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Osteoporosis is a systemic degenerative bone disease characterized by low

bone mass and damage to bone microarchitecture, which increases bone

fragility and susceptibility to fracture. The risk of osteoporosis increases with

age; with the aging of the global population, osteoporosis is becoming more

prevalent, adding to the societal healthcare burden. Histone modifications

such as methylation, acetylation, ubiquitination, and ADP-ribosylation are

closely related to the occurrence and development of osteoporosis. This

article reviews recent studies on the role of histone modifications in

osteoporosis. The existing evidence indicates that therapeutic targeting of

these modifications to promote osteogenic differentiation and bone

formation may be an effective treatment for this disease.
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Introduction

Osteoporosis is a common skeletal disease characterized by a decrease in bone mass,

changes in bone microarchitecture, and increased bone fragility and risk of fracture. Pain,

fractures, and other complications of osteoporosis are associated with high rates of death

and disability. Bone homeostasis (1), which is maintained under physiologic conditions

by a balance between bone formation and resorption during bone remodeling, is critical

for ensuring the long-term stability of bone morphology and strength (2). Although the

pathogenesis of osteoporosis is not fully understood, an imbalance in bone homeostasis

during bone reconstruction whereby bone resorption exceeds bone formation is a major

cause (1). The function of osteoblasts and osteoclasts is regulated and influenced by many

factors (3–5), and epigenetic studies have provided evidence for the role of histone

modifications in the development of osteoporosis (6–8).

Histones H1, H2A, H2B, H3, and H4 are small proteins enriched in positively

charged basic amino acids (arginine [R] and lysine [K]) that interact with the negatively
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charged phosphate groups in DNA and are enveloped by DNA

to form nucleosomes, the basic structural unit of chromatin.

Histone N-terminal R and K undergo covalent post-

transcriptional modifications such as methylation, acetylation,

ubiquitination, and ADP-ribosylation that affect histone binding

to DNA and alter the structure and state (open vs. closed) of

chromatin (9), and also affect the binding of transcription factors

at gene promoters to influence gene regulation (10, 11). Histone

modifications occur at every stage of development, growth, and

aging and are a key aspect of epigenetic regulation that has been

linked to the development and progression of multiple

diseases (12).

There is increasing evidence that dysregulation of histone

modification (methylation, acetylation, ubiquitination, and

ADP-ribosylation) and impaired function of related enzymes

contribute to the development of osteoporosis. However,

molecular-level details of the relationship between these

modifications and disease pathogenesis are lacking, and the

full clinical significance of histone modifications in

osteoporosis remains to be determined (13, 14). Nonetheless,

histone modifications may be important for the diagnosis,

treatment, and prognosis of osteoporosis and are potential

therapeutic targets (15).

In this review, we summarize the current state of knowledge

on histone modifications in osteoporosis. Many studies have

demonstrated that regulators of histone modifications and their

targets function in a complex regulatory network in cells. We

discuss the evidence for targeting the regulation of histone

modifications as a treatment for osteoporosis, as well as the

potential utility of these modifications as disease markers.
Histone methylation

Histone methylation usually occurs at R and K residues at

the N terminus of histones. K residues can be mono-, di- or

trimethylated and R residues can be mono- or dimethylated.

Histone methylation positively and negatively regulates gene

expression: H3K4me1, H3K4me3, H3K36me3, and H3K79me2

are associated with the activation of gene transcription whereas

H3K27me3 and H3K9me3 are associated with transcriptional

repression (16). Histone methylation is regulated by histone

methyltransferases (HMTs) and histone demethylases (HMDs)

(17). Thus, the expression of genes related to bone homeostasis

and osteoporosis can be regulated by altering the level of histone

methylation (Table 1).

Several genes are regulated by HMTs or HMDs during the

differentiation and maturation of osteoblasts and osteoclasts

(6, 14, 15). Suv39h1 is an H3K9 methyltransferase that can

modify H3K9 with two or three methyl groups. H3K9me2 and

H3K9me3 bind to the promoter of Runx2 (22)—a key gene

involved in osteoblast differentiation and maturation (41)—and
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suppress gene transcription, thereby delaying osteoblast

differentiation, which may be relevant to the pathogenesis of

osteoporosis. EZH2 is a trimethyltransferase of H3K27;

H3K27me3 activates transcription of the Wnt4 gene in

osteoblasts to promote osteogenic differentiation (27).

H3K27me3 also activates the transcription of Foxc1 in

osteoclasts and promotes osteoclast differentiation (27). Thus,

histone methylation plays opposing regulatory roles in the

pathogenesis of osteoporosis. However, some of the evidence

regarding the function of histone methylation in bone

homeostasis is controversial. For instance, JMJD2A and

JMJD2B are H3K9me3 demethylases; in one study,

demethylation of H3K9me3 by JMJD2A promoted adipogenic

differentiation and inhibited osteogenic differentiation (32),

whereas another study found that H3K9me3 demethylation by

JMJD2B promoted osteogenic differentiation of bone marrow-

derived stem cells (BMSCs) and maintained bone–fat

balance (33).
Histone acetylation

Histone acetyltransferases and
histone deacetylases

Acetylation was one of the first histone modifications found

to affect transcriptional regulation and is therefore the most

widely studied. Acetylation causes K residues in the N-terminal

histone tails protruding from nucleosomes to become negatively

charged, which repels negatively charged DNA and leads to

relaxation of the chromatin structure. The open chromatin

conformation allows transcription factors to bind more easily,

resulting in an increase in gene expression (42, 43). Thus,

histone acetylation is mainly associated with gene activation; it

is known to be involved in cell cycle regulation, cell proliferation,

and apoptosis, cellular differentiation, DNA replication and

repair, nuclear import, and neuronal inhibition (44, 45),

whereas dysregulation of histone acetylation has been

implicated in osteoporosis progression (46–48).

Histone acetylation is regulated by HATs and HDACs

(Table 2). The HAT family includes GNAT (HAT1, GCN5,

PCAF) and MYST (Tip60, MOF, MOZ, MORF, HBO1) as well

as CREB-binding protein (CBP)/p300, which share very high

sequence similarity in the bromodomain, cysteine-histidine-rich

region, and HAT structural domain and specifically bind

phosphorylated CREB to enhance its transcription of cAMP-

responsive genes.

CBP/p300 has a regulatory role in bone formation, targeting

transcription factors such as Runx2 during osteoblast

differentiation. During parathyroid hormone-induced

osteoblast differentiation, phosphorylated HDAC4 dissociates

from Runx2, which interacts with CBP/P300 (67). Transforming
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growth factor beta-1(TGF-b1) and BMP2 stimulate ERK-

mediated phosphorylation of Runx2 to promote its interaction

with CBP/p300 (68). BMP2 activates SMAD1/5, leading to CBP/

p300-mediated acetylation of Runx2, which enhances the

expression of osteogenic genes such as alkaline phosphatase

(ALP) and collagen type I (COL-I) (69, 70).

Runx2 (41), Sp7 (71), and FoxO1 (72) are important

transcription factors for osteoblast differentiation and

maturation that induce the transcription of downstream

osteogenesis-related genes such as ALP, osteocalcin(OCN),

osteopontin(OPN), and COL-1 and promote the maturation

and mineralization of osteoblasts. As Runx2 transcription is

initiated, PCAF and CBP/p300 acetylate histone H3 to promote
Frontiers in Endocrinology 03
osteoblast differentiation and maturation (52, 55). However, the

transcription of Runx2, SP7, and FoxO1 was shown to be

inhibited after HDAC reduced the histone acetylation level,

leading to suppression of osteoblast differentiation and

maturation (48, 57, 58, 61, 65) (Table 2). The differentiation

and maturation of osteoclasts are controlled by the transcription

factors NFATc1 (73) and NF-kB (74), among others. PCAF and

CBP/p300 acetylate histone H3 to promote osteoclast

differentiation, whereas differentiation is inhibited by HDAC-

mediated H3 deacetylation (52, 55) (Table 2). These findings

suggest that the balance between the activities of HATs and

HDACs is critical for the regulation of transcription factors

involved in osteoblast and osteoclast differentiation.
TABLE 1 Histone methyltransferases, histone demethylases, target histone sites, and their roles in the occurrence and development of osteoporosis.

HMTs and
HMDs

Target histone sites Target genes Function

PRMT1/PRMT4
(CARM1)

H4R3me2a, H3R17me2a CYP24A1 Activates CYP24A1 gene in osteoblasts (18).

PRMT5 H4R3me2s (19),
H3R8me2s (20)

ISG (19), CXCL10 and
RSAD2 (20)

Regulates osteogenic differentiation of BMSCs (19).
Inhibits PRMT5 from suppressing osteoclast differentiation (20).

PADI4 Runx2 Promotes osteoblast mineralization (21).

KMT1A (Suv39h1) H3K9me2/3 Runx2 Delays osteoblast differentiation (22).

KMT1C (G9a,
EHMT2)

H3K9me2 (23), H3K27me1
(24)

Runx2 (23), MMP-9 (24) Regulates proliferation and differentiation of cranial bone cells (23)
Induces expression of osteoclastogenesis-related genes and promotes osteoclast
differentiation (24).

KMT1D (EHMT1) H3K9me2 Runx2 Suppresses osteogenic differentiation of mesenchymal stem cells (25).

KMT1E (ESET,
SETDB1)

H3K9me3 Regulates osteoblast differentiation of MSCs (26).

KMT6 (EZH2) H3K27me3 Wnt4, Foxc1 Enhances both osteogenesis and osteoclastogenesis (27).

Mll-COMPASS
complexes

H3K4me3 Runx2, p57 Promotes Runx2, p57 gene transcription (28).

KMT2D (MLL4) H3K4me1 Runx2 Promotes osteoblast differentiation (29).

KMT4 (DOT1L) H3K9me2 CD9, MMP-9 Inhibits osteoclastogenesis and protects against osteoporosis (30).

KDM1 (LSD1) H3K4me1 (31), H3K4me2
(29)

Runx2 (31), Wnt7b, BMP2
(29)

Inhibits osteoblast differentiation of C2C12 cells (31).
Inhibits osteogenic differentiation of BMSCs (29).

KDM4A (JMJD2A) H3K9me3 Sfrp4, C/ebpa Promotes adipogenic differentiation and inhibits osteogenic differentiation (32).

KDM4B (JMJD2B) H3K9me3 Runx2, Ccnd1 Promotes osteogenic differentiation of BMSCs and maintains bone–fat balance (33,
34).

KDM5A (JARID1A,
RBP2)

H3K4me3 Runx2 Inhibits BMP2-induced osteogenesis of MSCs (35).
Inhibits osteogenic differentiation of human adipose-derived stromal cells (36).

KDM5B (JARID1B,
PLU-1)

H3K4me3 Runx2 Enhances osteoblast differentiation (37).

KDM6A (UTX) H3K27me3 Inhibits adipogenic differentiation and promotes osteogenic differentiation of
BMSCs (38).

KDM6B (JMJD3) H3K27me3 Runx2, Osx (39), NFATc1
(40)

Regulates osteoblast differentiation (39).Promotes osteoclast differentiation (40).
HDM, histone demethylase; HMT, histone methyltransferase.
PRMT, Protein arginine methyltransferase; CARM1, Coactivator associated arginine methyltransferase 1; CYP24A1, Cytochrome P450 family 24 subfamily A member 1; ISG, Interferon-
stimulated gene; CXCL10, C-X-C motif chemokine ligand 10; RSAD2, Radical S-adenosyl methionine domain containing 2; PADI4, Peptidyl arginine deiminase 4; Runx2, Runt-related
transcription factor 2; Suv39h1, Suppressor of variegation 3-9 homolog 1; KMT, Calmodulin-Lysine N-methyltransferase; EHMT, Euchromatic histone lysine methyltransferase; MMP,
Matrix metallopeptidase; ESET,SETDB1, SET domain bifurcated histone lysine methyltransferase; EZH2, Enhancer of zeste 2 polycomb Repressive Complex 2 Subunit; Foxc1, Forkhead
box C1; DOT1L, DOT1 Like Histone Lysine Methyltransferase; KDM, LSD, Lysine demethylase; BMP2, Bone morphogenetic protein 2; JMJD, JmjC domain-containing histone
demethylation protein; Sfrp4, Secreted frizzled related protein 4; C/ebpa, CCAAT enhancer binding protein alpha; Ccnd1, Cyclin D1; RBP2, Retinol binding protein 2; UTX, Utx histone
demethylase; Osx, Osterix; NFATc1, Nuclear factor of activated T cells 1.
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Sirtuins

SIRTs are highly conserved HATs that transfer the acetyl

group of a substrate to the ADP-ribosyl moiety of nicotinamide

adenine dinucleotide (NAD+), NAD+ dependent protein

deacetylation consumes NAD+, transfers the acetyl group

from the lysine to ADP-ribose to form 2’-O-acetyl-ADPR,

nicotinamide, and a deacetylated lysine. The SIRT family

comprises SIRT1–7, of which SIRT1, SIRT6, and SIRT7 are

mainly localized in the nucleus (75, 76). It should be noted that,

most of the discussed Sirtuin effects do not exhibit their

function by direct deacetylation of histones, but by

deacetylation of other targets. SIRT1 deacetylates H3K9 and

regulates of a variety of physiologic processes including

metabolism, immune response, and aging (77), and has been

linked to osteoporosis (78). The Wnt/b-catenin signaling

pathway plays a central role in the differentiation of BMSCs

into osteoblasts (79–82); SIRT1 deacetylates K49R or K345R of

b-catenin, promoting its entry into the nucleus where it

induces the transcription of osteogenic differentiation-related

genes such as Cyclin D1 and C-myc and promotes the

expression of Runx2 (83). SIRT1 also directly deacetylates

Runx2, which in turn induces the transcription of genes

that promote osteogenic differentiation of BMSCs (84).
Frontiers in Endocrinology 04
peroxisome proliferators-activated receptors gamma(PPARg)
is an important transcription factor for the adipogenic

differentiation of BMSCs (85), which inhibits osteogenic

differentiation and disrupts bone–fat balance; this is restored

by reduction of PPARg acetylation level by SIRT1 and

consequent suppression of the adipogenic differentiation of

BMSCs (86, 87) (Figure 1). In pre-oisteoblasts, SIRT1 also

down-regulates PPARg to promote osteogenic differentiation

(88). Excessive reactive oxygen species (ROS) production in

BMSCs under oxidative stress affects osteogenic differentiation

(72). SIRT1 reduces the acetylation level of FoxO3, a

transcription factor involved in the cellular response to

oxidative stress, leading to FoxO3 transcription and the

expression of antioxidant enzymes such as heme oxygenase 1

(HO-1) and superoxide dismutase 2(SOD2) (89, 90). The

subsequent removal of excess ROS in BMSCs restores their

osteogenic differentiation capacity. FoxO3 transcription also

promotes the expression of b-catenin, resulting in osteogenic

differentiation (90) (Figure 1). Bone resorption depends on

ROS produced in osteoclasts; SIRT1 was shown to reduce FoxO

acetylation level in bone marrow macrophages(BMMs) and

promote the expression of antioxidant enzymes that clear ROS

(91). At the same time, SIRT1 reduced TNF-a acetylation level,

thereby increasing the expression of transient receptor
TABLE 2 Histone acetyltransferases, histone deacetylases, and their roles in the occurrence and development of osteoporosis.

HATs and
HDACs

Target genes Function

KAT2A (GCN5) Wnt, NF-kB Enhances osteogenic differentiation ability of BMSCs (49–51).

KAT2B (PCAF) BMP, Runx2 (52), CXCL12 (53)
NFATc1 (54)

Promotes osteogenic differentiation of MSCs (52, 53).
Promotes osteoclast differentiation (54)

CBP/p300 Runx2 (55), NFATc1 (54) Promotes osteoblast differentiation (55).
Promotes osteoclast differentiation (54).

HDAC1 IGF-1 Prevents achievement of peak bone mass by inhibiting IGF-1 expression in the liver and IGF-1 signaling in
bone (56).

HDAC2 SP7 (57), AKT, FoxO1 (58) Inhibits osteogenic differentiation of MSCs (57).
Activates Akt and thereby suppresses FoxO1 transcription, resulting in enhanced osteoclastogenesis (58).

HDAC3 NF-kB Controls bone remodeling by suppressing the responsiveness of osteoclast lineage cell to RANKL (59).

HDAC4 MEF2C, MMP13 (60), Runx2 (61) HDAC4 interacts with MEF2C at the MMP13 promoter and inhibits MMP13 gene transcription (60).
Deacetylates and degrades Runx2, leading to reduced osteoblast function (61).

HDAC5 MEF2C (62), NFATc1 (54) HDAC5 binds and inhibits the function of MEF2C and decreases SOST expression in osteocytes (62).
Reduces RANKL- or PCAF-mediated NFATc1 acetylation, stability, and transactivation activity and
suppresses osteoclast differentiation (54)

HDAC6 Runx2 Inactivates Runx2 promoter to block osteogenesis of BMSCs (48).

HDAC7 Mitf Represses Mitf function and inhibits osteoclast differentiation (63).
Represses Runx2 expression and suppresses osteoblast maturation (64).

HDAC8 Runx2 Suppresses osteogenic differentiation of BMSCs by inhibiting H3K9ac and Runx2 activity (65).

HDAC11 11b-HSD2 Suppresses osteogenic differentiation of BMSCs by downregulating H3K9ac and 11b-HSD2 expression (66).
HAT, histone acetyltransferases; HDAC, histone deacetylase.
KAT2A(GCN5), Lysine acetyltransferase 2A; NF-kB, Nuclear factor kappa B; KAT2B(PCAF), Lysine acetyltransferase 2B; CXCL12, C-X-C motif chemokine ligand 12; CBP, CREB binding
protein, IGF-1, Insulin like growth factor 1; SP7, Sp7 transcription factor; Akt, AKT serine/threonine kinase; RANKL, NF-kB ligand-receptor activator; MEF2C, Myocyte enhancer factor
2C; SOST, Sclerostin; Mitf, Melanocyte inducing transcription factor; 11b-HSD2, Hydroxysteroid 11-beta dehydrogenase 2.
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potential cation channel subfamily V member 1(TRPV1), ROS

scavenging, and inhibiting bone resorption (92) (Figure 1).

SIRT6 and SIRT7 are involved in chromatin regulation and

play multiple roles in metabolism, aging, and disease. In

osteoblasts, SIRT6 reduces H3K9 acetylation level and

promotes the transcription of osteogenic transcription factors

Runx2 and Osx and the expression of osteogenic genes (93).

Additionally, SIRT6 negatively regulates the expression of

dickkopf1 (DKK1) (93), a secreted protein that binds to the

Wnt receptor LRP5/6; this induces rapid endocytosis and

reduces LRP5/6 in the cell membrane (94), thereby blocking

the canonical Wnt signaling cascade. Blocking the Wnt pathway

leads to a reduction in the synthesis of osteoprotegerin (OPG),

which competitively binds to RANKL to inhibit osteoblast

differentiation (95). Thus, reducing DKK1 expression facilitates

the nuclear entry of b-catenin, which initiates the transcription

of target genes that promote osteoblast differentiation while

inhibiting those involved in osteoblast differentiation.

Additionally, SIRT7 has the effect of reducing b-catenin level

in BMSCs (96), although the significance of this observation in
Frontiers in Endocrinology 05
the context of bone homeostasis and osteoporosis

remains unclear.
Histone ubiquitination

All histones can be ubiquitinated, with H2A and H2B being

the most frequent targets. Histone ubiquitination plays a central

role in the DNA damage response. Monoubiquitination of H2A,

H2B, and H2AX has been observed at DNA double-strand break

sites; the most common forms are monoubiquitination of K119

on H2A and K123 (yeast)/K120 (vertebrate) on H2B. H2A and

H2B monoubiquitination was shown to be associated with gene

silencing and transcriptional activation, respectively (97, 98).

Ring finger protein 40 (RNF40), an E3 ubiquitin ligase that

monoubiquitinates H2B (99), was found to regulate the

transcription of the osteogenic genes bone gamma-

carboxyglutamate protein (BGLAP), ALP, and glucose-6-

phosphate dehydrogenase (G6PD) to induce osteogenic

differentiation of human BMSCs (100). The Tnfsf11 gene
FIGURE 1

Role of SIRT1/6/7 in bone remodeling. In BMSCs, SIRT1, SIRT6, and SIRT7 promote osteogenic differentiation by regulating transcription factors
FoxO3, b-catenin, Runx2, Osx, and PPARg. In pre-osteoblasts, SIRT6 not only regulates Runx2 and Osx transcription, but also inhibits DKK1
transcription, activates canonical Wnt signaling, and promotes osteogenic differentiation. In BMMs, SIRT1 inhibits osteoclast differentiation by
regulating FoxO and TNF-a transcription, which results in ROS scavenging.
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(encoding RANKL) is a target gene of H2Bub1 (101). It was

reported that H2Bub1, whose expression was induced by RNF40,

was required in the early stages of osteoblast differentiation and

modulated osteoblast function by regulating VDR-induced

Tnfsf11 expression in crosstalk between osteoblasts. The long

noncoding RNA ODIR1 was significantly downregulated during

osteogenic differentiation of human umbilical cord

mesenchymal stem cells (hUC-MSCs); the interaction of

ODIR1 with F-box protein 25 (FBXO25) increased

monoubiquitination of H2BK120 (H2BK120ub), promoted the

trimethylation of H3K4 (H3K4me3), and induced the expression

of the transcription factor Osx, thereby enhancing the

expression of the osteoblast markers OCN, OPN, and ALP.

Thus , ODIR1 negat ive ly regula tes the os teogenic

differentiation of hUC-MSCs via the FBXO25/H2BK120ub/

H3K4me3/Osx axis (102).

Myb like, SWIRM and MPN domains 1(Mysm1) is an H2A

deubiquitinating enzyme that regulates osteoblast differentiation

and maturation by promoting Runx2 expression in osteoblasts.

Mysm1−/− mice exhibit significant skeletal deformation and

osteoporosis; however, osteogenic differentiation capacity was

not significantly affected in MSCs lacking Mysm1. In

p53−/−Mysm1−/− double knockout mice, p53 deletion rescued

the skeletal defects and bone loss caused by Mysm1 deficiency.

On the other hand, loss of p53 did not restore Runx2 expression

in Mysm1−/− osteoblasts although MSCs proliferation and

osteogenic differentiation was enhanced (103).
Histone ADP-ribosylation

Poly (ADP-Ribose) polymerases (PARPs) (also known as

ARTDs), are a family of 17 proteins, some of PARPs are mono-

ADP-ribosyl transferases and some poly. PARPs uses NAD+ as

substrate to transfer single or straight or branched ADP-ribose

to itself or other target proteins, thus regulating various cellular

responses. The most widely studied member of the PARPs

family is PARP1, which is thought to play a role in DNA

repair (104). PARP1 binds to DNA damage sites and catalyzes

its own ADP-ribosylation reactions and the trans-modification

of local substrate proteins, including DNA repair proteins,

histones and other chromatin-associated proteins, to promote

the repair of DNA lesions, influence chromatin structure and

gene transcription (105, 106).

Induction of NFATc1 by macrophage colony-stimulating

factor (M-CSF) and RANKL is essential for macrophage

differentiation into osteoblasts (73). ADP-ribosylation of H2B

at serine 7 by PARP1 reduced the occupancy of this histone at

the NFATc1 promoter, reducing NFATc1 expression and

osteoclast formation (107). Moreover, PARP1 inhibited the

expression of osteoclast-promoting genes via regulation of

histone ADP-ribosylation at the IL-1b promoter, which

increased IL-1b expression (108). M-CSF induced PARP1 self–
Frontiers in Endocrinology 06
ADP-ribosylation in macrophages, resulting in PARP1 cleavage

at D214 and its subsequent degradation; this stimulated

RANKL-induced osteoclast differentiation and osteoclast

maturation, whereas osteoclastogenesis was inhibited by

expression of the cleavage-resistant D214N mutant form of

PARP1 (109). The PARP inhibitor olaparib decreased ALP

activity in preosteoblastic MC3T3-E1 cells and inhibited the

formation of the mineralized nodules that characterize

osteoblasts (110). In contrast, inhibiting the enzymatic activity

of poly(ADP-Ribose) glycohydrolase (PARG) using the inhibitor

PDD00017273 enhanced Runx2 PARylation (ribosylation) and

osteoblast formation while having no effect on PARG

mRNA expression.
Summary and prospects

Osteoporosis is a complex disease whose pathogenesis

remains unclear, although an imbalance in bone homeostasis

during bone reconstruction is thought to contribute.

Accumulating evidence indicates that histone modifications

play an essential role in various diseases including

osteoporosis. Specifically, changes in the levels of histone

modification and related enzymes can lead to altered

expression of genes involved in bone formation or bone

resorption, resulting in an imbalance in bone homeostasis and

abnormal bone reconstruction.

According to this review, it can be proved that histone

modifications play important role in osteoporosis, and related

research results have been applied to the diagnosis and treatment

of osteoporosis. Identifying specific biomarkers associated with

osteoporosis will significantly improve the clinical diagnosis and

treatment of this disease. In recent years, drugs targeting the

activity of histone-modifying enzymes have been evaluated in

studies focused on osteoporosis treatment. As an example,

SOST—which negatively regulates bone formation—is

regulated by a class I HDAC (111); meanwhile, the class I

HDAC inhibitor MS-275 was shown to promote bone

formation (112).

There have been a limited number of studies on the effects of

histone modification on bone homeostasis, leaving many open

questions. For example, the relationship between abnormal

regulation of histone modifications in genes related to bone

homeostasis and the development of osteoporosis requires

clarification. It is unclear whether histone modifications are a

primary cause of osteoporosis or a secondary effect, although it is

clear that the effects of histone modifications are associated with

the pathogenesis of osteoporosis. More in-depth mechanistic

studies are expected to provide a better understanding of the

effect of histone modification on individual bone cell type by

using tissue-specific deletion and transgenic animal models.

Further studies in this area can provide insight not only into
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disease pathogenesis, but also novel diagnostic biomarkers and

therapeutic targets.
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