 
perfusion-imaging (61), and in combination with location 
information (62). Recent radiomics (63-65) and deep learning 
studies (66-69) have focused more on the characterization 
of multiple tumoral genetic mutations, rather than single 
genetic mutations, to provide an integrated view.

Radiomics
Recently, copy number variations and the DNA 

methylation profile have been adopted in radiogenomics 
research, with Kickingereder et al. (70) showing that the 
machine learning analysis of multiparametric MRI including 
diffusion-, perfusion-, and susceptibility-weighted imaging 
could potentially predict DNA methylation status and 
hallmark copy number variations in 152 glioblastomas. Hu 
et al. (71) demonstrated radiomics-based heterogeneity 
using 48 image-guided biopsies from glioblastomas and 
showed significant image correlations with T1WI, T2WI, 
and contrast-enhanced T1WI for predicting platelet-derived 
growth factor receptor A (77.1%), EGFR (75%), cyclin-
dependent kinase inhibitor 2A (87.5%), and retinoblastoma 
transcriptional corepressor 1 (87.5%). The feasibility of 
predicting the core signaling pathway of glioblastoma was 
shown by Park et al. (72), who showed that copy number 
variations, insertion/deletion, and single nucleotide 
variations from next-generation sequencing could be 
predicted using multiparametric MRI radiomics. These 
approaches used multimodal imaging parameters to provide 
information on various genomic alterations.



1134

Park et al.

https://doi.org/10.3348/kjr.2019.0847 kjronline.org

Deep Learning
With the application of a CNN to 256 brain MRIs from the 

Cancer Imaging Archives dataset (67), a study showed a 
prediction accuracy of 94% for IDH status, 92% for 1p/19q 
co-deletion status, and 83% for MGMT-promoter methylation 
status. Deep features obtained from DTI and dynamic 
susceptibility contrast imaging (208 training sets and 53 
validation sets) were clustered (73), and different imaging 
subtypes of glioblastoma were stratified by IDH-1, MGMT, 
and EGFR mutations. Radiogenomic assessment beyond 
routine imaging diagnosis should stratify low- and high-risk 
patients and may further guide patient consultations and 
therapeutic plans.

Infrastructure to Be Integrated into the Clinical 
Workflow

Ultimately, the driver for clinical adoption may reside 
in the implementation and availability of AI applications 
integrated into the picture archiving and communication 
system (PACS) at the reading station. The integration of 
concise and standardized AI interpretation results directly 
into the Digital Imaging and Communications in Medicine 
standard could enable easier portability among PACSs.

The current AI frameworks are primarily accessible 
by computer scientists. While this is acceptable for 
interdisciplinary groups that have both clinical and 
technical experts, the adoption of such frameworks by 
primarily clinical sites and for clinical deployment will 
require substantial effort to improve the transparency of the 
methods, the accessibility of the frameworks, and enable 
prospective large-scale on-demand application in clinical 
routine. A prime example is the open-source Extensible 
Neuroimaging Archive Toolkit (XNAT; www.xnat.org), 
which provides the necessary software infrastructure for 
importing, archiving, processing, and securely distributing 
neuroimaging studies (74). Specifically, it also enables 
the integration of custom processing pipelines (e.g., 
deep learning-based BraTS through the XNAT Container 
Service Plugin) for large-scale evaluations (e.g., in clinical 
routine). Successful clinical translation of a deep learning-
based processing pipeline and its integration within 
the XNAT framework was recently shown for automated 
quantitative (volumetric) tumor response assessment of 
MRI in neuro-oncology (www.neuroAI-HD.org) (49). Similar 
future endeavors with open-source deposition of AI-based 
processing pipelines (e.g., radiomic or deep learning-based 
prediction models, and deep learning-based BraTS tools) 

will be important for independent large-scale validation and 
clinical adoption of AI-based processing pipelines.

Existing Drawbacks and Perspectives
The most distinct drawbacks of radiomics and deep 

learning from the feature-based perspective are that the 
features are data-driven, and there is no direct biological 
linkage. For example, while there are many existing data-
driven features for IDH mutation based on deep learning 
and radiomics, these features are complex and not intuitive. 
Contrastingly, MR spectroscopy directly measures the 
byproduct of IDH mutation, 2-hydroxyglutarate, while the 
T2/FLAIR mismatch sign gives intuitive information on 
IDH mutation status. This is one reason why the utilization 
of ‘complex’ radiomics is more directed towards providing 
added value to pre-existing imaging diagnostics, rather 
than replacing them, especially from the perspective of 
comparative accuracy.

Another drawback to deep learning is that it is data-
dependent. Deep learning is ‘data-hungry,’ and a large 
amount of good quality data is required to maximize the 
accuracy of deep learning models. Insufficient data may 
mean that performance is insufficient to replace or augment 
pre-existing imaging diagnostics. Changing a model-
learning method with meta-learner (75) or increasing the 
quantity of training data using synthetic data augmentation 
may improve model performance. From the perspective of 
comparative accuracy, deep learning will be more directed 
towards triaging and replacing mundane human tasks. 

CONCLUSION

Radiomics and deep learning are active research areas in 
the field of neuro-oncology, and many studies have shown 
their potential for future clinical implementation. To be 
incorporated into existing clinical workflows, studies are 
recommended to adhere to evidence-based medicine and use 
data that are validated in the real-world setting. Automated 
tumor volumetry, the detection of brain metastases, and 
radiogenomics are highly likely to become end-uses for 
radiomics and deep learning in clinical practice. Finally, 
integrated infrastructure for the clinical translation of 
radiomics and deep learning will ultimately be needed. 
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