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Abstract

Pertussis is a highly contagious, acute respiratory disease in humans caused by the Gram-negative pathogen Bordetella
pertussis. Pertussis has resurged in the face of intensive vaccination and this has coincided with the emergence of strains
carrying a particular allele for the pertussis toxin promoter, ptxP3, which is associated with higher levels of pertussis toxin
(Ptx) production. Within 10 to 20 years, ptxP3 strains have nearly completely replaced the previously dominant ptxP1 strains
resulting in a worldwide selective sweep. In order to identify B. pertussis genes associated with the selective sweep, we
compared the expression of genes in ptxP1 and ptxP3 strains that are under control of the Bordetella master virulence
regulatory locus (bvgASR). The BvgAS proteins comprise a two component sensory transduction system which is regulated
by temperature, nicotinic acid and sulfate. By increasing the sulfate concentration, it is possible to change the phase of B.
pertussis from virulent to avirulent. Until recently, the only distinctive phenotype of ptxP3 strains was a higher Ptx
production. Here we identify additional phenotypic differences between ptxP1 and ptxP3 strains which may have
contributed to its global spread by comparing global transcriptional responses under sulfate-modulating conditions. We
show that ptxP3 strains are less sensitive to sulfate-mediated gene suppression, resulting in an increased production of the
vaccine antigens pertactin (Prn) and Ptx and a number of other virulence genes, including a type III secretion toxin, Vag8, a
protein involved in complement resistance, and lpxE involved in lipid A modification. Furthermore, enhanced expression of
the vaccine antigens Ptx and Prn by ptxP3 strains was confirmed at the protein level. Identification of genes differentially
expressed between ptxP1 and ptxP3 strains may elucidate how B. pertussis has adapted to vaccination and allow the
improvement of pertussis vaccines by identifying novel vaccine candidates.
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Introduction

Bordetella pertussis is the major causative agent of whooping cough

or pertussis, a highly contagious, acute respiratory disease in

humans. Before the introduction of vaccination in the 1950s,

pertussis was a leading cause of infant death throughout the world

[1] Although extensive immunization campaigns have significantly

reduced pertussis-caused infant mortality worldwide, infections

with B. pertussis still pose an important health burden, with an

annual infection rate of 1–9% in some highly vaccinated

populations [2] and an estimated 195,000 deaths worldwide [3].

Significantly, pertussis notifications have increased during the last

two decades, especially in adolescents and adults. This increase of

pertussis infections in older age categories represents significant

health risks, as they are a source of B. pertussis transmission to

unvaccinated infants for whom pertussis is a severe, life

threatening, disease [4–6]. In 2010 and 2012 particularly large

outbreaks of pertussis were observed in several countries [7–9].

Suggested causes for the increase in pertussis include increased

awareness, improved diagnostics, suboptimal vaccines, waning

immunity, and pathogen adaptation [10,11].

Studies performed in several countries provide evidence that B.

pertussis has diverged antigenically from vaccine strains and has

increased expression of pertussis toxin (Ptx) and the type III

secretion system (T3SS) effector toxin BteA [12,13]. In the

Netherlands, the pertussis resurgence has coincided with the

emergence of strains that carry a particular allele of the ptx operon

promoter, ptxP3, which is associated with higher levels of Ptx

expression [13]. Within a timeframe of 10 years, ptxP3 strains have

nearly completely replaced the previously dominant ptxP1 strains.

Significantly, ptxP3 strains have spread globally, as they have

emerged in several countries in Europe [13–17], North America

[18], South America [19], and Australia [20]. Phylogenetic

analyses showed that ptxP3 strains evolved from ptxP1 strains,
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possibly in the 1970s [21,22]. A recent comparative genomic

analysis of two newly emerged ptxP3 strains, two contemporary

ptxP1 strains, and two pre-vaccination strains identified single

nucleotide polymorphisms (SNPs) in a number of pathogenicity-

associated genes, as well as differences in gene inactivation and

reactivation [23]. Thus far, very little information is available on

phenotypic differences between ptxP1 and ptxP3 strains, such as the

regulation and expression of virulence genes.

B. pertussis produces multiple toxins, including Ptx, adenylate

cyclase toxin (ACT), T3SS effectors, dermonecrotic toxin (DNT),

and tracheal cytotoxin (TCT) that, together with other virulence

factors, facilitate within-host survival by manipulating many

aspects of the human immune system, including the complement

system, phagocytosis, immune cell recruitment, and antibody

responses (reviewed in [24,25]. The expression of most of these

virulence factors is regulated by the activity of BvgS and BvgA,

which form a typical two-component regulatory system, and the

repressor protein BvgR which is expressed from the same BvgASR

locus [26] (reviewed in [27]). Several external factors have been

identified that can modulate the activity of this system, which

results in a spectrum of different Bvg-phases that affect bacterial

virulence. For instance, low temperature, and increasing concen-

trations of nicotinic acid or sulfate have all been shown to facilitate

the transition from virulent (Bvg+) through intermediate (Bvgi) to

nonvirulent (Bvg2) bacteria [28,29].

Until recently, the only distinctive phenotypes described for

ptxP3 strains was a higher Ptx production and enhanced

respiratory colonization [13,30]. Here we identify additional

phenotypic differences between ptxP1 and ptxP3 strains by

comparing global transcriptional responses under sulfate-modu-

lating conditions. We show that ptxP3 strains are less sensitive to

sulfate-mediated suppression, which is associated with an in-

creased production of a number of virulence genes, including Ptx,

a type III secretion toxin, Vag8, a protein involved in complement

resistance [31], and lpxE involved in lipid A modification.

Identification of genes differentially expressed between ptxP1 and

ptxP3 strains may elucidate how B. pertussis has adapted to

vaccination and allow the improvement of pertussis vaccines.

Results

To gain more insight into the mechanisms underlying the

emergence of B. pertussis ptxP3 strains, we investigated differences

in global gene expression between a representative ptxP1 and ptxP3

strain. Strains B1920 (ptxP1) and B1917 (ptxP3) were cultured in

vitro in the presence of low (,0.02 mM), medium (5 mM) or high

(50 mM) MgSO4. Our rationale for selecting MgSO4 is that free

sulfate plays an important role in regulating the expression of a

number of B. pertussis virulence genes through the bvg locus [28].

However, as sulfate may also affect expression of B. pertussis genes

independent of the BvgASR system, we used the following

definition of sulfate-regulated gene categories: high sulfate

repressed (HSR) genes, high sulfate induced (HSI) genes, medium

sulfate repressed (MSR) genes, and medium sulfate induced (MSI)

genes. HSR and HSI genes were defined as those genes which

were at least three-fold down- or upregulated in the presence of

50 mM sulfate compared to low sulfate, respectively. Similarly,

MSI or MSR genes were defined as genes which were significantly

up- or downregulated respectively by at least three-fold when

bacteria were grown in the presence of 5 mM sulfate compared to

low sulfate. The majority of the classical Bvg+, Bvg2, and Bvgi

genes are a subset of the HSR, HSI, and MSI genes respectively.

MSR genes have, to the best of our knowledge, not been defined

before.

Validation of sulfate-induced BvgASR-modulation
To confirm the modulating effect of sulfate on Bvg-associated

genes for the two selected strains, qPCR was performed on kpsT,

bipA, and ptxA, coding for KpsT, a protein involved in capsule

biosynthesis, the outer membrane ligand binding protein BipA,

and the PtxA (or S1) subunit. The kpsT, bipA, and ptxA genes were

chosen as they have previously been shown to be optimally

expressed in vitro under Bvg2, Bvgi, and Bvg+ conditions,

respectively [32,33]. Here, we used them to represent HSI, MSI,

and HSR genes, respectively. qPCR analysis showed a strong

correlation between sulfate concentration and expression of ptxA,

bipA and kpsT, thus demonstrating the classical sulfate-dependent

expression phenotype in both strains (Figure 1).

Sulfate-dependent transcriptional responses in a ptxP1
and ptxP3 strain

In order to identify HSR, HSI, MSI, and MSR genes, we

performed global transcriptional analysis on B. pertussis strains

B1920 (ptxP1) and B1917 (ptxP3) in the presence of low, medium,

and high sulfate. The expression levels of all genes for both strains

can be found in Table S7. To identify gene categories enriched for

Figure 1. Sulfate-mediated modulation in B. pertussis strain B1920 (ptxP1) and B1917 (ptxP3). Sulfate was added to the culture medium to
induce a high (50 mM), medium (5 mM), and low (,0.02 mM, represented as 0 mM on the x-axis) sulfate conditions. qRT-PCR data shows the relative
expression level of kpsT, bipA, and ptxA expressed as fold changes relative to the high sulfate condition, with the values being the mean of four
biological replicate cultures. Asterisks indicate a statistically significant difference between the groups as determined by Student’s t-test with Welch’s
correction: * P value ,0.05, ** P value ,0.005, *** P value ,0.0005.
doi:10.1371/journal.pone.0084523.g001
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HSR, HSI, MSI, and MSR genes, genes were aggregated based

on their function and predicted subcellular localization.

High sulfate repressed genes. Comparative analysis iden-

tified 138 and 133 HSR genes in the ptxP1 and ptxP3 strain,

respectively (Figure 2A–C and Table S3, see Table S4 for strain-

specific HSR and HSI genes). Of these genes, a large number (102

genes, corresponding to 74% of all HSR genes) was shared

between the two strains, while 31 (23%) and 36 (28%) were

repressed by high sulfate only in the ptxP3 or the ptxP1 strain,

respectively (Figure 2). Functional class categorization of these 31

ptxP3-specific HSR genes showed enrichment for genes encoding

ABC-transporters known to be involved in the uptake of small

molecules, including sulfate.

Interestingly, based on the annotated Tohama I sequence and

BLAST searches, 9 of the 30 genes predicted to be involved in

sulfate-uptake and metabolism were ptxP3-specific HSR genes

(N = 9, 29%, P,0.001, Table 1, Table S4). These results strongly

suggested that sulfate uptake and metabolism are different between

ptxP1 and ptxP3 strains. Besides sulfate genes, 22 other genes were

identified as ptxP3 strain-specific HSR genes (Table S4). Perhaps

most interesting were the virulence-associated fim3 and lpxE genes,

encoding the major fimbrial subunit of serotype 3 fimbriae and a

lipid A-1 phosphatase with LPS modifying properties, respectively

(Table S4). Although fim3 was also suppressed at the high sulfate

concentration in the ptxP1 strain, the value did not reach statistical

significance. qPCR analysis supported the observation that the

fim3 gene is a HSR gene exclusively in the ptxP3 strain (Figure S1).

In addition to the ptxP3-specific genes, we also identified 36

HSR genes which were repressed by high sulfate only in the ptxP1

strain (Table S4). Although these 36 genes were not significantly

enriched for any functional class, three virulence-associated genes

were identified, namely the T3SS gene (bscO), an autotransporter

(bapC), and a TonB-dependent receptor for iron transport (bfrE)

(Table S4). However, it should be noted that all three genes

showed a HSR phenotype in the ptxP3 strain but were excluded

because the microarray signal intensity was below 500.

High sulfate induced genes. Larger differences between the

two strains were found when HSI genes were compared. Eighty

Figure 2. Functional categorization of sulfate-regulated genes in B. pertussis strain B1920 (ptxP1) and B1917 (ptxP3). Venn diagrams
show overlapping and unique sulfate-regulated genes that are at least 3-fold downregulated under high sulfate conditions relative to the low sulfate
condition (A; high sulfate repressed (HSR)), 3-fold upregulated under high sulfate conditions relative to the low sulfate condition (D; high sulfate
induced (HSI)), 3-fold up- or down-regulated under medium sulfate conditions relative to the low sulfate condition (medium sulfate induced (MSI)
and repressed (MSR)). HSR, HSI, and MSR genes were grouped by functional categories (B, E, and H) and PSORTb-predicated subcellular localization
(C, F, and I). Data are expressed as the percentage that is sulfate-regulated among all annotated genes in each class. Asterisks indicate statistically
significant enrichment of sulfate-regulated genes in a certain class as determined by Fisher’s exact test. * P value ,0.05, ** P value ,0.005, *** P value
,0.0005.
doi:10.1371/journal.pone.0084523.g002
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and 120 high-sulfate induced genes were identified in the ptxP3

and ptxP1 strain, respectively (Figure 2D-F and Table S3), of

which 61 (51%) were shared. Of the non-shared genes, 19 (24%)

and 59 (49%) were unique for the ptxP3 and ptxP1 strain,

respectively. Whilst the ptxP3 strain-specific HSI genes were not

significantly enriched for any functional category or subcellular

localization, the 59 ptxP1-specific genes were significantly enriched

for ABC-transporters involved in the transport of cyanate/nitrate,

branched-chain amino acids, and capsular polysaccharides

(N = 13, 22%, P,0.001, see Table S4). These data show that

the HSI gene repertoire is highly different between the ptxP1 and

ptxP3 strain.

Medium-sulfate regulated genes. Culturing B. pertussis in

the presence of medium sulfate levels allowed us to identify both

MSI and MSR genes by comparing the transcriptional levels to

low sulfate conditions. This analysis yielded five and three MSI

genes in the ptxP1 and ptxP3 strain, respectively, of which two were

medium-sulfate induced in both strains (Figure 2G, Table 2, and

Table S5). Despite the relatively low number of identified MSI

genes as compared to the number of HSR and HSI genes, the

MSI genes were significantly enriched for genes encoding cell

envelope proteins in both the ptxP3 (P = 0.027) and the ptxP1

(P = 0.017) strain.

Larger differences were found when MSR genes were

compared, as we identified twenty-one and eight MSR genes in

the ptxP1 and ptxP3 strain, respectively. Of these genes, only four

were shared between the two strains (Figure 2G, Table 2, and

Table S5). In the MSR category, we found pronounced differ-

Table 1. Transcriptional regulation of sulfate genes in B. pertussis strain B1920 (ptxP1) and B1917 (ptxP3).

General gene information HSR Fold change
Fold difference between
strains (ptxP3/ptxP1)

ORF Gene Product
Predicted
localization ptxP3 ptxP1 0 mM 5 mM 50 mM

BB0537 sulfurtransferase Un { { { { {

BP0380 Sodium:sulfate symportert Cm 21.0 1.5 1.0 1.3 1.6

BP0958 cysM cysteine synthase B C 21.0 21.1 21.0 1.0 21.2

BP0966 sbp sulfate-binding protein precursor P 7.3* { 9.3 3.1 {

BP0967 cysT sulfate transport system permease protein (Pseudogene) Cm 4.7* { 4.2 { {

BP0968 cysW sulfate transport system permease protein (Pseudogene) Un { { { { {

BP0969 cysA sulfate transport ATP-binding protein Cm { { { { {

BP0970 cysH phosphoadenosine phosphosulfate reductase (Pseudogene) P { { { { {

BP0970A cysD sulfate adenylyltransferase subunit 2 C { { { { {

BP0971 cysN sulfate adenylyltransferase subunit 1 (Pseudogene) Un { { { { {

BP1055 cysG siroheme synthase C 4.7* { 3.2 { {

BP1362 amino-acid ABC transporter, ATP-binding protein Cm 3.6* { 3.4 { {

BP1363 amino-acid ABC transporter, permease protein Cm 6.2* { 4.4 3.2 {

BP1364 amino-acid ABC transporter, periplasmic amino acid-binding
protein

P 4.2* 1.8 2.7 1.7 1.1

BP1908 cysS cysteinyl-tRNA synthetase C 21.5 21.3 21.5 21.9 21.3

BP2416 cysB LysR-family transcriptional regulator C 2.2* 21.3 2.7* 1.2 21.1

BP2816 ABC transport protein, ATP-binding component Cm 3.5* 1.2 3.1* 1.1 1.0

BP3432 cysI sulfite reductase C 4.5* 2.2 2.7 1.4 1.3

BP3434 exported protein Cm 3.7* { 3.8* 1.6 1.4

BP3455 taurine dioxygenase C { { { { {

BP3674 periplasmic solute-binding protein P { { { { {

BP3675 ABC transport system permease protein Cm { { { { {

BP3676 ABC transporter ATP-binding protein Cm { { { { {

BP3701 exported protein Un { 223.9* { { 24.1*

BP3702 lpxL1 GntR-family transcriptional regulator C { 214.2* { { {

BP3703 lpxL2 transport system permease protein Cm { 218.9* { { 24.0*

BP3705 ABC transporter ATP-binding protein Cm { 216.8* { { 22.9

BP3854 ABC transporter ATP-binding protein Cm { { { { {

BP3855 periplasmic protein P { { { { {

BP3856 taurine catabolism dioxygenase C { { { { {

Abbreviations; C, cytoplasmic; Cm, cytoplasmic membrane; FC, fold change; HSR, high sulfate repressed; ORF, open reading frame; P, periplasmic; Un, unknown. The
columns with fold change difference show the ratio of absolute expression (ptxP3/ptxP1) under low (0 mM), intermediate (5 mM), and high (50 mM) sulfate conditions.
Asterisks indicate a statistically significant difference. { indicates that the gene was excluded because signal intensity was #500 in both the conditions compared. Genes
above the dotted line are genes that annotated as genes involved in sulfate metabolism.
doi:10.1371/journal.pone.0084523.t001
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ences between the ptxP1 and ptxP3 strains in genes involved in

cellular processes (a category which included most virulence

factors) and genes encoding extracellular proteins (Figure 2H & I,

Table 2). In particular, several known virulence genes were

repressed only in the ptxP1 strain under medium sulfate conditions,

including two autotransporters (vag8 and bapC), five T3SS genes

(btcA, bteA, bscO, bcrD, and BP2265), and three ptx genes (ptxB, ptxC,

ptxD) (Table 2 and Table S5). This strain-specific suppression of

virulence genes under medium sulfate conditions became even

more pronounced at a fold change cut-off of $2, at which five

autotransporters, twelve T3SS, and seven ptx genes were

suppressed in the ptxP1 strain compared to the ptxP3 strain

(Table S5). Taken together, these data suggest that the ptxP3 strain

is less sensitive to sulfate-mediated modulation of virulence gene

expression.

Table 2. Medium-sulfate regulated genes in B. pertussis strain B1920 (ptxP1) and B1917 (ptxP3).

General gene information MSR Fold change
Fold difference between
strains (ptxP3/ptxP1)

ORF Gene Product
Predicted
localization ptxP3 ptxP1 0 mM 5 mM 50 mM

Genes upregulated by 5 mM sulfate

BP1112 bipA outer membrane ligand binding protein Om 23.3* 24.4** 23.1 1.0 {

BP2923 lipoprotein Un 23.9* 24.9* { 21.3 21.6

BP0713 membrane protein (Pseudogene) Un 23.8* 24.1* { 1.6 1.8

BP0468 AsnC-family transcriptional regulator C 21.4 23.7* 2.5 21.0 21.1

BP0903 membrane protein Cm 21.9 23.6* { 24.1* {

BP1311 membrane protein Cm 22.4* 23.5* 1.4 21.0 1.2

Virulence genes downregulated by 5 mM sulfate

BP3783 ptxA pertussis toxin subunit 1 precursor E 3.7* 6.3* 21.3 1.5 1.1

BP3784 ptxB pertussis toxin subunit 2 precursor E 1.6 6.2* 21.0 4.0* {

BP3785 ptxD pertussis toxin subunit 4 precursor E 1.1 4.4* 1.0 4.0* {

BP3787 ptxC pertussis toxin subunit 3 precursor E 1.0 3.2* 21.0 3.2* {

BP0499 btcA t3ss chaperone P 3.0* 4.5* 1.1 1.5 1.4

BP0500 bteA t3ss toxin E 1.8 3.3* 1.2 2.3 {

BP2234 brpL RNA polymerase sigma factor C 2.8* 7.1* 21.5 1.8 {

BP2244 bscO type III secretion protein C 1.8 3.2* 21.3 { {

BP2261 bcrD type III secretion pore protein Cm 1.6 3.0* 21.9 1.1 {

BP2265 type III secretion chaperone Cm 4.6* 3.2* 1.1 21.4 {

BP2315 vag8 autotransporter E 1.4 3.6* 1.4 3.9* {

BP2738 bapC autotransporter (pseudogene) E 1.4 3.7* 21.2 { {

BP2674 fimX fimbrial protein E 2.0* 3.0* 1.7 2.9 {

Other genes downregulated by 5 mM sulfate

BP0398 lmgB glycosyl transferase Cm 3.2* 1.6 1.2 { {

BP0399 lmgA glycosyl transferase Cm 3.1* 1.5 21.0 22.0 {

BP1252 exported protein Un 3.6* 2.4* 1.1 21.3 {

BP1286 conserved hypothetical protein Un 3.1* 1.1 7.2* 2.5 {

BP1487 smoM periplasmic solute-binding protein P 2.1* 3.4* 21.2 1.4 21.1

BP2141 exported protein Un 3.4* 5.1* 22.0 21.3 {

BP2147 exported protein Un 1.9 3.0* 1.3 2.1 {

BP2486 exported protein Cm 4.4* 4.0* 21.6 { {

BP2925 conserved hypothetical protein C 1.2 4.0* 21.6 1.9 {

BP2926 conserved hypothetical protein Un 1.5 3.4* 21.5 1.7 {

BP3095 modB molybdate-binding periplasmic protein precursor P 21.1 3.4* 1.4 5.1* 1.9

BP3405 ompQ outer membrane porin protein OmpQ Om 1.3 3.6* 21.1 2.4 {

Abbreviations; C, cytoplasmic; Cm, cytoplasmic membrane; E, extracellular; FC, fold change; MSR, medium sulfate repressed; Om, outer membrane; ORF, open reading
frame; P, periplasmic; Un, unknown. The columns with fold change difference show the ratio of absolute expression (ptxP3/ptxP1) under low (0 mM), intermediate
(5 mM), and high (50 mM) sulfate conditions. * Asterisks indicate a statistically significant difference. ** indicate a fold-change and statistically significant difference as
determined by qPCR (see Figure 1). { indicates that the gene was excluded because the microarray signal intensity was #500 in both the conditions compared.
doi:10.1371/journal.pone.0084523.t002
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Absolute differences in sulfate-dependent gene
expression

Above, we assessed the effect of sulfate concentration on

transcriptional up or down regulation within each strain. Whilst

this approach is useful to identify strain-specific sulfate-regulated

genes, it does not provide insight into differences between these

strains in absolute terms. Therefore, we also compared absolute

transcription levels between the ptxP1 and ptxP3 strain under low,

medium, and high sulfate conditions.

Under low sulfate conditions, the overall absolute gene

expression levels were highly similar between the two strains.

Only nine and seven genes were more than threefold higher

expressed in the ptxP1 and ptxP3 strain, respectively, with no

significant enrichment for genes of any particular functional

category (Figure 3A and Table S6). In the previous section we

showed that several genes involved in sulfate uptake and

metabolism were differentially regulated by sulfate between the

ptxP1 and ptxP3 strain. When looking at absolute expression levels

under low sulfate conditions, seven sulfate genes were $3-fold

higher expressed in the ptxP3 strain, although only two were

statistically significant (Table 1). The cysB gene, encoding the

master regulator for cys gene expression, was also expressed at

significant higher levels in the ptxP3 strain, by 2.7 fold (Table 1).

Under medium sulfate conditions, the overall absolute gene

expression levels were more distinct between the strains (Figure 3A

and Table S6). Respectively, 22 and 61 genes were $3-fold higher

expressed in the ptxP1 and ptxP3 strain. The higher expression of

transcriptional regulators and virulence-associated genes by the

ptxP3 strain was the most prominent, with eight transcriptional

regulators, one autotransporter gene (vag8), six genes for Ptx, and

eleven genes for the T3SS toxin being expressed at higher levels in

the ptxP3 strain (Figure 3C and Table S6). In contrast, the genes

expressed at higher levels in the ptxP1 strain contained no obvious

virulence-associated genes but predominantly housekeeping genes,

in particular genes involved in leucine synthesis.

Under high sulfate conditions, the overall absolute gene

expression levels were also distinct between the strains, with 44

and 17 genes being $3-fold higher expressed in the ptxP1 and

ptxP3 strain, respectively (Figure 3A and Table S6). The 44 genes

expressed higher in the ptxP1 strain included a number of capsule

genes and genes involved in lipid metabolism (Figure 3B and

Table S6).

Differences in gene expression between ptxP1 and ptxP3
strains in relation to DNA polymorphisms

The availability of the complete genome sequences of the two B.

pertussis strains used in this study allows the association of gene

expression differences to strain-specific DNA polymorphisms [23].

The expression levels of all genes associated with strain-specific

polymorphisms can be found in Table S8. Of the 13 genes that are

deleted in strain B1917, seven were expressed above the

expression minima (see Text S1) in the B1920 strain, while 7 of

the 18 genes absent in strain B1920 were expressed in the B1917

strain. Strain-specific transcriptional regulators may have a large

impact on differential gene expression between strains. Indeed,

both strains contain a unique transcriptional regulator (BP1963 in

B1920 and BB1150 in B1917), both of which were expressed. With

the exception of the two transcriptional regulators and the SNP in

ptxP, no other polymorphism suggested underlying causes for the

differences in gene expression between the two strains.

Validation of sulfate-related differences in gene
expression using multiple ptxP1 and ptxP3 strains

Microarray analysis suggested that ptxP3 strains are less sensitive

to sulfate-mediated suppression of virulence gene expression,

resulting in a higher expression of virulence genes under medium

sulfate conditions. To determine whether this is a general lineage-

dependent phenotypical difference, 16 non-epidemiologically

related ptxP1 (n = 9) and ptxP3 (n = 7) strains (Table 3) were

cultured in vitro in the presence of low, medium, and high sulfate

and analyzed by qPCR for a number of genes (Figure 4A). qPCR

Figure 3. Genes differentially regulated between B. pertussis strain B1920 (ptxP1) and B1917 (ptxP3) upon sulfate-modulation. Sulfate
was used to induce high (50 mM), medium (5 mM), and low (,0.02 mM, represented as 0 mM) sulfate conditions in a ptxP3 and ptxP1 strain. A) The
number of genes expressed at least 3-fold higher between strains are indicated for each sulfate concentration. B&C) The pie charts subdivide the 44
genes expressed higher in the ptxP1 strain as compared to the ptxP3 strain under high sulfate conditions (B) and the 61 genes expressed higher in the
ptxP3 strain as compared to the ptxP1 strain under medium sulfate conditions (C) into functional gene categories. The number of genes belonging to
each category is numbered between brackets.
doi:10.1371/journal.pone.0084523.g003
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analysis showed that not only vag8, lpxE, sbp, cysB, but also the

three major vaccine antigens ptxA, prn, and fhaB were significantly

higher expressed in the ptxP3 strains under medium sulfate

conditions (Figure 4A). Since transcriptional activity does not

necessarily correlate with the amount of protein produced, we

used a Luminex assay to quantify the amount of Ptx, Prn, and

FHA protein produced by these strains. Similar to qPCR, we

found that ptxP3 strains produced more Ptx and Prn than the ptxP1

strains, but not FHA (Figure 4B).

Discussion

The worldwide selective sweep of the ptxP3 lineage and its link

to recent pertussis epidemics in some countries clearly emphasizes

the importance of studies on the molecular mechanisms under-

lying these phenomena [13,20,22]. Although the success of a

particular lineage is also determined by host immunity factors,

here we focused on the molecular characterization of the ptxP3

lineage. Until recently, the only distinctive phenotypes described

for ptxP3 strains was a higher Ptx production and enhanced

respiratory colonization [13,30]. Here we identify additional

phenotypic differences between ptxP1 and ptxP3 strains which

may have contributed to its global spread. In previous comparative

genomic studies we showed that ptxP1 and ptxP3 strains have

different SNPs in a number of virulence-associated genes,

differences in pseudogenes, as well as differences in gene content

[23,34]. A recent transcriptional comparison of ptxP1 and ptxP3

strains under non-modulating conditions indicated that multiple

virulence-associated genes are expressed at slightly higher levels in

ptxP3 strains as compared to ptxP1 strains [30]. Here, we

compared sulfate-dependent expression profiles between these

strains, with the rationale that sulfate affects the expression of all

major B. pertussis virulence factors [28]. This approach identified

several additional differences between the ptxP1 and ptxP3 strains,

including sulfate-dependent differences in expression levels of a

number of important virulence genes and a different sensitivity for

sulfate-mediated regulation. Conceivably, the two are intercon-

nected.

The most pronounced phenotypic difference revealed by

microarray analysis was that ptxP1 and ptxP3 strains respond

differently to sulfate mediated-regulation. Based on genome

annotations and BLAST searches we identified 30 genes that are

likely involved in sulfate metabolism, nine of which were

differentially regulated between the ptxP1 and ptxP3 strain. The

sulfate genes included genes involved in uptake and metabolism of

sulfate, cysteine, methionine and taurine. Interestingly, taurine is

one of the most abundant sources of sulfate in the host, comprising

0.1% of the total human body weight [35]. In general, the sulfate

genes were expressed at higher levels by the ptxP3 strain under low

sulfate conditions compared to the ptxP1 strain (Table 1). For

instance, the sbp gene, which facilitates transport of external sulfate

into the cell [36,37], showed a 9-fold higher level of gene

expression in the ptxP3 strain. Furthermore, nine other sulfate

genes were expressed at two- to four-fold higher level in the ptxP3

strain under low sulfate conditions, although not all values reached

statistical significance. The increased expression of sulfate genes in

the ptxP3 strain may be explained by the observation that the

positive master regulator for cys gene expression, cysB [38], was

more highly expressed in ptxP3 strains than ptxP1 strains under low

and medium sulfate conditions. It is tempting to speculate that the

expression profile of these genes contributes to the reduced

sensitivity of ptxP3 strains to sulfate-mediated suppression of

known Bvg-regulated genes as shown in this work. For instance,

we found that ptxP3 strains in particular, and to a lesser extent

ptxP1 strains, expressed higher levels of Ptx in the presence of

5 mM sulfate (Figure 4), whilst ptx genes have been described to be

suppressed under this condition [39,40]. This suggests that the

protein expression pattern of Ptx in ptxP3 strains more accurately

reflects a Bvgi-phase protein than the classical Bvg+ profile.

Recently, it was described that the BvgS sensor molecule is active

by default and is only inhibited when sulfate or other negative

Table 3. Characteristics of the Dutch Bordetella pertussis strains used in this study.

Alleles

Strain Year isolation
Age patient (in
months) Serotype ptxA ptxP prn fim3 fim2

B0638 1996 96 3 ptxA1 ptxP1 prn3 fim3-1 fim2-1

B0888 1991 9 3 ptxA1 ptxP1 prn3 fim3-1 fim2-1

B1878 2000 45 2 ptxA1 ptxP1 prn2 fim3-1 fim2-1

B1920 2000 9 3 ptxA1 ptxP1 prn2 fim3-1 fim2-1

B2414 2002 25 3 ptxA1 ptxP1 prn1 fim3-4 fim2-2

B2968 1987 unknown 2,3 ptxA2 ptxP1 prn1 fim3-1 fim2-1

B3124 2007 1 2 ptxA1 ptxP1 prn2 fim3-1 fim2-1

B3214 2008 160 2 ptxA1 ptxP1 prn2 fim3-1 fim2-1

B3379 2009 43 2 ptxA1 ptxP1 unknown fim3-1 fim2-1

B1917 2000 44 3 ptxA1 ptxP3 prn2 fim3-2 fim2-1

B2584 2003 2 3 ptxA1 ptxP3 prn2 fim3-1 fim2-1

B3034 2005 1 3 ptxA1 ptxP3 prn2 fim3-2 fim2-1

B3230 2008 21 3 ptxA1 ptxP3 prn2 fim3-2 fim2-1

B3448 2010 1 2 ptxA1 ptxP3 prn2 fim3-1 fim2-1

B3928 2012 13 2 unknown ptxP3 unknown fim3-1 fim2-1

B3956 2012 2 2 ptxA1 ptxP3 prn2 fim3-1 fim2-1

doi:10.1371/journal.pone.0084523.t003
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modulators bind to the Venus Flytrap (VFT) 2 region in the

periplasmic domain of this sensor molecule [41]. Whilst the

concentration of free sulfate in the respiratory tract is low

(0.6 mM; [42]), infection may increase sulfate concentration

locally, e.g. through desulfation of sulfated host proteins [43],

potentially through pertussis proteins containing a sulfatase

domain (BP1635, BP1654, BP2327, and BP3136) of which ORF

BP3136 was expressed above the expression minima in both

strains. Interestingly, the wcbQ gene (BP1654) encoding a capsular

polysaccharide biosynthesis protein with a sulfatase domain, was

expressed exclusively and at 4.5 fold higher levels in the ptxP1

strain under low and medium sulfate conditions, as compared to

the ptxP3 strain (Table S7). Extracellular sulfate can diffuse freely

through the outer membrane into the periplasmic region and bind

to the VFT2 region of BvgS [44]. As such, ptxP3 strains may

benefit from the lack of wcbQ expression and the increased

expression of the sbp, cysT, and cysW sulfate transport genes, as this

might lower periplasmic sulfate levels. It is therefore conceivable

that the concentration of free sulfate in the periplasmic space is

lower in the ptxP3 strain compared to the ptxP1 strain. Thus, at

equal concentrations of extracellular sulfate, less suppression

would occur in the ptxP3 strain. It is questionable whether this

effect is transduced by the BvgASR system only, as only a limited

number of known Bvg-regulated genes were affected. Here, we

speculate that sulfate may regulate B. pertussis (virulence) genes via

a second route, possibly comprised of a sensory transduction

system. Indeed under medium sulfate conditions eight transcrip-

tional regulators were more highly expressed in the ptxP3 strain

compared to the ptxP1 strain (Figure 3C, Table S6). This

hypothetical second regulon includes both Bvg-regulated genes

and genes which are regulated independent of the Bvg-system.

One possibility to test this hypothesis would be to examine the

response of Bvg-phase locked mutants to different sulfate

concentrations.

The higher expression level of cys genes in the ptxP3 strain may

also suggest that these strains are more resistant to Reactive

Oxygen Species (ROS), as several publications have found a link

between the two [45,46]. However, this remains to be investigated.

Another interesting gene which was differentially regulated

between the ptxP1 and ptxP3 strains was lpxE, encoding a lipid A-1

Figure 4. Validation of microarray data using multiple B. pertussis ptxP1 and ptxP3 strains. Sulfate was added to the culture medium to
induce high (50 mM), medium (5 mM), and low (,0.02 mM, represented as 0 mM) sulfate conditions. (A) qRT-PCR data showing the relative
expression level of vag8, lpxE, sbp, cysB, ptxA, prn, and fhaB between ptxP1 strains (represented by white symbols) and ptxP3 strains (represented by
black symbols) grown under low (0 mM), medium (5 mM) and high (50 mM) sulfate conditions. The data are expressed as fold changes relative to the
ptxP1 strains grown under low sulfate conditions, with horizontal bars representing the geometrical mean, so that any sulfate-dependent effects on
gene expression become apparent. B) Luminex data showing Ptx, Prn, and FHA protein expression in ptxP3 and ptxP1 strains grown under low
(0 mM), medium (5 mM) and high (50 mM) sulfate conditions. Protein expression is expressed in absolute amounts (nanograms) with horizontal bars
representing the geometrical mean. The expression values of the two strains that were used for microarray analysis (B1920 (ptxP1) and B1917 (ptxP3))
are depicted in grey. Asterisks indicate a statistically significant difference between the groups as determined by an unpaired Student’s t-test: * P
value ,0.05, ** P value ,0.005, *** P value ,0.0005.
doi:10.1371/journal.pone.0084523.g004
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phosphatase. The lpxE gene was identified as a HSR gene

specifically in the ptxP3 strain and was also expressed at four-fold

higher levels in the ptxP3 strains under medium sulfate conditions.

The lipid A-1 phosphatase encoded by this gene is responsible for

selectively dephosphorylating the 1-position of lipid A [47]. It is

well established that the presence of phosphate groups on the lipid

A moiety of the lipo-oligosaccharide (LOS) is essential for the

endotoxic activity of LOS [47,48]. Since LOS lacking the 1-

phosphate group are recognized less efficiently by the Toll-like

receptor 4 (TLR4)/myeloid differentiation factor (MD-2) receptor

complex of the mammalian innate immune system, they induce a

weaker proinflammatory cytokine response [49]. This effect has

been described for a number of bacterial pathogens. For instance,

in Salmonella typhymurium, genomic introduction of the lpxE gene

from Francisella tularensis led to a clear reduction of virulence in a

mouse model [50]. Furthermore, the human pathogen Helicobacter

pylori uses dephosphorylation of both the 1- and 4-phosphate to

hide itself from recognition by the innate immune system, allowing

the pathogen to survive in the gastric mucosa [51]. Whether the

lpxE gene facilitates a similar function in B. pertussis remains

unknown. For B. pertussis it is known that the 1-phosphate group of

lipid A can be substituted by glucosamine in a Bvg-regulated

manner and that this modulates hosts immune defenses [52,53].

However, this substitution is strain-specific, and has been studied

exclusively in routinely used laboratory strains [54]. Consequently,

the lipid A composition of currently circulating B. pertussis strains

remains unknown. Nonetheless, it is tempting to speculate that the

differential sulfate-dependent regulation of the lpxE gene in ptxP1

and ptxP3 strains has an influence on the endotoxic activity and

immune modulating capacity of these strains.

Another difference between the ptxP1 and ptxP3 strains

identified in this study was the limited overlap (51%) in genes

being induced by high sulfate (HSI genes, Figure 2D). However,

this in itself is not unexpected, as previous work also showed

significant gene expression differences in Bvg2 locked B. pertussis

strains [55]. This heterogeneity in HSI gene profiles may indicate

a lack of purifying selection, which further supports the idea that

the Bvg2 phase of B. pertussis is an evolutionary remnant [56]. In B.

bronchiseptica, the evolutionary ancestor of B. pertussis, the Bvg2

phase is assumed to be important for (ex vivo) survival under

nutrient-limiting conditions [39,57]. However, B. pertussis has

evolved into an obligate human pathogen which does not require

an environmental niche [58].

In a previous study we showed that ptxP3 strains grown on plates

produce more Ptx than ptxP1 strains [13]. We explored this

difference further here using liquid cultures and observed that the

largest difference in Ptx expression was observed at medium sulfate

concentrations. We did not observe increased Ptx expression

under non-modulating conditions as in our previous study.

However, this might be related to the different growth media

used (plates versus chemically defined liquid medium) and/or the

growth phase at which the bacteria were collected (after 3 days on

plate versus during mid-log growth). A novel finding was the

higher expression of T3SS proteins and of the autotransporters

Prn and Vag8 by ptxP3 strains under medium sulfate conditions.

Slightly increased levels (fold change 1.2–1.8) of T3SS and Vag8

have also been reported by others under non-modulating

conditions [30]. The difference in Ptx expression may be explained

by the mutation in the Ptx promoter region, as suggested

previously [13]. However, no mutations were found in the ORFs

or promoter regions of the Prn, Vag8, and T3SS genes, suggesting

that polymorphisms in other genes may (also) be involved in their

transcriptional regulation. All ptxP3 strains analyzed to date

contain a deletion encompassing BP1948–1966 [34] and it is

possible that the deletion of these genes plays a role in the

differential regulation of these genes. Conversely, the ptxP3 strain

B1917 also contains genes (BB1140–BB1158) that are absent from

ptxP1 strain B1920, including two transcriptional activators

(BB1141 and BB1150), which may also contribute to the observed

differences. The expression phenotype of these three important

virulence factors in the ptxP3 strains at medium sulfate concen-

trations, is significant as all three are involved in suppression and

modulation of the host immune response. In this sense, Ptx is the

most versatile virulence factor, as it is able to intoxicate alveolar

macrophages (AMs) [59], inhibit the mucosal recruitment of

immune cells (such as AMs, neutrophils, and T cells) [60–62],

modulates the cellular immune response [63], and suppresses

serum antibody responses [64,65]. Furthermore, T3SS represents

a multi-component secretion machinery used by a wide variety of

gram-negative bacteria to secrete effectors directly into the cytosol

of host cells and interfere with host cell functioning. In B. pertussis,

two proteins have been identified as T3SS effectors: BteA and

BopN. BteA is a cytotoxin that induces a rapid non-apoptotic

death in host epithelial cells [66] while BopN modulates cellular

immune responses [67]. Additionally, the autotransporter Vag8

mediates the binding of human C1 esterase inhibitor on the

bacterial surface and thereby confers resistance to complement-

mediated killing [31]. Given the important virulence properties of

these proteins, ptxP3 strains may benefit from their increased

expression, although a direct link to enhanced immune suppres-

sion remains to be established.

Taken together, comparative transcriptional profiling of a ptxP1

and a globally emerged ptxP3 strain of B. pertussis provided novel

insights into sulfate-mediated modulation of the ptxP3 lineage and

should stimulate research into the role of sulfate in the

pathogenesis of B. pertussis. Although it is tempting to focus on

specific genes, the overall increased expression of multiple

virulence factors in the ptxP3 strain may be more important, as

this suggests that this strain is in a higher state of virulence, which

may allow for better transmission among immune hosts. Thus

both antigenic divergence with vaccine strains [11] and increased

immune suppression may have contributed to the global spread of

ptxP3 strains.

Materials and Methods

Ethics Statement
The only patient material collected were strains which are not

collected by us and not specifically for this study. The strains were

collected by Medical Microbiology Laboratories from patients

suspected of whooping cough and sent to the RIVM in the context

of routine surveillance (as required by law). The strains are sent to

the RIVM for confirmation of clinical diagnosis, species determi-

nation and subtyping. Strictly anonymized patient information is

included, which is limited to age, sex and postal code. For this type

of surveillance ethical evaluation or patient consent are not

required. The strains have been used in previous studies [22].

Bacterial strains and growth conditions
Two recent B. pertussis strains isolated from patients in the

Netherlands in 2000 were selected to study sulfate-modulated gene

expression: B1920 (ptxP1) and B1917 (ptxP3) [13] (Table 3). The

effect of sulfate on gene expression was extended with eight and six

additional non-related ptxP1 and ptxP3 strains, respectively,

isolated from patients from different geographical regions in the

Netherlands between 1987 and 2012 (Table 3). B. pertussis strains

were grown on Bordet-Gengou agar plates supplemented with

15% sheep blood (Tritium Microbiology, Eindhoven, The
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Netherlands) and incubated for four days at 37uC. Liquid cultures

were grown overnight in chemically defined THIJS medium [68]

supplemented with 0.2 mg/ml Heptakis-cyclodextrin (Sigma) and

then re-inoculated into pre-warmed medium at an optical density

at 620 nm (OD620) of 0.075. For modulation of the BvgASR

regulatory system, magnesium sulfate was added to the cultures at

a final concentration of 5 and 50 mM to induce medium and high

sulfate conditions respectively. In the absence of additional sulfate,

the concentration of free sulfate in THIJS medium was

,0.02 mM as determined using the QuantiChrom sulfate assay

kit (BioAssay Systems), thereby inducing low sulfate conditions.

Cultures were grown at 37uC until a mid-log OD620 of 0.5 to 0.6,

at which point the bacteria were harvested for RNA isolation and

Luminex analysis as described below.

RNA isolation and qRT-PCR
Aliquots of 5 ml mid-log culture were mixed with two volumes

of RNA Protect Bacteria Reagent (Qiagen). Total RNA was

extracted using the RNeasy Mini kit (Qiagen) and contaminating

genomic DNA was subsequently removed by DNase treatment

(DNAfree, Ambion). DNA-free total RNA (125 ng) was reverse

transcribed using 300 ng of random hexamers (Invitrogen), and

Superscript III reverse transcriptase (200U, Invitrogen) in 1x First-

Strand buffer, 10 mM DTT, and 0.5 mM dNTPs. To confirm the

absence of genomic DNA, control reactions were carried out

without reverse transcriptase. Relative amounts of ptxA (BP3783),

bipA (BP1112), kpsT (BP1624), prn (BP1054), fim3 (BP1568), fhaB

(BP1879), vag8 (BP2315), lpxE (BP0835), sbp (BP0966), and cysB

(BP2416) transcripts were determined by quantitative real-time-

PCR (qRT-PCR) using the SYBR green technology with the

primers listed in Table S1 on a 7500 Fast real-time PCR system

(PE Applied Biosystems) according to the manufacturer’s instruc-

tions. The relative quantification DDCt method was used to

compare expression levels between the different strains and sulfate-

conditions [69]. The recA (BP2546) amplicon was used as internal

control for normalization of data.

Microarray expression profiling
Five mg of total RNA was labeled by a method adapted from

Ouellet et al. [70], as described by de Vries and coworkers [71].

Two mg of labeled cDNA was applied to a 12x135K custom design

NimbleGen array. Overnight hybridization at 42uC and subse-

quent washing of arrays was performed according to the

manufacturer’s instructions. The NimbleGen array contained 1–

8 probes for all coding sequences (CDS) with an average coverage

of 7.5 probes per CDS and pseudogene, 15 bp overlapping tiling

probes covering both strands of the intergenic regions, and 7,304

random probes with a similar length distribution and GC content

as the experimental probes. The array design was based on the

genome sequence of B. pertussis Tohama I [72], supplemented with

additional B. bronchiseptica CDS and intergenic sequences that are

present in the B. pertussis strains used in this study [23]. Array

images were acquired with a NimbleGen MS200 scanner, and

images were processed with NimbleScan software. Normalized

expression data was analyzed by ArrayStar (DNASTAR, Madi-

son, WI, USA) using the Robust Multiarray Analysis (RMA)

algorithm for background correction and quantile normalization

[73]. For the identification of sulfate-modulated genes the raw

expression data under low, medium, and high sulfate was

normalized individually for each strain. To identify absolute

differences in gene expression between the ptxP1 and ptxP3 strain,

normalization was performed using the raw expression data of

both strains under all sulfate conditions. The latter normalized

expression values can be found in Table S7. Log2 transformed

signals were used to generate kernel density plots using a Gaussian

model with stepwise increasing bandwidth until a single local

minimum was found between the distributions of background

signal and gene expression. Positions where the first derivative of

the density traverses from values below to values above zero were

considered local minima. The corresponding expression value is

the value closest to the minimum between the peaks of expressed

and non-expressed genes and was therefore considered as a cutoff

value to determine whether a gene was expressed or not. Further

validation of the transcriptomic dataset is described in Text S1

and Table S2.

A moderated Student t-tests using Benjamin Hochberg correc-

tion with a cutoff P-value of 0.05 was used to compare the mean

gene expression values. Genes were excluded if the expression was

low (signal intensity ,500) in both conditions that were compared.

High sulfate repressed (HSR) genes and high sulfate induced (HSI)

genes were defined as those genes which were expressed at a level

at least three times higher or lower, respectively, in the absence of

sulfate compared to growth in the presence of 50 mM sulfate.

Medium sulfate induced (MSI) or medium sulfate repressed (MSR)

genes were defined as those genes which were significantly up- or

down regulated respectively by at least three-fold when bacteria

were grown in the presence of 5 mM sulfate compared to

,0.02 mM sulfate. Functional class distribution was assessed using

the Institute for Genomic Sciences (IGS) classification (http://

www.igs.umaryland.edu/) and the protein localization was

predicted using PSORTb v3.0 [74]. Enrichment for functional

class and localization was assessed using the Fishers exact (one-tail)

test and considered significant at a p-value ,0.05. Enrichment for

specific sets of genes were assessed using the Database for

Visualization and Integrative Discovery (DAVID) [75].

Microarray data
All microarray data have been deposited in NCBI’s Gene

Expression Omnibus (GEO) database (www.ncbi.nlm.nih.gov/

geo/) and are accessible through GEO Series accession number

GSE49385 (http://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc = GSE49385).

Multiplex immunoassay
One ml aliquots of mid-log cultures were heat-inactivated (HI)

for 30 min at 56uC and used in a multiplex immunoassay (MIA)

for the quantification of pertussis toxin (Ptx), filamentous

hemagglutinin (FHA), and pertactin (Prn) by a method adapted

from van Gageldonk et al. [76]. Purified monoclonal anti-Ptx (Pem

9), anti-FHA (29E7), and anti-Prn (Pem 85) antibodies (kindly

provided by Dr. Guy A.M. Berbers) were coupled to activated

carboxylated microspheres (Bio-Rad Laboratories) using a two-

step carbodiimide reaction [77]. Bead regions were carefully

chosen not to be directly adjacent to each other: 9 (anti-Prn), 24

(anti-FHA), 33 (anti-Ptx). A solution of 500 ml of carboxylated

microspheres (6.256106 beads) was washed once by centrifugation

(12,0006g for 2 min) with 250 ml dH2O and resuspended in

200 ml 0.1 M Monobasic Sodium Phosphate, pH 6.2 and

activated by addition of 25 ml of N-hydroxy-sulfosuccinimide

(sulfo-NHS. Pierce) 50 mg/ml and 25 ml of 1-ethyl–3-(-3-dimethy-

laminopro-pyl)-carbodiimide hydrochloride (EDC. Pierce) 50 mg/

ml. The solution was incubated for 20 min at room temperature

(RT), in the dark under constant rotation at 25 rpm. The activated

microspheres were washed twice with 0.05 M 2[N-Morpholino]

ethanesulfonic acid (MES, Sigma-Aldrich) pH 5.0 by centrifuga-

tion (12,0006g for 2 min) and resuspended in 1.25 ml 0.05 M

MES pH 5.0 with a monoclonal to bead ratio of 12.5 mg/

6.256106 activated beads for anti-Ptx and anti-Prn, and 62.5 mg/
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6.256106 activated beads for anti-FHA. The beads were

incubated for 2 h at RT in the dark under constant rotation at

25 rpm. Subsequently, the beads were washed three times with

PBS containing 0.05% Tween 20 (PBST) and stored in 1 ml PBST

at 4uC in the dark until used.

HI-cultures were diluted 1/50 in PBS pH 7.2 containing 0.1%

(v/v) Tween-20 and 1% (w/v) BSA (assaybuffer) before use. Ptx

obtained from Kaketsuken (Kumamoto, Japan), FHA obtained

from SmithKline Beecham, and Prn obtained from the Pediacell

vaccine of Sanofi Pasteur MSD were used as standards in a

concentration range of 243, 81, 9, 3, and 1 ng/ml in assaybuffer.

Each dilution of the standard and culture samples (25 ml) was

mixed with an equal volume of the conjugated microspheres (Ptx,

Fha, Prn; 4000 beads/region/well) in a 96-well Multiscreen HTS

filter plate (Millipore Corporation, Billerica, MA). Plates were

incubated for 60 min at RT in the dark on a plate shaker at

600 rpm. Blanks were included on every plate. The beads were

collected by filtration using a vacuum manifold and washed three

times with 100 ml assaybuffer. A volume of 50 ml of a 1/200

dilution of Human Pertussis Antiserum (WHO International

Standard Pertussis Antiserum 06/140 NIBSC, Hertfordshire, UK)

was added to each well and the plate was incubated in the dark for

20 min with continued shaking. The beads were collected and

washed as described above. To each well 100 ml of a 1/200

dilution of R-phycoerthyryn (R-PE)-conjugated goat anti-human

IgG (Fcy Fragment specific, Jackson ImmunoResearch Laborato-

ries Inc, Westgrove, Pa) was added and the plate was incubated for

20 min in the dark with continued shaking. The beads were

collected and washed in PBS containing 0.05% Tween as

described above. Finally the beads were resuspended in 125 ml

PBS and shaken in the dark before analysis with a Bio-Plex 100

system in combination with Bio-Plex Manager software version

4.1.1 (Bio-Rad Laboratories, Hercules, CA). For each analyte,

median uorescent intensity (MFI) was converted to ng/ml by

interpolation from a 5-parameter logistic standard curve (log–log)

for every bead region/standard.
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Figure S1 Sulfate-mediated fim3 expression in B.
pertussis strain B1920 (ptxP1) and B1917 (ptxP3). Sulfate

was added to the culture medium to induce high (50 mM),

medium (5 mM), and low (,0.02 mM, represented as 0 mM)

sulfate conditions. qRT-PCR data shows the relative expression

level of fim3 expressed as fold changes relative to the high sulfate

condition, with the values being the mean of four biological

replicate cultures. Asterisks indicate a statistically significant

difference between the groups as determined by Student’s t-test

with Welch’s correction: * P value ,0.05, ** P value ,0.005, *** P

value ,0.0005.
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