
RESEARCH ARTICLE

Is useful research data usually shared? An

investigation of genome-wide association

study summary statistics

Mike ThelwallID
1*, Marcus Munafò2,3, Amalia Mas-Bleda1, Emma Stuart1, Meiko Makita1,

Verena Weigert4, Chris KeeneID
4, Nushrat Khan1, Katie DraxID

2,3, Kayvan Kousha1

1 Statistical Cybermetrics Research Group, University of Wolverhampton, Wolverhampton, United Kingdom,

2 MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom, 3 School of

Psychological Science, University of Bristol, Bristol, United Kingdom, 4 JISC, London, United Kingdom

* m.thelwall@wlv.ac.uk

Abstract

Primary data collected during a research study is often shared and may be reused for new

studies. To assess the extent of data sharing in favourable circumstances and whether data

sharing checks can be automated, this article investigates summary statistics from primary

human genome-wide association studies (GWAS). This type of data is highly suitable for

sharing because it is a standard research output, is straightforward to use in future studies

(e.g., for secondary analysis), and may be already stored in a standard format for internal

sharing within multi-site research projects. Manual checks of 1799 articles from 2010 and

2017 matching a simple PubMed query for molecular epidemiology GWAS were used to

identify 314 primary human GWAS papers. Of these, only 13% reported the location of a

complete set of GWAS summary data, increasing from 3% in 2010 to 23% in 2017. Whilst

information about whether data was shared was typically located clearly within a data avail-

ability statement, the exact nature of the shared data was usually unspecified. Thus, data

sharing is the exception even in suitable research fields with relatively strong data sharing

norms. Moreover, the lack of clear data descriptions within data sharing statements greatly

complicates the task of automatically characterising shared data sets.

Introduction

Research data sharing is increasingly encouraged by funders and journals on the basis that

data reuse can improve research efficiency and transparency [1,2]. For example, sharing raw

data is “strongly encouraged” within open access Plan S (www.coalition-s.org). Shared data

may be used to check published findings, for new studies [3], for educational purposes [4] or

to support further analyses [5]. Policy initiatives, field cultures and data infrastructure all help

to encourage data sharing [6] and researchers seem increasingly willing to publish their data

[7]. This may generate citations to the data, originating paper or authors to recognise this

effort [8–13], which is a useful incentive [14].

The main disincentives for data sharing are a lack of access to technology or skills [15], the

effort needed for curation, fears about prior publication by other researchers [16–19] and low
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potential for reuse in some fields [4], especially for complex non-standard datasets [20]. The

nature and extent of data sharing is highly field dependant [21]. Some fields facilitate sharing

with specialised data repositories and/or standards for recording complex data (e.g., [22]). For

evolutionary biology, the Dryad repository and journal data sharing mandates have combined

to make data sharing almost universal in the top journals [23] (see also [24]). Multidisciplinary

generic data sharing policies from publishers can also work reasonably well, with a study of

PLoS ONE finding that most articles shared data, albeit with large disciplinary differences in

format and sharing method [25]. Nevertheless, most shared ecology and evolutionary research

datasets are unable to be reused due to incompleteness or practical difficulties [26]. Biodiver-

sity datasets can be large and hybrid, combining multiple sources. The creation and citing of

such datasets are supported by the Global Biodiversity Information Facility, a well-known bio-

diversity archive, which allows downloads of subsets of data across multiple previously pub-

lished datasets and creates single DOIs to point to those subsets [27]. These may originate

from unpublished work, such as routine data collection exercises or voluntary sharing [28,29],

creating data quality validation concerns [30,31]. Even in fields with sharing cultures for stan-

dardised data, relatively unique datasets may not be shared, however [32]. Thus, it would be

useful to know whether data sharing is widespread in conditions where it has clear value and

open data publishing is supported by a research community. This is the first issue addressed in

the current paper.

Data sharing may be inadequate for data reuse. The FAIR (findability, accessibility, interop-

erability, reusability) principles for data sharing emphasise that minimal sharing may not be

effective [33]. In particular, techniques for sharing data are not widely standardised and so it is

not clear whether it is possible to automatically check the extent to which data sharing occurs

in any field and whether the data sharing is effective in the sense of clearly providing sufficient

information for others to access and understand it. There is disciplinary diversity in the extent

to which communities organise to share data effectively, sometimes driven by external impera-

tives. For example, some areas of social science have long established effective repositories and

standard metadata to facilitate discovery and reuse, archaeologists have more recently started

to share data systematically, partly in response to legal restrictions on moving artefacts from

their country of origin, but are not well organised. Interviews with researchers about data

shared from repositories show that the quality of the documentation is important, as is the rep-

utation of the repository [34]. The ability to automatically extract information about shared

data to help its reuse, for example in repositories, is the second issue addressed in the current

paper.

Data sharing has been increasing in biomedical science for a long time [35,36], with geno-

mics being regarded as “a leader in the development of infrastructure, resources and policies

that promote data sharing” [37] (see also [38]). Pre-publication data sharing has also been

advocated in this area [39], and there are even data access committees that judge whether a

team should be given access to genomic data from a controlled repository [40,41] (the “gate-

keeper” model of data sharing). Within genomics, human Genome-Wide Association Studies

(GWAS) seem to be particularly suitable for data sharing. These studies measure the associa-

tion of genetic anomalies, generally in the form of single nucleotide polymorphisms (SNPs),

across the human genome with a potentially inherited characteristic or trait of interest, such as

obesity. For each individual location tested on the genome the core result is an effect size coef-

ficient (e.g., odds ratio), standard error and corresponding p value derived from a test for

whether a particular allele occurs more frequently among (typically) individuals in a risk

group compared with a control group. The power of a test is dependent on a sample size so if

two or more studies share their data and it is subsequently combined then additional SNPs

may be identified [42]. Other analyses are also possible with shared summary GWAS data
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alone, such as cross-trait linkage disequilibrium score regression [43]. In addition, combining

analyses of samples with different control groups enables more universal patterns to be discov-

ered. This is important because many traits are influenced by multiple genes and so different

sets of characteristics may produce similar outcomes in different populations. GWAS meta-

analysis has evolved as a standard strategy to deal with these issues [44], although it does not

seem to be widely used with shared data yet. This is slightly different from the more generic

data sharing benefit of sample size increasing statistical power [45].

The GWAS data collection process is expensive and it can be time consuming due to the

involvement of human subjects from which tissue samples must be taken. Thus, any data reuse

has the potential to provide substantial savings in cost and time. GWAS data sharing has been

mandated since January 2008 in NIH-funded research in a specific policy for this study type

[46]. In practical terms, GWAS data sharing might be relatively straightforward because the

key data is simple (tables of coefficients, standard errors and p values, listed against positions

in the human genome using standard notation) and in large consortia, data will need to be

internally shared for combining, ensuring that it is typically already in a standard format. The

importance of sharing GWAS summary statistics is underlined by the existence of two sup-

portive international databases. Whilst dbGaP (www.ncbi.nlm.nih.gov/gap) allows researchers

to deposit this and related data, together with relevant metadata, the GWAS Catalog (www.ebi.

ac.uk/gwas) is a manually curated record of the results of GWAS studies [47]. It has hosted

GWAS summary statistics since 2017 (www.ebi.ac.uk/gwas/downloads/summary-statistic).

GWAS summary statistics never contain personally identifiable information because they are

cohort-wide rather than for individuals, and so they may be potentially shared publicly without

direct privacy issues, if appropriate human subject permissions have been gained. Neverthe-

less, it is sometimes possible to estimate the likelihood of a person being present in a cohort

from the GWAS summary statistics [48], which is a privacy issue. For detection, the “person’s

genotypes for those SNPs and [] a sufficiently representative reference set of allele frequencies”

would also be needed [49]. Nevertheless, since many GWAS cohorts have specific diseases,

this raises the possibility that a third party with appropriate genomic data could estimate

whether a person had a disease when they had contributed to a GWAS study. This led to the

NIH recommending controlled access to GWAS data, when shared, but this weakened in 2018

to apply only to sensitive genomic data [50]. Nevertheless, the controversy about the issue may

have led researchers to be cautious about any form of data sharing.

We assessed the prevalence of the sharing of GWAS summary statistics in published

research and the potential to automatically identify this data using manual checks of 314 pri-

mary human GWAS papers from 2010 or 2017, filtered from an initial sample of 1799 papers

matching a relevant PubMed query. This topic was chosen as a previously unexplored likely

candidate for standardised data sharing, as described above, as well as for being a vibrant

research area. For example, the GWAS Catalog (www.ebi.ac.uk/gwas) included statistically sig-

nificant evidence for 138312 associations with parts of the human Genome by May 2019. The

years 2010 and 2017 were chosen to help reveal changes over time. The following research

questions encapsulate the broad goals of the project.

1. What proportion of primary human GWAS articles include shared primary GWAS data?

2. Can shared primary GWAS data be automatically identified?

Methods

A PubMed query was used to identify articles likely to be primary GWAS. PubMed was used

since its scope should encompass most GWAS journal articles. A simple MeSH (i.e., Medical
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Subject Headings controlled vocabulary) query was used rather than a more complex version

to enable easier interpretation of the results of the article identification stage. The query was as

follows, where the term molecular epidemiology was added to filter out methods-based

articles.

"Molecular Epidemiology"[Majr] AND "Genome-Wide Association

Study"[Majr]

After discarding papers that had types other than research-article, this gave 867 journal articles

from 2010 and 932 from 2017. The year 2010 was chosen as the first year because there were

substantially fewer articles in 2009 and before, whereas there were only small increases after

2010 so 2010 represented the first mature year for GWAS studies. The year 2017 was selected

instead of 2018 (in January 2019, at the time of data collection) because there were fewer arti-

cles in 2018 than in 2017, suggesting that some PubMed records from this year were missing.

The articles were checked for being primary human GWAS by three experienced content ana-

lysts by reading their titles, abstract or full text until the classification was clear. The process

was as follows.

Articles for non-human genomes were discarded. Articles with the term “meta-analysis”

were initially all classed as primary GWAS and then checked by a GWAS expert (MM). In con-

trast to general meta-analyses, GWAS meta-analyses are usually primary studies that analyse,

at least in part, freshly collected data from multiple cohorts. Here, “meta-analysis” refers to the

combination of data from multiple sources (i.e., different study samples) rather than a second-

ary analysis combining data from previously published sources. Articles that were difficult to

categorise were forwarded for checking by a GWAS expert (MM). It was not straightforward

to check whether an article reported a primary GWAS because it may include both primary

and secondary GWAS, it may include prior, parallel or follow-up experiments or analyses, and

the details may be described in technical language that avoids the term GWAS within the

methods and results. The first author re-checked all articles classified as primary human

GWAS. A fifth coder, a GWAS researcher (MM) checked 77 random articles and made 12 cor-

rections, in all cases ruling out an article initially judged to be a primary human GWAS. For

example, “Locus category based analysis of a large genome-wide association study of rheuma-

toid arthritis” had been categorised as a primary human GWAS because the initial coder and

follow-up check had not detected that it did not report collecting primary data. The PubMed

IDs of the complete set of 1799 articles were then compared to a list of papers registered in the

GWAS Catalog (www.ebi.ac.uk/gwas) and published in 2010 and 2017, and all discrepancies

were checked by a GWAS researcher (MM).

After identifying an article as primary human GWAS, the same set of three coders

attempted to identify whether it shared GWAS summary statistics. This information was first

sought in Data Availability statements, if any, or at the end of the article, or in associated sup-

plementary information files. Failing these, the remainder of the article was scanned for refer-

ences to summary statistics. An article was recorded as sharing summary statistics only if it

included a complete set rather than just the statistically significant ones because a full set is

needed for reuse. This is because p-values below a statistical significance threshold for one

study may become above the threshold when combined with others, or for a different type of

analysis [42,44]. In most cases any shared data was not publicly available, and it was not possi-

ble to check what was shared, so the sharing scope was inferred from the data sharing state-

ment (e.g., “all data”). In some cases, the GWAS summary statistics were not shared but

instead the matched phenotype and genotype data was made available (e.g., on dbGaP). Since

this matched data could be used to reconstruct the GWAS summary statistics, such cases were

The rate of sharing for genome-wide association study summary statistics
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classed as GWAS sharing to be inclusive. If some data was shared online and other data was

available from an author then this was classed as author sharing. A fourth coder (the first

author) checked these results and extracted the text in each article referring to the summary

(or matched phenotype and genotype) data.

As an additional follow-up check for data sharing, articles in the European Bioinformatics

Institute GWAS Catalog (www.ebi.ac.uk/gwas) from 2010 and 2017 with public summary sta-

tistics were cross-referenced with the main data set investigated and reasons for any differ-

ences identified. This revealed some mismatches and one clear mistake. The original search

had missed some primary GWAS without MeSH terms and that had not been matched to

Molecular epidemiology by PubMed. One matching article had been classed as non-primary

GWAS in the main dataset thorough human error.

All identified GWAS Summary Statistics were examined for associated metadata. Without

effective descriptions, data is harder to reuse [51].

The methods are limited by the initial MeSH query used, which did not match all GWAS

studies, and the use of non-expert coders and cross-checker to classify most of the articles. The

methods are also limited by not checking the exact nature of shared data when it had to be

requested from the authors or a repository. In some cases, reasonable requests might not be

granted or the data shared may not include complete GWAS summary statistics. Data sharing

outside of article texts, such as on project or author home pages, was also not checked.

Results

The individual article classifications are available online (http://doi.org/10.6084/m9.figshare.

8006585).

Availability of GWAS summary statistics

Out of all 314 articles classified as primary human GWAS, 13% reported sharing GWAS sum-

mary statistics in some form (or “all data” or matched genotype and phenotype records),

increasing substantially from 3% in 2010 to 23% in 2017 (Table 1). If an article did not state

that its data was shared, it may still be possible to email the authors to access it or the authors

may have subsequently deposited it elsewhere after publication. Conversely, data sharing

promised by the authors may not materialise in practice (and perhaps rarely does: [52]) and is

time limited. In addition, data sharing statements often did not specify the type of data, so

those that were offered by email or by request may not include complete GWAS summary

statistics.

Table 1. Availability of summary statistics in published primary GWAS articles from 2010 and 2017, according to the article text.

GWAS summary statistics availability 2010 % 2017 % Total %

On request to the authors 0 0% 15 9% 15 5%

On request via dbGaP 3 2% 5 3% 8 3%

On request via EGA 1 1% 2 1% 3 1%

On request via another portal 0 0% 3 2% 3 1%

Free online without login, plain text 0 0% 12 7% 12 4%

Total sharing GWAS data 4 3% 37 23% 41 13%

Broken link or not findable 3 2% 3 2% 6 2%

Not stated in article 145 95% 122 75% 267 85%

Human GWAS 152 100% 162 100% 314 100%

Articles checked 867 932 1799

https://doi.org/10.1371/journal.pone.0229578.t001
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When data sharing was flagged in an article, a variety of strategies could be used to access it.

Most data (29 out of 41 shared) required a permission seeking stage, either directly from the

authors or through the database of Genotypes and Phenotypes (dbGaP) or the European

Genome-phenome Archive (EGA) or another access-controlled portal, all of which have

approval processes that must be completed before the data can be accessed. The summary sta-

tistics were open access in 12 cases, with 2 of these 12 cases lacking descriptive metadata. Thus,

when shared, some form of data access control is usually employed.

Descriptions of the availability of GWAS summary statistics

The S1 List contains a complete list of data sharing statements, together with an indication of

where they occurred in each article. These were analysed from the perspective of the potential

to automatically extract information about whether the GWAS summary statistics were shared

(RQ2).

Articles sharing GWAS summary statistics usually reported this in a Data Availability sec-

tion or similar within the article (36 out of 47, including those with missing data or broken

links). In these sections the location of information about shared data should be straightfor-

ward to identify because the sections are short and focused on this goal. Other sections used

were: Materials and Methods; Methods; Procedures; Results; Footnotes; Supplementary Infor-

mation. Such information would be more difficult to automatically extract when mentioned in

these sections because it would first need to be identified and then delimited from the rest of

the hosting section.

Only nine data sharing statements directly described the shared data as GWAS Summary

Statistics (bold and italic [blue] in the S1 List), and these used five different phrases (“GWAS

summary statistics” x3, “full GWAS summary statistics” x3, “Summary GWAS estimates”,

“Summary statistics for the genome-wide association study”, “genome-wide set of summary

association statistics”). The following phrases may have referred to genotype data alone:

“GWAS statistics” and “Case Oncoarray GWAS data”. The more general term “genotype data”

(found in 8 articles) was more common. This term is ambiguous because there are other forms

of genetic analysis, and the phrase is likely to refer to raw genotype data rather than summary

statistics derived from combining it with phenotype information. Just under half of the articles

describe the sharing policy in the most indirect manner possible, with anaphors “datasets” or

“data” (used in 19 articles). Since most articles typically employed multiple analyses and might

share incomplete datasets (e.g., just the top SNPs identified, or with the results from some

study samples removed), a dataset would need to be identified, downloaded and inspected to

check whether it contained complete GWAS summary statistics. In some cases, the data shar-

ing link was to a project website containing similar data from multiple studies so article title

matching in the target site was needed to identify the correct dataset. Thus, it would be difficult

to automatically identify from data sharing statements whether GWAS summary statistics

were shared.

Discussion

The comparative rarity of GWAS summary statistics data sharing confirms that data sharing is

not ubiquitous [6]. This data type seems to be suited for data sharing, given broad community

support, a repository infrastructure [47] and methodological benefits from sharing [37,42,44],

albeit with ethical issues in some cases. The new insight from the current study is that data

sharing can be rare in the absence of mandates even when many other factors favour it. Since

journal mandates have been successful in other fields that are arguably less fertile because the

data is less standard and there is not an obvious use for some types of data [23], this gives
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strong evidence that data sharing in science generally is unlikely to become universal without

strong mandates.

As alluded to above, the results contrast with previous studies that found a majority of

PLOS ONE articles (PLOS has a data sharing mandate) to share data [25] and for data sharing

to be close to universal for a set of life sciences journals with a data sharing mandate [23]. The

large differences are partly because not all journals include a data sharing mandate, and partly

because there is some freedom to interpret these mandates. For example, PLOS journals

require authors to share “all data underlying” the findings unless “legal or ethical” reasons

apply, in which case researchers must describe how the data can be accessed. One PLOS article

in the current dataset did not share its GWAS summary statistics because, “restrictions prohib-

ited us from making the minimal data set publicly available,” but reported that “Data will be

available upon request to all interested researchers who meet the criteria for access to confi-

dential data via the Institutional Data Access / Ethics Committee,” but it is not clear whether

this includes the full GWAS summary statistics. For GWAS summary statistics, “all data

underlying” could arguably refer to the statistically significant results since the remainder do

not underlie the findings. For example, one paper reported “Data are available” with a reposi-

tory reference but this did not lead to the full GWAS summary statistics. Also, for a paper with

multiple types of data, the authors might interpret “all data” liberally and focus on one aspect

of the data, perhaps the one that they believe would be most useful to share. Some of the papers

in the current study classified as not sharing GWAS summary statistics had shared some data,

despite lacking this key aspect.

Sufficient provenance and descriptive information must be shared for the data to be reused

effectively [34] and it is impossible to mandate for this in general. The data descriptions in the

current study were difficult for non-expert humans to interpret the type of data that was shared

because the language varied, there were multiple types of data in many articles, and the sharing

statements were not constructed to give the key information systematically. One of the advan-

tages of a subject-specific repository can be its ability to develop an understanding of the infor-

mation needed by a community to reuse resources, translating this into a set of required

metadata [34]. The lack of anything approaching this for journals made GWAS summary sta-

tistics sharing statements difficult to automatically identify and interpret. This highlights the

importance of authors submitting to relevant repositories, so that the information necessary

for use can be gathered, even if it is accidentally omitted in journal data sharing statements.

Conclusions

Only 13% of primary human GWAS studies either share or offer to share their summary statis-

tics data in any form. This is low given that genomics is in many ways the leader in data shar-

ing. Moreover, this type of data is standardised, singled out for a NIH sharing mandate (we

did not check whether the articles assessed in this study complied with funder mandates), has

had recognised sharing value for over a decade, has public archives to host it, and often needs

to be shared internally within research consortia. Other than potential human subjects ethics

permissions issues, this type of data seems to be a best case for (partly) non-mandatory scien-

tific data sharing, at least with access control due to potential privacy issues. The percentage

shared may increase in the future due to the NIH relaxing access control advice for non-sensi-

tive cohorts. Nevertheless, the low percentage suggests that data sharing is unlikely to become

near-universal when it is optional. This emphasises the need for policy initiatives to promote

data sharing, to extend the current apparently small minority of data sharing practices.

For GWAS as an illustration, formalised data sharing mandates implemented at the journal

level would not be effective because GWAS studies can be published in general, health,
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psychology and medical journals in addition to specialist genetics and genomics journals.

Alternative discipline-specific strategies may need to be devised, perhaps including agreements

between funders for this type of data.

In terms of automatically identifying specific types of data reported to be shared in articles,

the results suggest that in fields where data sharing statements are widely used, it should be

possible to extract information about whether any data was shared. Nevertheless, such sections

seem to occur in less than 10% of articles in all broad fields of science (see data shared with:

[53]) and so this strategy would not be widely effective. It is much more problematic to identify

the type of data shared and seems impractical to automate this step. This is because data shar-

ing statements are typically vague about what is shared and there is no single standard or pol-

icy adopted by all journals in a specific field regarding what should be included in a data access

statement. Descriptions of the exact nature of the data available would not only help automa-

tion but also researchers scanning multiple articles to find relevant data for a new study. Thus,

if more journals required data sharing statements and employed guidelines to ensure that the

shared data was described in detail, or provided virtual rewards [54] for these activities, then

this would support the level of automated data discovery that would be necessary to monitor

data sharing and systematically identify shared data for later reuse.
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