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Summary

Ribosomes accurately decode mRNA by proofreading each aminoacyl-tRNA delivered by 

elongation factor EF-Tu1. Understanding the molecular mechanism of proofreading requires 

visualizing GTP-catalyzed elongation, which has remained a challenge2–4. Here, time-resolved 

cryo-EM revealed 33 states following aminoacyl-tRNA delivery by EF-Tu•GTP. Instead of locking 

cognate tRNA upon initial recognition, the ribosomal decoding center (DC) dynamically monitors 

codon-anticodon interactions before and after GTP hydrolysis. GTP hydrolysis allows EF-Tu’s 

GTPase domain to extend away, releasing EF-Tu from tRNA. Then, the 30S subunit locks cognate 

tRNA in the DC, and rotates, enabling the tRNA to bypass 50S protrusions during accommodation 

into the peptidyl transferase center. By contrast, the DC fails to lock near-cognate tRNA, allowing 

dissociation of near-cognate tRNA during both initial selection (before GTP hydrolysis) and 

proofreading (after GTP hydrolysis). These findings reveal structural similarity between initial 

selection5,6 and the previously unseen proofreading, which together govern efficient rejection of 

incorrect tRNA.
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Introduction

A translating ribosome selects appropriate aminoacyl-tRNA and connects the incoming 

amino acid to the elongating peptide chain. Aminoacyl-tRNA (aa-tRNA) binds the ribosome 

as a ternary complex with elongation factor Tu (EF-Tu) and GTP (Fig. 1a; reviewed in 

refs2–4). tRNA selection involves two steps: initial selection and proofreading1. Initial 

selection discriminates against non-cognate tRNAs in the 30S A site before EF-Tu 

hydrolyzes GTP, allowing intact non-cognate aa-tRNA•EF-Tu•GTP ternary complex to 

dissociate from the ribosome2–4. GTP hydrolysis releases EF-Tu•GDP from the tRNA 

acceptor arm, which travels through the intersubunit space and inserts (accommodates) into 

the peptidyl transferase center (PTC) on the 50S subunit7–9. After GTP hydrolysis and 

before peptidyl transfer, the ribosome proofreads the aa-tRNA to reject incorrectly selected 

near-cognate aa-tRNA, preventing elongation with an incorrect amino acid 1,10,11.

Structural visualization of GTP-catalyzed decoding has remained a challenge, so high-

resolution structures of decoding complexes have typically been captured by blocking GTP 

hydrolysis and elongation5,6,12,13 (see Supplementary Discussion). Many structural steps 

remain to be captured to answer long-standing questions. First, it is unknown how the 

ribosome initially selects an incorrect near-cognate tRNA, but then rejects it by proofreading 
before forming a peptide bond. Next, it remains to be seen how GTP hydrolysis facilitates 

EF-Tu dissociation, and whether the dissociating EF-Tu could drive tRNA accommodation 

via a power-stroke-like mechanism14. Finally, it is unclear how tRNA bypasses structural 

obstacles15 to allow its accommodation in the A site. To answer these questions, structural 

intermediates in the elongation pathway must be visualized using authentic substrates.

We used cryogenic electron microscopy (cryo-EM) to visualize an elongation event 

catalyzed by EF-Tu•GTP (Fig. 1a). Aminoacyl-tRNA was delivered as aa-tRNA•EF-Tu•GTP 

ternary complex to the 70S initiation ribosome programmed with a cognate or near-cognate 

mRNA codon in the A site. Cryo-EM data classification revealed numerous functional states 

(see Methods). We describe 17 structures of the ribosome with the cognate tRNA, at average 

resolutions from 3.0- to 4.0-Å (Fig. 1b and Extended Data Fig. 1), and 16 states of the near-

cognate complex, at 3.3- to 4.3-Å average resolutions (Extended Data Fig. 2). The structural 

ensembles provide an unprecedented view of elongation (Video S1), including initial 

selection, GTP hydrolysis, conformational changes in EF-Tu, tRNA proofreading, tRNA 

accommodation, peptide bond formation, and pre-translocation. Comparison of cognate and 

near-cognate elongation uncovers the elusive mechanism of proofreading critical for 

translation fidelity.

Results and Discussion

Time-resolved cryo-EM reveals transient EF-Tu intermediates

To identify structural intermediates of elongation with cognate Phe-tRNAPhe, we performed 

ensemble cryo-EM16 of the EF-Tu•GTP-catalyzed reaction (Fig. 1a) at several time points, 

consistent with a biochemical time course for similar conditions 17 (Fig. 1c and Methods). 

Maximum-likelihood classification resolved distinct 70S functional states corresponding to 

substrates (i.e., vacant A site), EF-Tu-bound intermediates (i.e., A/T tRNA and EF-Tu), and 
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products of the decoding and elongation reactions (i.e., after EF-Tu release) (Fig. 1b–g and 

Extended Data Fig. 1). Over time, substrates decrease and products accumulate, whereas EF-

Tu-bound states accumulate and then disappear, as expected for reaction intermediates (Fig. 

1c). Our approach therefore captures long-pursued transient states of aminoacyl-tRNA 

delivery catalyzed by EF-Tu and GTP (Fig. 1d).

To visualize the structural intermediates of elongation, we focused on high-resolution maps 

from the 29-second time point (Extended Data Fig. 1, Table S1, Table S2 and Methods), 

when EF-Tu-bound particles reach a near-maximal level and peptidyl-transfer products 

begin to accumulate (Fig. 1c; see additional discussion in Methods). Most maps resolve 

near-atomic-resolution details (Fig. 1e–g) in the ribosome core, and lower-resolution 

features at the periphery, allowing interpretation of secondary-structure and/or domain 

rearrangements of EF-Tu (Extended Data Fig. 3, 4, 5, 8, 9). Six categories of structures 

describe distinct functional states (Fig. 1b): (I) substrates I-A and I-B, similar to A-site 

vacant 70S structures described before18,19 (Methods), (II and III) EF-Tu-bound 

intermediates II-A to II-D and III-A to III-C (Fig. 2), (IV) tRNA accommodation-like states 

IV-A and IV-B (Fig. 3), (V) peptidyl-transfer classical states V-A and V-B (Fig. 3), and (VI) 

pre-translocation hybrid states VI-A and VI-B (Fig. 3). Collectively, the 17 structures 

suggest a pathway of cognate aminoacyl-tRNA from initial ribosome binding to 

accommodation to peptide-bond formation to pre-translocation (Fig. 1d and Video S1).

GTP hydrolysis gradually releases EF-Tu, while 30S adopts open and closed 
conformations

EF-Tu contributes to initial selection, proofreading 20 and tRNA accommodation 21, but the 

structural mechanisms of the latter two processes are unknown. Initial selection is achieved 

by separating the EF-Tu GTPase (domain 1) from the 50S sarcin-ricin loop (SRL) until the 

cognate tRNA is recognized in the 30S decoding center. Recognition of the tRNA anticodon 

causes a 30S-shoulder shift that docks EF-Tu at the SRL catalyzing GTP hydrolysis (see 

below and refs5,6). How EF-Tu rearranges and dissociates after GTP hydrolysis is less 

understood. Conflicting biochemical studies suggest that large-scale EF-Tu rearrangements 

occur on the ribosome 22 or after EF-Tu dissociation from the ribosome 23. Further, it is not 

clear if EF-Tu dynamics facilitate spontaneous or power-stroke-driven accommodation of 

tRNA into the PTC 14 (Supplementary Information). Isolated EF-Tu adopts two globally 

different conformations: a compact GTP-bound and an extended GDP-bound form 24–26. In 

the extended conformation, the GTPase domain is rotated by ~90°, concurrent with 

rearrangement of switch I and II regions (aa 38–64 and 83–97), which outline the GTP-

binding pocket 24–26. However, structures of ribosome-bound EF-Tu complexes have only 

described compact EF-Tu 5,6,12,13,27.

We find three categories of EF-Tu-bound states (9 maps), which suggest step-wise 

dissociation of EF-Tu from tRNA. (1) In five maps (II-A, II-B1, II-B2, III-A and III-B), EF-

Tu adopts a compact conformation resembling the GTP-bound state, but featuring different 

conformations of switch regions indicating distinct states of the GTP-binding pocket (Fig. 

2a–b and Extended Data Fig. 3a–f, m–n, p–q). Sub-classification reveals a subset of states, 

in which EF-Tu interacts with the N-terminal domain of L11 and with L7/L12 (Extended 
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Data Fig. 3s–v and Supplementary Information), consistent with stochastic binding of these 

50S proteins 28. (2) In three maps (II-C1, II-C2, III-C), EF-Tu adopts extended 

conformations resembling the GDP-bound state, with domain 1 (aa 1–200) released from 

domain 2 (aa 201–299) and rotated up to ~90° from its position in the compact conformation 

(Fig. 2c and Extended Data Fig. 3g–h, j–k, o, r). Despite dissociation of domain 1, the tRNA 

remains well-ordered because it is held in place by domain 2 (Extended Data Fig. 3w). (3) In 

one map (II-D), weak density for domain 3 (aa 300–392) continues to bridge the elbow of 

tRNA and the L11 stalk (Extended Data Fig. 3i,l), but domains 1 and 2 are not resolved. 

This map suggests that dynamic domain 1 and 2 have released from the tRNA’s acceptor 

arm ((Extended Data Fig. 3x). II-D is therefore consistent with a late EF-Tu-dissociation 

and/or early tRNA-accommodation state.

Remarkably, ribosomes with compact and extended EF-Tu sample both open (II-A to II-D) 

and closed (III-A to III-C) 30S subunit conformations (Fig. 2d and Extended Data Fig. 4b–

e). The tRNA adopts kinked A*/T (A site/Ternary on open* 30S) and A/T (closed 30S) 

conformations, whose anticodon stem-loops are respectively loosely and stably bound in the 

30S decoding center consistent with our previous work 5. Rearrangement of the open to 

closed 30S states is coupled with movement of decoding-center nucleotide G530 toward 

A1492 and A1493 (Fig. 2d), as in Structures II (open) and III (closed) in previous work 5.

In all open 30S conformations with compact EF-Tu, the latter is separated from the SRL (II-

A, II-B1 and II-B2). II-A has well-ordered switch I and II regions (Fig. 2e), and γ-phosphate 

is visible (Fig. 1e), consistent with functional states that precede GTP hydrolysis or 

phosphate release 24. II-B1 and II-B2 have disordered switch I regions (Extended Data Fig. 

3e–f), consistent with GDP bound to compact EF-Tu. II-C1 (Fig. 2c) and II-C2 have 

extended EF-Tu conformations (Extended Data Fig. 3g–h), which resemble isolated EF-

Tu•GDP 25 on the path to EF-Tu dissociation.

In the closed 30S conformations, compact EF-Tu is closer to the SRL. In III-A, which 

appears to have intermediate domain closure, EF-Tu switch regions I and II are ordered, and 

EF-Tu tilts relative to the SRL (Extended Data Fig. 3m,p,y). The second, more-populated 

state III-B has a fully closed 30S and disordered switch I and II regions, representing a 

GDP-bound state after GTP hydrolysis (Fig. 2f and Extended Data Fig. 3n,q,y; 13,29,30). 

Observation of compact EF-Tu in II-A and III-A is consistent with EF-Tu being separated 

from the SRL prior to GTP hydrolysis 5. Structure III-B confirms that docking at the SRL, 

induced by the 30S closure, results in rapid GTP hydrolysis 27,31–35. By contrast, III-C with 

the closed 30S contains extended EF-Tu (Extended Data Fig. 3o,r). Observation of extended 

EF-Tu in GDP states in both the open (II-C1 and II-C2) and closed (III-C) 30S 

conformations indicates continuous 30S sampling after GTP hydrolysis (Extended Data Fig. 

3g, h, o).

Our data are consistent with the following model for EF-Tu rearrangements (Fig. 4a–e). 

Ternary complex initially binds the ribosome at the open-30S shoulder via EF-Tu, while 

tRNA samples the decoding center. Upon codon recognition, G530 (at the 30S shoulder), 

and A1492/A1493 (at the 30S body) rearrange, shifting the 30S shoulder and bringing EF-

Tu closer to the SRL (Fig. 2b,d). In the closed 30S conformation, EF-Tu docks at the SRL 
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(Fig. 2f). The phosphate of A2662 of the SRL positions the conserved catalytic His84 of EF-

Tu for GTP hydrolysis 5,27. GTP hydrolysis and Pi release destabilize the switch regions of 

EF-Tu because they no longer interact with γ-phosphate13,36. When the switch regions 

refold, the β-hairpin conformation of switch I 25 (Fig. 2c and Extended Data Fig. 3j) 

becomes sterically incompatible with binding to tRNA, so GTPase domain 1 dissociates 

from aa-tRNA and the SRL. Domain 2 then dissociates from the CCA-end of aa-tRNA. 

Domain 3, which may be partially stabilized by the N-terminus of L11 and L7/L12 

(Extended Data Fig. 3s–v and Methods), leaves last. The sequence of EF-Tu domain 

rearrangements is consistent with structural-dynamics simulations 21 and suggests that EF-

Tu dissociation is unlikely to contribute to tRNA accommodation by a power-stroke-like 

mechanism14.

As EF-Tu changes conformation, the 30S ribosomal subunit continues sampling the open 

conformation, wherein the decoding center loosens its “grip” on the codon-anticodon helix. 

The open 30S conformation is also observed in the absence of A-site tRNA, whereas the 

closed 30S conformation requires a bound anticodon stem-loop 37–39. Thus, aa-tRNA•EF-Tu 

complex may dissociate from the ribosome with open 30S conformations, in either GTP- or 

GDP-bound states, consistent with biochemical studies proposing EF-Tu-dependent 

proofreading20.

tRNA accommodation is coupled with 30S locking and rotation, and ASF movement

When EF-Tu dissociates, the aminoacyl-tRNA arm must traverse ~80 Å through the 

intersubunit space to accommodate into the PTC. Protrusions from the 50S subunit, 

however, form a narrow space for tRNA accommodation 40,41, and molecular-dynamics 

simulations showed that 23S rRNA helices, most notably H89 (residues 2454–2498) and the 

A loop (H92), occlude the tRNA path 15. Our data reveal accommodation-like states (IV-A 

and IV-B) (Fig. 3, Extended Data Fig. 5c–f), which suggest that 30S rotation and A-site 

finger (ASF) movement allow the tRNA to bypass the occlusions. Importantly, the small 

subunit is closed in each accommodation state (Extended Data Fig. 4f). This indicates that 

EF-Tu dissociation substantially reduces the 30S opening dynamics with cognate tRNA, 

“locking” the tRNA into the decoding center.

Four representative structures differ in the positions of the tRNA relative to the A site (Fig. 

3a–d and Extended Data Fig. 5a–h): (1) the A*/T tRNA upon EF-Tu release (II-D); (2) 

elbow-accommodated tRNA 1 (EA-1), close to A/T tRNA (IV-A); (3) elbow-accommodated 

tRNA 2 (EA-2), close to the accommodated A/A tRNA (IV-B); and (4) the CCA-

accommodated A/A tRNA (V-A).

In II-D, the elbow of A*/T tRNA interacts with the L11 stalk, as described 5, and weak 

density for EF-Tu domain 3 concurs with EF-Tu dissociation prior to tRNA accommodation 

(Fig. 3a, Extended Data Fig. 3i,l). In the EA-1 pre-accommodation state (Fig. 3b), the elbow 

of tRNA (at C56 backbone) is shifted deeper into the ribosome—by ~40 Å—to interact with 

the long 50S hairpin loop called A-site finger (ASF; nucleotides 863–915 of helix 38, 23S 

rRNA; Fig. 3h). The acceptor arm of EA-1 (at A73 backbone) lies ~30 Å from the A*/T 

state and ~35 Å from the 50S A site. The 3′ terminal strand of EA-1 points at C2559 of 

H92, whereas the middle of the acceptor arm (at A64) is held in place by H89 via RNA 
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backbone-backbone packing (Fig. 3h and Extended Data Fig. 5c–d). EA-2 tRNA has 

bypassed H89, the CCA end is disordered, and the acceptor arm is ~7 Å from the position of 

A/A tRNA (measured at A73). Here, the acceptor arm is held in place near C2556 of H92 

(Extended Data Fig. 5e–f). Both EA-1 and EA-2 are therefore transiently stabilized by 

interactions of the acceptor arm with different regions of H92.

In accommodation states IV-A and IV-B, the ribosome is rearranged relative to EF-Tu-bound 

states, allowing the tRNA to bypass the 23S rRNA obstacles and orient for CCA 

accommodation (Fig. 3b–c,h and Extended Data Fig. 5 compare a to c). First, the closed 30S 

subunit of pre-accommodation ribosomes is rotated by ~2.5°. This “partial accommodation 

rotation” (< 9° rotation observed in tRNA-mRNA translocation2,42,43) depresses the 30S A-

site (at nt 35 of tRNA) by ~5 Å relative to H89, allowing the tRNA to pass under H89 (Fig. 

3h). The abundance of partially-rotated ribosomes rises and decreases with time, indicating 

that partial rotation occurs at intermediate stages of the elongation event (Extended Data Fig. 

6c). Second, the A-site finger moves by more than 10 Å to bind the tRNA elbow and 

stabilize the elbow-accommodated tRNAs (Extended Data Fig. 7i). This interaction confines 

the conformational dynamics of tRNA to allow the CCA insertion into the PTC.

Peptide bond formation and pre-translocation involve 30S subunit rotation

Four major states (V-A, V-B, VI-A, and VI-B) suggest the progress of the peptidyl transfer 

reaction, as discussed in Supplementary Information (Fig. 3d–g, Extended Data Fig. 6a–b, 

d–g). Briefly, V-A reveals a partial rotation of the 30S subunit (similar to that in 

accommodation IV-A and IV-B), which must be reversed for optimal alignment of 

aminoacyl-tRNAs in the PTC for peptidyl transfer to occur as in V-B (Extended Data Fig. 

6a–b). Ensuing peptidyl transfer and E-tRNA release allow spontaneous 30S subunit 

rotation, resulting in formation of the canonical pre-translocation A/P and P/E tRNA hybrid 

states (VI-A) and elbow-shifted A/P* and P/E tRNAs (VI-B; Fig. 3f–g, Fig. 1g), consistent 

with many biochemical studies (reviewed in 2,43). Partial non-cognate E-tRNA occupancy in 

the structures preceding VI-A and VI-B suggests no correlation between the occupancies of 

the E and A sites in the decoding, accommodation or peptidyl-transfer states (Methods and 

Extended Data Fig. 6j–m).

Near-cognate tRNA samples open 30S with and without EF-Tu

To understand the structural basis of tRNA selection, we repeated our cryo-EM analysis for 

a near-cognate complex formed with Phe-tRNAPhe and an mRNA carrying a leucine codon 

(CUC) to create an A-C mismatch at the first codon position. Sixteen maps suggest an 

elongation trajectory that is overall similar to that of the cognate complex (Extended Data 

Fig. 2c, Supplementary Information). We focus on differences in particle distributions and 

structures that provide insights into the decoding mechanism. Although we used buffer 

conditions to maximize rare miscoding events (refs 20,44 and Methods), the distribution of 

particles in substrate, intermediate, and product states indicates that elongation remained less 

efficient than with the cognate tRNA. Near-cognate ribosomes with an empty A site 

(substrates) were 2-fold more abundant, whereas the A-tRNA-bound (product) ribosomes 

were 3-fold less abundant in comparison with the cognate complex (Extended Data Fig. 7a). 

Moreover, the near-cognate complex was depleted for GDP-bound EF-Tu (compact with 
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disordered switch I or extended conformations; Extended Data Fig. 7b) consistent with less 

efficient GTP hydrolysis 45,46. Indeed, EF-Tu-bound states predominantly sample the open 

30S subunit (Fig. 3l), similar to findings using GDPCP 5, indicating that anticodon 

stabilization, shoulder movement and EF-Tu docking at the SRL are less frequent than for 

the cognate ternary complex.

The most remarkable structural difference between near-cognate and cognate elongation 

complexes lies in the accommodation states. After EF-Tu dissociation, the accommodation 

EA intermediates with near-cognate tRNA continue to sample the open 30S conformation 

(IV-B1-nc) (Fig. 3i,l, Extended Data Fig. 5i–j), in contrast to cognate tRNA bound 

exclusively to the closed 30S subunit (Fig. 3l, Extended Data Fig. 4). Moreover, compared to 

the cognate EA tRNAs, the elbows of the near-cognate EA tRNAs contact the ASF deeper 

(Extended Data Fig. 7j), and density suggests a dynamic anticodon stem-loop in the 30S A 

site (Extended Data Fig. 5i–j). Upon CCA accommodation in the A site, a subset of near-

cognate states also has an open 30S conformation (V-A1-nc (Fig. 3k, Extended Data Fig. 4j, 

Extended Data Fig. 7e and V-B1-nc (Extended Data Fig. 7g) and a disordered phenylalanine 

moiety, suggesting poor substrate positioning (Fig. 4k). Thus, a single mismatch perturbs the 

accommodation pathway of near-cognate tRNA. Sampling of the open 30S conformation is 

consistent with release of near-cognate tRNA during both initial selection (EF-Tu-bound) 

and accommodation, the latter step constituting EF-Tu-independent proofreading. Structural 

obstacles, including H89 and H92, likely facilitate tRNA dissociation during 30S rotational 

and opening dynamics.

The mechanism of proofreading

Our structural analyses reveal that initial selection and proofreading—long deemed 

biochemically separate events—are intertwined into a continuous process of mRNA 

decoding (Fig. 4). While GTP hydrolysis triggers EF-Tu release, our data are consistent with 

the idea that proofreading occurs both prior to and after EF-Tu dissociation, suggesting a 

revised mechanistic role for EF-Tu•GTP (Supplementary Information: Conformational 

proofreading). All three decoding steps―initial selection (pre-GTP hydrolysis; Fig. 4a–b), 

EF-Tu-dependent proofreading (post-GTP hydrolysis; Fig. 4c–e) and EF-Tu-independent 
proofreading (post-EF-Tu release; Fig. 4f–g) ―rely on conceptually similar structural 

mechanisms. They involve the “locking/unlocking“ dynamics of the 30S decoding center, 

and steric hindrances induced by EF-Tu (during initial selection and EF-Tu-dependent 

proofreading) or by the protruding 50S rRNA (during accommodation). EF-Tu continuously 

destabilizes closure of the 30S subunit in both cognate and near-cognate complexes, before 

and after GTP hydrolysis. Destabilization of the closed 30S conformation likely arises from 

the strained conformation of the kinked A/T tRNA, whose anticodon stem-loop samples the 

decoding center while the CCA end remains pinned by EF-Tu at the 30S shoulder (Fig. 2a). 

Near-cognate tRNA is prone to dissociation from open 30S states during both initial 

selection (with EF-Tu•GTP) and proofreading (with EF-Tu•GDP) 20 because the 

mismatched mRNA-tRNA codon-anticodon helix is unstable in the decoding center. 

Cognate tRNA is retained by stabilizing interactions with decoding center nucleotides G530, 

A1492 and A1493 even in open 30S states (Fig. 2d and ref 5).
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After GTP hydrolysis and EF-Tu dissociation (Fig. 4a–e), the EF-Tu-independent stage of 

proofreading begins. Here, tRNA relaxes on its way toward the 50S A site (Fig. 4f). The 

ribosome—with 30S in a closed state—appears “committed” to accommodation of cognate 

tRNA, whose ASL is stably locked in the decoding center due to tRNA conformational 

relaxation, consistent with rapid accommodation and peptide-bond formation 31,47. Partial 

rotation of the 30S subunit allows the tRNA to bypass rRNA protrusions and probably aids 

proofreading by delaying peptide bond formation until the 30S rotation is reversed (Fig. 4g–

h). By contrast, ribosomes with an accommodating near-cognate tRNA continue to sample 

the 30S in open states (Fig. 4f–g, red arrows), which destabilize the near-cognate tRNA at 

two major points of contact: the decoding center and the ASF. Furthermore, 50S protrusions, 

including H89, likely destabilize the accommodating tRNA. Continuous sampling of open 

30S restricts near-cognate tRNA entry into the PTC, consistent with tRNA rejection after 

EF-Tu release 11 and reduced rates for accommodation and peptide-bond formation 11,20. 

Thus, minimization of miscoding events results from continuous verification of tRNA 

throughout the A*/T→EA→A/A trajectory. The universally-conserved decoding center and 

small-subunit dynamics therefore dictate high translation fidelity.

Cryogenic electron microscopy allowed us to resolve many transient intermediates in the 

course of a GTP-catalyzed reaction without the use of inhibitors. Recent advances in cryo-

EM make it possible to rapidly apply samples to EM grids 48,49 and deconvolute 

heterogeneous ensembles of numerous structures at near-atomic resolution 16,50,51. Together, 

these studies emphasize that high-resolution time-resolved cryo-EM could become the bona 
fide “structural biochemistry” method for visualizing complex biochemical pathways 

without inhibitors.

Methods

We performed ensemble cryo-EM 16 of EF-Tu•GTP-catalyzed delivery of cognate aa-tRNA 
at several time points. We incubated Phe-tRNAPhe•EF-Tu•GTP ternary complex with E. coli 
70S•fMet-tRNAfMet programmed with mRNA carrying the initiation fMet (AUG) codon in 

the P site and Phe (UUC) codon in the A site (Fig. 1a). The reactions progressed on ice (to 

slow the reactions), were applied to cryo-EM grids, and were rapidly plunged into liquid 

ethane to stop their progress at different times (Fig. 1c and Methods). Datasets were 

collected for time points informed by a biochemical time course of the EF-Tu•GTP-

catalyzed reaction under similar conditions 17.

Preparation and freezing of tRNA delivery complexes on cryo-EM grids

30S and 50S ribosomal subunits were prepared from MRE600 E. coli as described 52 and 

stored in Buffer A (20 mM Tris, pH 7, 10.5 mM MgCl2, 100 mM NH4Cl, 0.5 mM EDTA, 6 

mM β-mercaptoethanol) at –80°C. mRNA containing the Shine-Dalgarno sequence and a 

linker to place the AUG codon in the P site and the Phe codon (cognate complex) or Leu 

codon (near-cognate complex) in the A site was synthesized by IDT DNA. Cognate complex 

mRNA was GGC AAG GAG GUA AAA AUG UUC AAA AAA, while near-cognate 

complex mRNA was GGC AAG GAG GUA AAA AUG CUC AAA AAA.
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Components of ternary complex were prepared as follows. E. coli EF-Tu was prepared as 

previously described 5,53. GTP was purchased from Roche. tRNAPhe and tRNAfMet were 

purchased from Chemblock. Cellular enzyme extract (S-100) was used for tRNA 

aminoacylation and was prepared from MRE600 E. coli as described53. Briefly, 2L of 

MRE600 E. coli culture in LB was harvested in log phase (OD 0.6) yielding approximately 

5 g of cell pellet. The pellet was resuspended in 20 ml of S-100 Buffer (10 mM Tris, pH 7, 

10 mM MgCl2, 30 mM NH4Cl, 6 mM β-mercaptoethanol) and the cells were lysed using a 

Microfluidics M-110P cell disruptor. The lysate was cleared by centrifugation at 15,000 rpm 

for 15 minutes at 4°C (JA-20 rotor, Beckman). Ribosomes from the cleared lysate were 

pelleted using ultracentrifugation in a Ti-70 rotor (Beckman) at 60,000 rpm, for 2 hours at 

4°C. 2.5 g of DEAE cellulose (Sigma Aldrich) was equilibrated and washed three times with 

ice cold S-100 Buffer. Following the ultracentrifugation, the top 80% of the supernatant was 

transferred to the DEAE cellulose and allowed to mix for 30 minutes at 4°C. The DEAE 

cellulose was separated from solution by centrifugation in a table-top centrifuge at 5,000 

rpm for 5 minutes at 4°C and the supernatant was removed. DEAE cellulose was washed 

with 40 ml of S-100 Buffer for 30 minutes at 4°C. The DEAE cellulose beads were isolated 

and mixed with 10 ml of S-100 Elution Buffer (10 mM Tris, pH 7, 10 mM MgCl2, 250 mM 

NH4Cl, 6 mM β-mercaptoethanol) for 30 minutes at 4°C. After centrifuging as before to 

separate the DEAE cellulose and supernatant, the supernatant was retained and used as the 

purified S-100 extract. tRNAPhe and tRNAfMet were charged using the S-100 extract 

supplemented with 0.1 mM Phenylalanine or Methionine, respectively, exactly as described 

in ref53. The methionine was formylated by including neutralized N10-formyl-

tetrahydrofolate in the reaction53. Aminoacylation and formylation of tRNA were confirmed 

using acid gel electrophoresis54, as shown in Extended Data Fig. 5q–r.

The 70S and ternary complexes were prepared as follows. Heat-activated (42°C, 5 minutes) 

30S ribosomal subunits (3 μM) were mixed with 50S ribosomal subunits (3 μM) and with 

cognate or near-cognate complex mRNA (15 μM) (all final concentrations) in Reaction 

Buffer (20 mM HEPES•KOH, pH 7.5, 20 mM magnesium chloride, 150 mM ammonium 

chloride, 2 mM spermidine, 0.1 mM spermine) for 30 minutes at 37°C. A 2.25-fold molar 

excess of fMet-tRNAfMet was added to the ribosomal subunits and incubated for 5 minutes 

at 37°C. The 70S•mRNA•fMet-tRNAfMet complexes were diluted to 0.5 μM with Reaction 

Buffer and held on ice. Concurrently, the ternary complex of Phe-tRNAPhe•EF-Tu•GTP was 

prepared as follows. 1.5 μM EF-Tu was pre-incubated with 1 mM GTP in Reaction Buffer 

for 5 minutes at 37°C and then was supplemented with 1.5 μM Phe-tRNAPhe (all final 

concentrations). After an additional minute at 37°C, the ternary complex was also kept on 

ice until plunging.

C-flat 1.2–1.3 (Protochips) holey-carbon grids coated with a thin layer of carbon (17 s, 29 s, 

120 s cognate and 30 s near-cognate datasets) or Ultrathin Carbon Film on Lacey Carbon 

Support Film (Ted Pella) (0 s and 1800s cognate datasets) grids were glow discharged with 

20 mA current with negative polarity for 45–60 s in a PELCO easiGlow glow discharge unit. 

A Vitrobot Mark IV was pre-equilibrated to ~4.5 degrees and 100% humidity for 1 hour 

prior to plunging. Pipettes, tips, tubes, and forceps were equilibrated on ice for 30 minutes 

prior to the beginning of the plunging procedure and kept on ice when not in use during the 

procedure. For each grid, 1.5 μL of 70S•mRNA•fMet-tRNAfMet was mixed with 1.5 μL of 
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ternary complex with ice-chilled tips and in an ice-chilled tube. ~10 seconds prior to the 

desired time point, the reaction was transferred from the tube in an ice-chilled tip into the 

Vitrobot chamber, quickly applied to a chilled Holey-carbon grid, and then blotted for 4 s 

prior to plunging into liquid-nitrogen-cooled liquid ethane. The time point when the grid hit 

the ethane was noted as the reaction duration. The cognate data presented are from grids 

prepared from the same half reactions and plunged at 17 s, 29 s, and 120 s within 30 minutes 

of each other. The near-cognate data is from a grid prepared at the same plunging session, 

using the same ternary complex preparation with ribosomes programmed with the Leu-

encoding mRNA. The 0 s and 1800 s data were prepared using the same procedure, with 

buffer used instead of ternary complex for the 0 s timepoint. The final reactions on the grids 

had the following concentrations: 250 nM 50S; 250 nM 30S; 1.25 μM mRNA; 560 nM 

fMet-tRNAfMet; 0.75 μM EF-Tu; 500 μM GTP, and 0.75 μM Phe-tRNAPhe.

Electron Microscopy

Data for the cognate tRNA delivery complexes at 0, 17, 29, 120 and 1800 s and near-cognate 

complex at 30 s were collected on a Titan Krios electron microscope (FEI) operating at 300 

kV and equipped with a Gatan Image Filter (GIF) and a K2 Summit direct electron detector 

(Gatan Inc.) targeting 0.3 to 2.0-μm underfocus. For the cognate, 29-s time point, a dataset 

of 678,268 particles from 3218 movies was collected automatically using SerialEM 55. 

Similarly, for the cognate complex data were collected as follows: 0-s, 7,428 particles from 

67 movies; 17-s, 375,869 particles from 1640 movies; 120-s, 127,089 particles from 666 

movies; and 1800-s, 13,126 particles from 167 movies. For the near-cognate complex, one 

30-s time point was similarly collected and included 565,412 particles from 2508 movies. 

For each data collection, 35–36 frames per movie were collected at 1 e−/Å2 per frame for a 

total dose of 35–36 e−/Å2 on the sample. The super-resolution pixel size was 0.667 Å on the 

sample as calibrated from cross-correlation of the atomic model of PDB: 5UYL or 5UYM 5 

to the maps for Structures II-A and III-B, respectively, using Chimera.

Image processing

Particles were extracted from aligned movie sums as follows. Movies were processed using 

IMOD 56 to decompress frames, apply the gain reference, and to correct for image drift 

yielding image sums with pixel size of 1.333 Å. CTFFIND4 57 was used to determine 

defocus values. Particles were automatically picked from 5×-binned images using Signature 
58 with a ribosome reference (18 representative reprojections of the EM databank map 1003 
59). 288 × 288-pixel boxes with particles were extracted from motion-corrected images, and 

assembled into stacks in EMAN2 60. To speed up processing, 2×- and 4×-binned image 

stacks were prepared using resample.exe, which is part of the Frealign distribution 61.

Optimization of grid preparation for time-resolved cryo-EM

The conditions for complex preparation, grid freezing, and data collection were optimized to 

yield the conditions described in the above sections. Using small datasets (10,000–50,000 

particles), we tested different plunging approaches, including a manual plunger and CP3 

(Gatan Inc.) operating in a cold room (Brandeis University Cryo-EM facility); Vitrobot 

Mark IV (UMass Medical School Cryo-EM core facility), different grid types (holey carbon 

grids or carbon-coated holey carbon grids), reaction duration (4 s to 60 s), temperature (up to 
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10 degrees Celsius), reaction conditions (varying ternary complex to ribosome ratio and 

buffer composition) and dataset size. Datasets were collected on F20 or F30 electron 

microscopes at Brandeis University. The datasets were processed using procedures described 

above and classified as described below but were modified to allow for the different 

microscopes and detectors used. We observed the following trends. The CP3 plunger 

allowed us to achieve fastest reaction times from mixing to plunging within 4 seconds, but 

suffered from poor temperature control and inconsistent grid quality due to fast handling. 

We observed ~5% occupancy of EF-Tu and ~10% accommodated A-tRNA in these early 

experiments and were gratified to learn that 15–30 s time points led to increased populations 

of intermediates. Use of holey carbon or carbon-coated holey carbon grids yielded 

approximately equivalent EF-Tu loading onto ribosomes after correcting for ribosome 

density (typically, 7-times higher concentrations of the 70S complexes were used for holey 

carbon grids). Use of carbon-coated grids, however, yielded more consistent ice thickness 

and higher-resolution reconstructions.

To test whether EF-Tu occupancy estimation at different time points could be biased due to 

the variation in dataset sizes, we analyzed 10 smaller datasets (~20,000 to ~50,000 particles) 

from reactions quenched at 20 to 30 seconds. Data classification consistently revealed EF-Tu 

at 10–20% occupancy, ruling out the bias.

Classifications

In parallel with the classification approach shown in Extended Data Fig. 1 and 2 and 

described in detail below, we performed over 100 classifications that differed by the number 

of classes (from 2 to 48), number of classification steps, masking approaches (3D mask and 

spherical focus mask in Frealign), mask positions and sizes (30S, A-site, A- and P-sites, 

PTC, L11 stalk etc.) and resolution cutoffs (ranging from 12 Å to 4 Å). These classifications 

resulted in more than 1,000 maps, which generally reproduced the classes discussed in the 

main text. The classifications revealed different positions of the mobile parts of the 

ribosome, including the L1 and L11 stalks. We discovered additional features, which are 

consistent with elusive interactions between EF-Tu and a highly dynamic L7/L12 stalk, 

implicated in recruiting the ternary complex to the ribosome 28,62, as described in 

Supplementary Information and Extended Data Fig. 3s–v.

Distribution of states

Extensive maximum-likelihood classification of datasets at different time points was 

performed to identify the intermediates that might characterize substrate-like, EF-Tu-bound, 

accommodation, peptidyl transfer and pre-translocation sub-states (Fig. 1b). EF-Tu-bound 

particles were found at similar abundance at the early time points (up to 30 sec) in smaller 

and large datasets, ruling out a bias in the classification and abundance estimation due to 

dataset size and clearly fell in the 120s time point (see above). We observed no A/A, EA or 

A/P tRNA (product) states at the 0-second time point. The presence of these states upon 

addition of the ternary complex (at 17 s, 30 s and 120 s), in which EF-Tu was present in 

excess over aa-tRNA, demonstrates that the decoding, accommodation, peptidyl-transfer and 

pre-translocation states result from interaction with the ternary complex and are not due to 

pre-bound or spontaneously re-binding tRNA in the initial 70S ribosome sample.
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The extent of partial 30S subunit rotation, which is associated with tRNA accommodation 

upon EF-Tu release (Fig. 3h), reduces with time (Extended Data Fig. 6c), consistent with 

accommodation being a slow and potentially rate-limiting step 31. By contrast, ribosome 

populations within EF-Tu-bound states (Structures II-A to II-C2 and III-A to III-C) at 17 and 

120 seconds are similar to those at 29 seconds. This suggests that interconversions among 

EF-Tu-bound states occur with fast rates, and involve ribosomes that bind the ternary 

complex at earlier and later time points. At the later time points, EF-Tu-bound intermediates 

likely report on ribosomes that proceeded through multiple cycles of binding and 

dissociation of EF-Tu ternary complex, and/or dissociation of the accommodating tRNA. 

Similarly, the distribution of product states in non-rotated and rotated 70S conformations 

(Structures V and VI) remain similar with respect to each other, consistent with fast 

interconversions observed by FRET studies 63.

High-resolution classifications, map refinement and reconstruction

FREALIGN v9.11 was used for most steps of refinement and reconstruction 61 (Extended 

Data Fig. 1 and 2). 4×-binned image stacks were initially aligned to a ribosome reference 59 

(EM databank map 1003) using three rounds of mode 3 (global search) alignment, including 

data in the resolution range from 300 Å to 20 Å. Next, the 2× and later unbinned image 

stacks were successively aligned against the common reference using mode 1 (local 

refinement), including data up to a high-resolution limit of 6 Å (Cognate 17 s, 29 s, 120 s, 

Near-cognate 30 s) or 8 Å (Cognate 0 s, 1800 s). Subsequently, the refined parameters were 

used for classification of 4×-binned stacks into 8 classes (Cognate 0 s, 17 s, 29 s, 1800s) or 

20 classes (Cognate 120 s or Near-cognate 30 s) in 50 rounds using a spherical (50-Å radius) 

focus mask around EF-Tu and A/T tRNA, including resolutions from 300 to 12 Å during 

classification. This classification (Classification 1) separated ribosomes in the classical and 

hybrid state from 50S subunits, and in each case included one class with density for EF-Tu.

Classification of cognate EF-Tu states—To find an optimal strategy to resolve distinct 

states of EF-Tu-containing particles, we compared individual classifications of the 17-, 29-, 

and 120s datasets against that of a combined stack of EF-Tu-containing particles (as 

described in the next paragraph). We independently classified EF-Tu-containing classes of 

the 17-, 29-, and 120-second datasets, using a 3D mask around the 30S shoulder domain and 

then a 30-Å focus mask centered around EF-Tu, as described below. We have also tested 

classifications with other masks encircling EF-Tu. These approaches and analyses of dozens 

of maps revealed that individual EF-Tu-containing states are structurally similar between 

these three datasets, revealing independently: the 30S domain closure, EF-Tu movements 

and domain rearrangements. This result suggested that similar structural states are sampled 

in the course of reaction, and that we might be able to improve the resolution of the final 

maps by combining these data. Indeed, classifications of the combined datasets have 

reproducibly improved the density for EF-Tu, and the average resolutions for EF-Tu-

containing classes have improved by 0.1–0.3 Å. Map improvements were confirmed by 

visual inspections of the densities originating from the 17s, 29 s and the combined datasets.

The particles bound with EF-Tu in Classification 1 of the cognate datasets were extracted 

using merge_classes.exe including particles with >50% occupancy and scores >0 (29,453 
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particles at 17 s, 47,421 particles at 29 s, and 2,964 particles at 120 s). These stacks were 

appended and all 79,838 particles were processed together to increase resolution of the final 

classes as described above. The joint stack was first aligned by running 3 rounds of mode 1 

refinement including resolution from 300 to 8 Å during refinement. Next, the particles were 

separated into two classes using a 3D mask that included the shoulder domain of the 30S 

subunit to separate particles with an open 30S from those with the closed 30S conformation. 

Two new stacks were prepared and further subclassified into 4 (closed 30S) or 6 classes 

(open 30S) using a small focus mask (30 Å) centered around EF-Tu using data up to 12 Å 

resolution for classification only (Extended Data Fig. 1b). After 50 rounds of classification, 

maps were prepared from the unbinned stack and used without further orientation 

refinement. Eight of these 10 classes were modeled and refined and are described in the text 

as structures II-A, II-B1, II-B2, II-C1, II-C2, III-A, III-B, and III-C. To obtain the best 

possible map of the EF-Tu release state (II-D), the open 30S particle stack was separated 

into 10 classes using a larger focus mask (60 Å) centered at EF-Tu. This classification 

separated out particles that were interacting with L11 and L7/L12 in different ways 

(Extended Data Fig. 3s–v), particles in which EF-Tu was close to other ribosomes (not 

shown), and a cleaner release intermediate state which was fit as state II-D.

Classification of accommodation and peptidyl transfer intermediates—
Classical-state 70S classes (with non-rotated or partially-rotated 30S) with either 2 tRNAs 

and a weak ASL in the A site or 3 well-ordered tRNAs from Classification 1 were merged 

using merge_classes.exe including particles with >50% occupancy and scores >0 (201,764 

particles) and were further subclassified into 24 classes using a 46-Å focus mask around the 

A and P sites of the 30S and 50S ribosomal subunits using data up to 12 Å resolution 

(Extended Data Fig. 1a). After 250 rounds of classification, 13 classes contained three 

tRNA, 3 classes were accommodation or intermediates, 5 classes had empty A sites in the 

classical (4) or hybrid (1) conformation, and 3 classes were low resolution. The particles 

from the 13 classes with three tRNA were extracted using merge_classes.exe including 

particles with >50% occupancy and scores >20 (83,981 particles) and separated into two 

classes using the same 46-Å focus mask, 50 rounds, and data to 12 Å. This classification 

yielded maps corresponding to models V-A and V-B. These classes were extracted for 

further exploratory subclassifications (see Supplementary Information) and were 

independently refined to improve map resolution. Particles belonging to the accommodation 

intermediate with the elbow at the A-site finger and a disordered acceptor arm were 

extracted using merge_classes.exe including particles with >50% occupancy and scores >0 

(8,072 particles) and were separated into five classes using a 30-Å focus mask centered 

around the disordered acceptor arm using 50 rounds and data to 12 Å resolution. Two of 

these maps with the best features are modeled as states IV-A and IV-B.

Classification of hybrid states—The hybrid-state particles (with fully rotated 30S) 

from Classification 1 were also extracted using merge_classes.exe including particles with 

>25% occupancy and scores >0 (141,604 particles) and were further subclassified into 8 

classes using the same 50-Å focus mask as Classification 1 (Extended Data Fig. 1a). After 

50 rounds of classification, 2 classes contained two tRNAs (one dipeptidyl-tRNA in A/P site 

and one deacylated tRNA in the P/E sites differing the position of A/P tRNA elbow) similar 
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to states VI-A and VI-B. The 6 remaining classes contained one tRNA in the P/E 

conformation, and the class with the best resolved features was modeled as class I-B. 

Limiting the hybrid-state particle stack to those particles with >50% occupancy and scores 

>20 from Classification 1 and repeating the classification, yielded the product ribosome 

states exhibiting higher resolution features in the PTC, and ultimately these were modeled as 

states VI-A and VI-B.

Classification of the partially occupied E site—To investigate the occupancy of the E 

site, we used maximum likelihood classification of the 29-s particle substack within a 30-Å 

focus mask centered on the E-site. To this end, the substrate-like particles (non-rotated 70S 

with empty A site, 104,795 particles), EF-Tu-containing particles with the domain-open 30S 

(24,120 particles), EF-Tu-containing particles with the domain-closed 30S (15,216 

particles), elbow-accommodation particles (8,072 particles), and peptidyl-transfer-like 

particles (83,981 particles) (see Extended Data Fig. 1a) were separately classified into 8 

classes for 50 rounds, using data up to 12-Å resolution. In each case, 1–2 classes contained 

no E-tRNA and 0–1 classes contained weak tRNA-elbow-like density at the L1 stalk with no 

density for the acceptor arm and ASL. The population of the weak/vacant E-site is constant 

(~20–25%) among the substrate-like, EF-Tu-bound, accommodation and peptidyl-transfer 

states. The maps with the vacant and tRNA-bound E site were similarly resolved. In the E-

tRNA bound states, non-cognate tRNA does not base-pair with the E-site codon (AAA), 

similarly to that in previous structures64. Unlike the well-resolved P-site and A-site tRNAs, 

the identities of the E-tRNA nucleotides could not be unambiguously ascribed to tRNAfMet 

or tRNAPhe due to lower resolution, consistent with conformational and compositional 

heterogeneity. Both particle populations and visual inspection of the maps with the vacant E 

and tRNA-bound E site do not reveal obvious correlations with the occupancy or with 

structural features of the 30S A site or EF-Tu, suggested by the allosteric three-site model 
65,66. Although our observations are consistent with biochemical 67,68 and biophysical69 

findings of the absence of the allosteric interaction between the E and A sites, non-cognate 

E-tRNA in our study prevents direct addressing of the allostery hypothesis.

Classification of the near-cognate dataset—The near-cognate dataset was processed 

in a similar fashion (Extended Data Fig. 2a) except that the EF-Tu-bound particles were 

processed independently and 3D masking of the shoulder separated states nc-IV and nc-V. 

First, EF-Tu-bound particles from Classification 1 were extracted using merge_classes.exe 

including particles with > 50% occupancy and scores > 0 (11,091 particles). Multiple 

strategies were tried to find particles with a closed 30S domain. First, the particles were 

separated into two or four classes using a 3D mask that included the shoulder domain of the 

30S subunit. While classes with an intermediate domain closure were apparent, no class with 

a fully closed 30S domain with residues 1492 and 1493 in the ON conformation emerged. 

Alternatively, a small focus mask (30 Å radius) around EF-Tu was used to separate particles 

into 4–8 classes based on EF-Tu features. Classification was limited to 12 Å resolution and 

50–100 rounds. Classification into 6 models yielded the most interpretable classes. These 

classes revealed EF-Tu conformations such as GTP-like conformation with an ordered or 

disordered switch I region, the extended post-hydrolysis conformation, and a pre-release 

conformation including a weak domain 2 matching those previously observed in the cognate 
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data. In this classification too, none of the near-cognate EF-Tu maps had a closed 30S 

conformation. To quantify differences between EF-Tu states in the near-cognate and cognate 

datasets, the cognate 29 s data was processed identically to near-cognate 30 s dataset using 6 

models and the 30-Å focus mask. In addition to the classes described above for the near-

cognate, a class with EF-Tu at the SRL and the 30S in the closed conformation was readily 

apparent in the cognate dataset. The percentage of 70S particles assigned to these classes is 

quantified in Fig. 3l and Extended Data Fig. 7b. Separation of near-cognate accommodation 

and peptidyl transfer states benefitted from a 3D mask around the shoulder domain of the 

30S rather than focus masks as used in the cognate dataset. This type of classification 

revealed differences in the rotation of the 30S and 30S domain opening. To answer if domain 

opening occurs during accommodation with cognate tRNA (Fig. 3l), particles belonging to 

the cognate 29 s elbow accommodation states were also separated with the 3D mask around 

the shoulder into either 2 or 6 classes, but an open 30S was not observed.

Assessing optimal reconstruction parameters for low-population classes (< 
10,000 particles) using: (a) a test with simulated stacks; and (b) classes II-A 
and IV-A

(a) Test with simulated stacks: Because our classifications yielded several classes 

comprising less than 10,000 particles (see below), we tested which approach to particle 

parameter (orientation and shift) refinements yields most resolved maps. Specifically, we 

asked how the maps with original particle orientation parameters (i.e. entire stack aligned 
together then no orientation refinement after classification) compare with those, in which 

particle orientation parameters are refined after classification. Here, we describe a 

simulation, in which we also asked whether and how the number of particles affects the 

resolution of the maps. To this end, we tested three approaches, employing Frealign v9.11, 

cisTEM −1.0.0-beta 70 and Relion-3-beta 71 to process particle stacks with different numbers 

of particles. To ensure that the different particle stacks contain particles with similar 

structural features (i.e. the same Structure class) to allow map comparisons, they were 

generated from a single large high-resolution stack of 31232 particles (class V-A; 3.2 Å 

average resolution) in triplicates, yielding stacks of approximately 500, 1000, 2000, 4000, 

8000, and 16000 particles (18 stacks in total). To this end, the occupancy column of the 

Frealign parameter file was replaced with random numbers from 0–100, and the stacks and 

parameter files of appropriate sizes were extracted by varying the occupancy threshold using 

merge_classes.exe.

For each substack, we next obtained reconstructions using: 1) 

FrealignX_calc_reconstruction (using the original particle orientation parameters determined 

before classification), 2) cisTEM’s autorefine procedure with “Initial Res. Limit” set either 

to (a) 60 Å to match initial resolution in the Relion procedure or to (b) 50 Å, which resulted 

in improved maps for small stacks; or 3) Relion 3D autorefine procedure with default 

parameters. Procedure 1 is identical to our typical map calculations, described above, in that 

the original refinement (orientation and shift) parameters were used to create 1x binned 

reconstructions. Procedures 2a and 2b in cisTEM were used to determine and refine the 

orientation and shift parameters independently for each substack, using default cisTEM 

settings. The reference for particle alignment was EMD-1003 prepared in EMAN2 by 
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changing pixel size. Procedure 3 in Relion was performed with default settings to determine 

the orientation and shift parameters and limit data resolution according to “gold-standard” 

settings. The reference for particle alignment was filtered to 60 Å as per default settings in 

Relion. For all procedures, the final resolution was obtained from the masked reconstruction 

(FSC_part in Frealign/cisTEM or Post-Process step in Relion), without additional beam-tilt 

or other corrections.

This test revealed that the average map resolutions decrease with the decreasing number of 

particles, consistent with published results72. Importantly, post-classification particle 

parameter refinement (procedures 2 and 3) is detrimental for smaller stacks, resulting in 

poorly resolved maps, as described in the next paragraph. Furthermore, the resolutions 

estimated from triplicate stacks are highly variable for small stacks (ranging from 6 to 21 Å 

for 1000 and 500 particles), further emphasizing suboptimal particle parameter refinement 

when the particle numbers are low. Instead, original orientation parameters (procedure 1) 

result in interpretable maps with well-resolved features even for 500 particles (~4.84±0.09 Å 

resolution).

By contrast, for the reconstructions calculated for the full large stack of 31,232 particles with 

the original and refined particle parameters, the map quality and resolutions were similar: 

3.40 Å (procedure 1), 3.37 Å (procedure 2) and 3.76 Å (procedure 3). Relion’s performance 

may be suboptimal in our tests because we have not used the complete particle-picking and 

data processing pipeline in Relion, to ensure that the same particles are used here in all three 

procedures. Nevertheless, the trends observed for Relion-processed data were similar to 

those for Frealign and CisTEM. In general, our classification attempts in GPU-accelerated 

Relion with default parameters have yielded high-quality initial reconstructions, similar to 

those in Frealign and cisTEM, but have not separated the classes as efficiently as Frealign. 

Frealign was more time-efficient than cisTEM or Relion, allowing us to test and compare 

numerous classification approaches, and thus representing an optimal classification strategy.

Maps with the original and refined particle parameters differed most for the stacks with less 

than 4,000 particles. At 4,000 particles, the resulting maps show similar resolutions for 

procedures 1 and 2a and 2b (3.87±0.02 Å (1), 3.97±0.05 Å (2a) and 4.06±0.05 Å (2b), 

respectively) and a lower resolution for procedure 3 (5.01±0.03 Å). Maps obtained for 2000 

particles had substantially more diverging resolution estimates from the triplicates in each 

approach, and particle-parameter refinement yielded less resolved maps (4.14±0.05 Å (1), 

4.53±0.11 Å (2a), 4.37±0.06 (2b) and 6.7±0.07 Å (3)). At 1000 and 500 particles, the 

differences in resolution and map quality were even more pronounced (1000 particles: 

4.46±0.06 Å (1), 14.12±7.5 Å (2a), 5.21±0.2 (2b) and 9.22±0.2 Å (3); 500 particles: 

4.84±0.09 Å (1), 20.5±1.3 Å (2a), 8.0±4.1 (2b) and 12.3±2.6 Å (3)). Visual inspection of the 

small-stack maps confirmed that the procedure employing original refinement parameters 

(1) resulted in superior maps, which retained some higher-resolution features such as RNA 

nucleotide separation, unlike the procedures with orientation parameters refined for 

individual substacks (2a, 2b and 3).

(b) Refinement of particle parameters for II-A and IV-A: In parallel with the 

simulation test, we tested the three reconstruction and refinement procedures described 
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above on the classification-derived states with different numbers of particles: II-A (7,320 

particles) and IV-A (1,471 particles). Similarly to the simulation results for the least-

populated stacks, reconstructions for the sparse class IV-A are most well resolved with the 

default original particle parameters, whereas post-classification particle parameter 

refinement is detrimental to map quality. Specifically, our default reconstruction with 

subsequent beam-tilt corrections yielded a 4.0 Å (average resolution) reconstruction (map 

1). Visual inspection confirmed that local features correspond to this average resolution, 

with some regions containing higher-resolution features, such as separated stacked 

nucleotides. Being part of the larger stack, the particles in this class have partial occupancies 

(calculated by frealign_run_refine in the original refinement procedure), and 

frealign_calc_stats reports they correspond to 1471 particles. To test particle parameter 

refinement in cisTEM (procedure 2) and Relion (procedure 3), we extracted particles 

belonging to state IV-A using merge_classes.exe including particles with >50% occupancy 

and scores >0, yielding a 1790 particle stack with occupancies reset to 100%. This stack was 

imported with CTF parameters into cisTEM and refined against EMD-1003 using default 

autorefine parameters, followed by beam-tilt correction, yielding a map at 4.63 Å resolution 

(map 2). Similarly we exported the stack and par file to Relion and performed 3D-autorefine 

against EMD-1003 as a reference using default parameters, followed by beam-tilt 

refinement, 3D-autorefine and post-processing (all steps in Relion), yielding a 6.61 Å 

reconstruction (map 3). Both cisTEM and Relion maps contained similar lower-resolution 

features, including EA-1 tRNA, but lacked high-resolution detail, indicating suboptimal 

particle parameter refinement, likely due to the small particle number. Indeed, for the 

modestly populated class II-A of more than 7,000 particles, the map resolutions and 

structural details were improved to: 3.6 Å (procedure 1), 3.8 Å (procedure 2) and 4.9 Å 

(procedure 3). Nevertheless, visual inspection confirmed that both the highly resolved 

regions (e.g. peptidyl transferase center) and less resolved features (e.g. secondary structure 

of peripheral proteins) were superior in map 1 obtained with the original particle parameters.

Finalizing maps—After the final classifications were completed, we were able to improve 

each map by 0.1–0.4 Å by applying a beam tilt correction using cisTEM 70. The beam tilt 

parameters were calculated once for each dataset using all particles and then were applied to 

the classified maps. In the case of EF-Tu, where 3 datasets were joined, the beam tilt 

parameters were calculated using the 79,838 EF-Tu bound particle stack then applied to each 

of the 10 classes described in the text.

FSC curves were calculated by FREALIGN (FSC_part) for even and odd particle half-sets 

(Extended Data Fig. 1c–f, 2b). The maps used for structure docking and refinement were 

softened or sharpened by using bfactor.exe, part of the FREALIGN v9.11 distribution.

To assess the local resolution of the cryo-EM maps and filter them for structure refinements, 

we used blocres and blocfilt from the Bsoft package73, after testing several local-resolution 

filtering approaches. Briefly, a mask was created for each map by low-pass filtering the map 

to 30 Å in Bsoft, then binarizing, expanding by 3 pixels and applying a 3-pixel Gaussian 

edge in EMAN2. Blocres was run with a box size of 26 pixels for maps with average 

resolutions near 4 Å, or a box size of 20 pixels for maps I-A, V-A, V-B, VI-A, and VI-B 

with resolutions closer to 3 Å. In each case, the resolution criterion was FSC with cutoff of 
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0.143. The output of Blocres was used to filter maps according to local resolution using 

blocfilt. Visual inspections and structure refinements against (1) original Frealign maps, (2) 

blocfilt maps and (3) blocfilt maps followed by filtering with different B-factors at different 

resolutions revealed that optimal balance between high-resolution and lower-resolution 

regions is achieved for blocfilt maps filtered with a constant B-factor of −50 Å2 to the 

average resolution as determined by FSC_part. These maps were used for final structure 

refinements (Tables S1, S2, S3). Local regions described in the manuscript were nevertheless 

inspected using a series of maps (for each class) obtained with different filtering approaches 

to minimize bias in interpretation.

Model building and refinement

The 3.2-Å cryo-EM structure of 70S•tRNA•EF-Tu•GDPCP (PDB: 5UYM, 5) was used as a 

starting model for structure refinements. A*/T for Structures II-A to II-D was adopted from 

PDB: 5UYL 5). The starting model for domain 1 of EF-Tu bound with GDP was taken from 

PDB: 1DG1 74. The starting models for the EA, A/A, and A/P tRNAPhe were adapted from 

PDB: 1VY5 75. fMet and Phe and fMet-Phe dipeptide were adapted from PDB: 1VY4 and 

PDB: 1VY5 75. E-site tRNA was modeled as tRNAfMet 5. E/P tRNAfMet was modeled using 

PDB: 4V80 76 while H69 of 23S rRNA in the hybrid states was modeled using PDB: 4V9D 
18. All Structures were domain-fitted using Chimera 77 and refined using real-space 

simulated-annealing refinement using RSRef 78,79 against corresponding maps. Local 

structural elements that differed between structures, such as the decoding center or mRNA 

codon, were manually fitted and modeled into cryo-EM maps in PyMol 80 and Coot 81. 

Refinement parameters, such as the relative weighting of stereochemical restraints and 

experimental energy term, were optimized to produce the optimal structure stereochemistry, 

real-space correlation coefficient and R-factor, which report on the fit of the model to the 

map 82. Lower-resolution (~4 Å) structures were refined conservatively and visual 

inspection confirmed good fits. Secondary-structure restraints, comprising hydrogen-

bonding restraints for ribosomal proteins and base-pairing restraints for RNA molecules 

were employed as described 83 and allowed for a conservative and stereochemically-

restrained refinement into lower-resolution maps. The structures were next refined using 

phenix.real_space_refine 84 followed by a round of refinement in RSRef applying harmonic 

restraints to preserve protein backbone geometry 78,79. Phenix was used to refine B-factors 

of the models against their respective maps 84. The resulting structural models have good 

stereochemical parameters, characterized by low deviation from ideal bond lengths and 

angles and agree closely with the corresponding maps as indicated by high correlation 

coefficients and low real-space R factors (Tables S1, S2 and S3). Visual inspection of key 

functional regions was performed for each structure to ensure reasonable fits.

Structure superpositions and distance calculations were performed in PyMol. To calculate an 

angle of the 30S subunit rotation for accommodation and peptidyl-transfer states with 

respect to Structure III-B, 23S rRNAs were aligned with 23S rRNA from Structure III-B 

using Pymol, and the angle between 16S body regions (residues 2–920 and 1398–1540) was 

measured in Chimera. Figures were prepared in PyMol and Chimera.

Loveland et al. Page 18

Nature. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Data Availability

The models generated and analyzed during the current study will be available from the 

RCSB Protein Data Bank: 6WD0 (Structure I-A), 6WD1 (Structure I-B), 6WD2 (Structure 

II-A), 6WD3 (Structure II-B1), 6WD4 (Structure II-B2), 6WD5 (Structure II-C1), 6WD6 

(Structure II-C2), 6WD7 (Structure II-D), 6WD8 (Structure III-A), 6WD9 (Structure III-B), 

6WDA (Structure III-C), 6WDB (Structure IV-A), 6WDC (Structure IV-B), 6WDD 

(Structure V-A), 6WDE (Structure V-B), 6WDF (Structure VI-A), 6WDG (Structure VI-B), 

6WDH (Structure IV-B1-nc), 6WDI (Structure IV-B2-nc), 6WDJ (Structure V-A1-nc), 

6WDK (Structure V-A2-nc), 6WDL (Structure V-B1-nc), and 6WDM (Structure V-B2-nc). 

The cryo-EM maps used to generate models will be available from the Electron Microscopy 

Database: EMD-21619 (Structure I-A), EMD-21620 (Structure I-B), EMD-21621 (Structure 

II-A), EMD-21622 (Structure II-B1), EMD-21623 (Structure II-B2), EMD-21624 (Structure 

II-C1), EMD-21625 (Structure II-C2), EMD-21626 (Structure II-D), EMD-21627 (Structure 

III-A), EMD-21628 (Structure III-B), EMD-21629 (Structure III-C), EMD-21630 (Structure 

IV-A), EMD-21631 (Structure IV-B), EMD-21632 (Structure V-A), EMD-21633 (Structure 

V-B), EMD-21634 (Structure VI-A), EMD-21635 (Structure VI-B), EMD-21636 (Structure 

IV-B1-nc), EMD-21637 (Structure IV-B2-nc), EMD-21638 (Structure V-A1-nc), 

EMD-21639 (Structure V-A2-nc), EMD-21640 (Structure V-B1-nc), and EMD-21641 

(Structure V-B2-nc).
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Extended Data

Extended Data Fig. 1. 
Classification procedure and FSC curves for maps of cognate ternary complex decoding (a) 

Scheme of the maximum-likelihood classification strategy to obtain the final maps and state 

occupancies for the cognate 29-s dataset. Transparency for EF-Tu and line-thickness for 

tRNA depict full/partial occupancy or strong/weak features. Gray shading in 30S subunit 

indicates the closed 30S subunit conformation. Brackets with red multiplication signs (e.g. 
x3), indicate the number of states that recur, and in such cases the lowest and highest 
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resolution is listed along with a summed occupancy for all states. (b) EF-Tu-bound particles 

from 17 s, 29 s and 120 s were processed together to obtain final maps for states II-A to III-

C. (c-f) Fourier shell correlations (FSC) between even- and odd-particle half maps show that 

average resolutions range from 3.0 to 4.0 Å for modeled maps. (c) Substrate ribosome states. 

(d) EF-Tu-bound ribosomes states with an open 30S subunit. (e) EF-Tu-bound ribosome 

states with a closed 30S subunit. (f) Accommodation and product ribosome states.

Extended Data Fig. 2. 
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Classification procedure and FSC curves for maps of near-cognate ternary complex 

decoding (a) Scheme depicts maximum-likelihood classification strategy to obtain the final 

maps and state occupancies for the near-cognate 30-s dataset. (b) Fourier shell correlation 

(FSC) between even- and odd-particle half maps for near-cognate ribosome states that were 

modeled. (c) Cryo-EM maps for 16 states of the elongation reaction with near-cognate 

tRNA, and their assignment as substrates, EF-Tu-bound intermediates, or products of the 

reaction. The maps are colored to show the 50S ribosomal subunit (light blue), 30S 

ribosomal subunit (yellow), E-tRNA (orange), P-tRNA (dark blue), near-cognate A-tRNA 

(red), and EF-Tu (magenta).
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Extended Data Fig. 3. 
Cryo-EM density and interactions of EF-Tu. (a-r) Density for EF-Tu in 30S-open (II) and 

30S-closed (III) conformations is shown relative to the sarcin-ricin loop (SRL) (panels a-c, 

g-i, and m-o) or at the tRNA interacting face (panels d-f, j-l, and p-r; tRNA is omitted for 

clarity). Maps were filtered according to local resolution, using blocfilt (Methods). Numbers 

1–3 indicate domains of EF-Tu. EF-Tu is shown in magenta with switch I region (Sw I) and 

switch II region (Sw II) shown in blue, tRNA is shown in green, 30S subunit is shown in 

gold, 50S subunit is shown in cyan. (a) Map II-A (shown at 3 σ). (b) Map II-B1 (3.25 σ). (c) 
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Map II-B2 (2.5 σ). (d) Map II-A has strong density for both Switch I and II regions (2 σ). 

(e) Map II-B1 has weaker density for Switch I (2 σ). (f) In map II-B2, density for Switch I is 

missing even at lower contour levels (shown at 1.5 σ). (g) Map II-C1 (1 σ). (h) Map II-C2 (1 

σ). (i) Map II-D has only domain 3 density at low contour levels (0.5 σ). (j) Map II-C1 has 

only weak density for Switch I and II (0.25 σ). (k) Map II-C2 is missing ordered density for 

most of Switch I (0.5 σ). (l) Map II-D has weak density only for domain 3 (0.5 σ). (m) Map 

III-A shows EF-Tu away from the SRL when the 30S closure is intermediate (2 σ). (n) Map 

III-B shows EF-Tu next to the SRL, when 30S subunit is in the closed conformation (2 σ). 

(o) Map III-C shows GTPase domain away from the SRL and rotated by ~90° relative to 

domain 2 (1.5 σ). (p) Map III-A has density for both Switch I and II (1.5 σ). (q) In map III-

B, density for both Switch I and II is missing (1.5 σ). (r) Map III-C has weak density for 

Switch I (1.25 σ). (s) Classification with a larger mask around EF-Tu reveals a map with 

weak density at helix D of domain 1, which corresponds to the binding site for the C-

terminus of L7/L12. Map was low-pass filtered to 6 Å and is shown at 1 σ. (t) The putative 

interaction of L7/L12 with domain 1 of EF-Tu (left) differs from that of L7/L12 with domain 

1 of EF-G (right). Rigid-body fitted structure of EF-Tu and L7/L12 as in (a) was aligned to 

EF-G from PDB: 4V5F 85 via GTPase domains. (u-v) An independent classification strategy 

yielded a map (shown with 4× binning and at 0.75 σ) with density sufficient to fit a dimer of 

the L7/L12 C-terminal domain. The density bridges domain 3 of EF-Tu with L11. Model for 

L7/L12 N-terminus (green cyan) from PDB:1ZAX 86 is shown on both panels. (u) Tentative 

fit utilizes the L7/L12 dimer interface observed in the X-ray crystallographic structure 

(PDB: 1CTF; 87). (v) Alternatively, two monomers may be docked independently (bottom 

based on PDB: 1CTF) and top based on PDB: 4V5F.) (w) Cryo-EM map II-C1 shows 

ordered density for A*/T tRNA when EF-Tu domain 1 undocks from the tRNA and SRL, 

while domain 2 (magenta) remains bound. Map is shown at 3 σ for A*/T tRNA and 2 σ for 

EF-Tu. (x) Comparison between II-A and II-D shows that density is missing for A76 and 

Phe of Phe-tRNAPhe upon release of EF-Tu domain 2 in II-D. Right panel: Map II-A, 

filtered via blocfilt and B-factor sharpened (−75 Å2), with ordered EF-Tu shows strong 

density for A76 and Phe (2.75 σ). Left panel: Map II-D was filtered via blocfilt and B-factor 

sharpened (−50 Å2) and is shown at 0.75 σ to accentuate weak density. A*/T tRNA from II-

A is shown in gray for reference after structural superposition of structures via 23S rRNA. 

(y) Comparison of EF-Tu in Structure III-A (resembling a pre-GTP-hydrolysis state, gray, 

only EF-Tu is shown) and III-B (post-GTP hydrolysis, colored as in Fig. 1) reveals roles of 

the 30S shoulder in bringing EF-Tu toward the SRL and of L11 in optimally positioning EF-

Tu for GTP hydrolysis. Alignment of Structures was achieved by superposition of 23S 

rRNA. (z) Superposition shows similarity of Structure III-B (colored) with 70S• Phe-

tRNAPhe •EF-Tu stalled with GDPCP in previous work (PDB: 5UYM; 5).
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Extended Data Fig. 4. 
Cryo-EM density of the decoding center of the open and closed 30S conformations. 16S 

rRNA is shown in yellow, 23S rRNA is shown in cyan, codon is shown in magenta, cognate 

tRNA is shown in green and near-cognate tRNA is shown in red. All maps have been local-

resolution-filtered using blocfilt and B-factor-sharpened (−75 Å2). (a) Structure I-A with the 

decoding center in an open conformation; 16S residues of helix 44 including residues 1492–

1493 are shown at 2.5 σ, G530 of the 16S is shown at 4 σ, 23S rRNA residue A1913 at 2.5 

σ, and the weaker codon density is shown at 1.0 σ. (b) Structure II-A with the decoding 

center in an open conformation in the presence of A*/T tRNA; the codon and A*/T tRNA 

are shown at 2.5 σ, h44 is shown at 2.5 σ, G530 is shown at 4.5 σ, A1913 is shown at 3 σ. 

(c) Structure II-C1 with the decoding center in an open conformation in the presence of 

A*/T tRNA and with EF-Tu in an extended, post-GTP hydrolysis conformation; the codon 

and A*/T tRNA are shown at 3.75 σ, h44 is shown at 2.5 σ, G530 is shown at 3 σ, A1913 is 

shown at 2.5 σ. (d) Structure III-A with the decoding center in an intermediate conformation 

in the presence of A*/T tRNA; the codon and A*/T tRNA are shown at 3.5 σ, h44 is shown 

at 3.5 σ, G530 is shown at 5 σ, and A1913 at 2.5 σ. (e) Structure III-B with a closed 

conformation of the decoding center in the presence of A/T tRNA; the codon and A/T tRNA 

are shown at 4.5 σ, h44 is shown at 4.5 σ, G530 is shown at 5 σ, and A1913 is shown at 5 σ. 

(f) Structure IV-B with the decoding center in a closed conformation during accommodation; 

the codon, EA-1 tRNA, A1913 and 16S h44 are shown at 5 σ, and G530 is shown at 6 σ. (g) 

Structure V-B with the decoding center in a closed conformation in the presence of the 

accommodated A/A tRNA; the codon and A/A tRNA, 23S rRNA and G530 are shown at 5 
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σ, and h44 at 4.5 σ. (h) Density for the modified nucleotide at position 37, 2-methylthio-

N6-(2-isopentenyl)-adenosine, of the anticodon in V-B (cryo-EM map was filtered with 

blocfilt and B-factor-sharpened (−100 Å2) and is shown at 4 σ). (i) Structure VI-B with the 

decoding center in a closed conformation in the presence of A/P* tRNA; the codon, A/T 

tRNA, h44 and G530 are shown at 3.5 σ, and A1913 at 3 σ. (j) Near-cognate Structure V-

A1-nc with the decoding center in an open conformation in the presence of A*/A tRNA with 

the accommodated CCA end; the codon and A*/A tRNA are shown at 3.75 σ, h44 and 

A1913 are shown at 3.5 σ and G530 is shown at 5 σ. (k) Near-cognate Structure V-A2-nc 

with the decoding center in a closed conformation in the presence of A/A tRNA; the codon 

and A/A tRNA are shown at 6 σ, h44 is shown at 5 σ, G530 at 7 σ, and A1913 at 3 σ.

Extended Data Fig. 5. 
Cryo-EM density for tRNAs during cognate and near-cognate tRNA decoding. Cognate 

tRNA is shown in green, near-cognate tRNA is shown in red, 23S rRNA including ASF 

(residues 860:915), H89 (residues 2450–2500), and H90-H92 (residues 2513:2571) are 
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shown in cyan, and the mRNA codon is shown in magenta. Cryo-EM maps were local-

resolution-filtered using blocfilt. (a-b) Structure II-D and cryo-EM map shown at 2 σ. (c-d) 

Structure IV-A and cryo-EM map shown at 3 σ. (e-f) Structure IV-B and cryo-EM map 

shown at 3 σ. (g-h) Structure V-A and cryo-EM map shown at 3 σ. (i-j) Structure IV-B1-nc 

and cryo-EM map shown at 2 σ. (k-l) Structure IV-B2-nc and cryo-EM map shown at 2 σ. 

(m-n) Structure V-A1-nc and cryo-EM map shown at 3 σ. (o-p) Structure V-A2-nc and cryo-

EM map shown at 3 σ. (q) Charging of tRNAPhe with phenylalanine, as assessed by 6.5% 

acid-PAGE and methylene-blue staining (see uncropped gel image in Supplementary 

Information). (r) Charging of tRNAfMet by formyl-methionine (as in q).

Extended Data Fig. 6. 
30S rotation in accommodation states and tRNA conformations in peptidyl-transfer states. 

(a) In state V-A, with a partially rotated 30S subunit, cryo-EM density is consistent with 

substrate aminoacyl-tRNAs. Cryo-EM map was filtered with blocfilt and B-factor-sharpened 

(−50 Å2) and is shown at 2.5 σ. (b) In state V-B, which is less rotated, cryo-EM density is 

consistent with product dipeptidyl-tRNA. Cryo-EM map was filtered with blocfilt and B-

factor-sharpened (−50 Å2) and is shown at 3.5 σ. (c) Change of the 70S conformation in 
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accommodation intermediates over time. The 30S subunit rotation angle decreases with time 

in ribosome states with A/A-like tRNA, consistent with accommodation completion in a 

non-rotated state. Rigid-body docking of 50S subunit, 30S head, 30S shoulder, and 30S body 

was performed into the cryo-EM maps obtained for the 17- and 120-second time points. 

Superposition with the 70S•tRNA•EF-Tu•GDPCP structure (PDB: 5UYM, 5) was achieved 

by structural alignment of 23S rRNA. Rotation of the 30S body rRNA versus that of non-

rotated PDB: 5UYM was determined in Chimera. (d-g) Superpositions of the aminoacyl 

moieties in V-A and V-B with crystallographic structures of the T. th. 70S ribosome captured 

with substrate analogs (PDB: 1VY4) and product analog (PDB: 1VY5) 75. (d-e) Substrate 

Phe-tRNAPhe in A site (green) and fMet-tRNAfMet (blue) in V-A are shown compared to two 

70S structures in the asymmetric unit of PDB: 1VY4 (gray). Superposition was achieved by 

structural alignment of 23S rRNA. (f-g) Product dipeptidyl fMet-Phe-tRNAPhe in the A site 

(green) and deacylated P-tRNAfMet (blue) in V-B are shown compared to two 70S structures 

in the asymmetric unit of PDB: 1VY5 (gray). In V-B, formyl group was not resolved. (h) 

P*/P tRNA elbow (blue) in a partially rotated 30S conformation (V-A) is displaced by 7–11 

Å toward the E site, relative to its position in the classical-state P/P tRNA (gray; V-B). 

Superposition of Structures V-A and V-B was achieved by structural alignment of 23S 

rRNA. (i) P*/P tRNA (blue) is shown relative to the E-site tRNA (orange) in structure V-A. 

(j-k) Particle classification yields E-site tRNA-bound (j) and vacant (k) particles with 

similar conformations of 30S-domain-closed complexes. Cryo-EM maps with or without E-

tRNA (see Methods) were low-pass filtered to 4 Å and B-factor softened (50 Å2) and are 

shown at 3.2 σ. (l-m) Particle classification yields E-site tRNA-bound (l) and vacant (m)) 

particles with similar conformations of 30S-domain-open complexes. Cryo-EM maps with 

or without E-tRNA (see Methods) prepared as in (j-k) are shown at 3 σ.

Extended Data Fig. 7. 
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Differences between near-cognate and cognate structural ensembles. (a) Comparison of 

particle populations in cognate and near-cognate samples (at 30 s) reveals more substrate 

and less intermediate (EF-Tu) and product states for the near-cognate reaction. (b) Near-

cognate tRNA-bound EF-Tu is less abundant in GDP-bound states (after GTP hydrolysis) 

than the cognate complex. (c-d) Elbow-accommodated EA tRNAs sample open (c) and 

closed (d) 30S conformations. (e-h). CCA-accommodated tRNAs sample open and closed 

30S conformations. Notably, state V-A1-nc, with an open 30S, shows a destabilized amino 

acid in the PTC. (i) 30S-subunit partial rotation moves the A-site finger (ASF, cyan) in the 

cognate EA-1 and EA-2 states from their position in the EF-Tu release or accommodated 

A/A states (gray) allowing tRNA accommodation. (j) Near-cognate tRNA (red) 

accommodation and interactions with the ASF differ from those of cognate tRNA (green).
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Extended Data Fig. 8. 
Local resolutions of each cognate modeled class assessed by blocres (Methods).
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Extended Data Fig. 9. 
Local resolutions of each near-cognate modeled class assessed by blocres (Methods).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Cryo-EM of an elongation event reveals structural intermediates. (a) Scheme of the reaction 

of initiation 70S•fMet-tRNAfMet complex with cognate Phe-tRNAPhe•EF-Tu•GTP complex 

to form dipeptidyl fMet-Phe-tRNA. (b) Cryo-EM maps for 17 states of the elongation 

reaction, and their assignment as substrates, EF-Tu-bound intermediates, or products of the 

reaction. The maps are colored to show the 50S ribosomal subunit (light blue), 30S 

ribosomal subunit (yellow), E-tRNA (orange), P-tRNA (dark blue), A-tRNA (green), and 

EF-Tu (magenta). (c) Relative abundance of substrates, EF-Tu intermediates, and products 

over time, obtained from particle distributions in cryo-EM datasets. (d) Conformations of 

the incoming tRNA in 17 structures, starting from EF-Tu bound A*/T states (light green 

tRNA and magenta EF-Tu) to elbow-accommodated (EA) to pre-translocation A/P states 

(dark green). (e) Density (mesh) consistent with GTP in EF-Tu GTPase center of a transient 

early state of mRNA decoding (open 30S). (f) Cryo-EM density of a transient state in the 

peptidyl transferase center consistent with aminoacyl-tRNA substrates. (g) Cryo-EM density 

for fMet-Phe dipeptidyl-tRNA, the product of peptidyl transfer.
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Fig. 2. 
EF-Tu and ribosome rearrangements during mRNA decoding. (a) Overview of the 70S 

ribosome bound with ternary complex of Phe-tRNAPhe•EF-Tu•GTP (Structure II-A). (b) 

Compact EF-Tu•GTP with the ordered switch I region (Sw I; blue) is separated from the 

sarcin-ricin loop (SRL; cyan) on the ribosome with the open 30S conformation (Structure II-

A). (c) Extended EF-Tu with domain 1 separated from tRNA (arrow) and with a reorganized 

switch I region (Structure II-C1). (d) Rearrangements in the decoding center are coupled 

with 30S domain closure (shoulder shift) in the presence of EF-Tu. Structures II-A (colored) 

and III-B (gray) are shown. (e) Cryo-EM density showing EF-Tu with an ordered switch I 

region in the open 30S state (II-A). (f) GTP (orange spheres) is hydrolyzed (small black 

arrow), as the decoding center accepts the tRNA (gray arrow; closed 30S), bringing domain 

1 to the SRL (cyan). The disordering and refolding of Sw I (blue) and movement of domain 

1 away from tRNA (larger black arrows) occur as the tRNA continues sampling open (A*/T) 

and closed (A/T) 30S conformations. EF-Tu from II-A (magenta), III-B (gray), and II-C2 

(light pink) is shown along with tRNA from II-A (A*/T, colored) and III-B (A/T, gray).
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Fig. 3. Differences between cognate (green) and near-cognate (red) tRNA accommodation.
(a-g) Cognate tRNA after EF-Tu release samples closed 30S conformations from 

accommodation to peptidyl transfer to pre-translocation states: (a) EF-Tu domain 3 

(magenta) is last to release from A*/T tRNA (green). (b) Elbow-accommodated tRNA EA-1 

in the ribosome with a partially rotated 30S subunit (~2.5°). (c) Elbow-accommodated tRNA 

EA-2 is closer to the A site but the CCA end is not accommodated in the 50S A site. (d) The 

CCA end of A tRNA is inserted into the PTC, while the 30S subunit is partially rotated (also 

Fig. 1f). (e) Dipeptidyl-tRNA in the A site with the less rotated 30S subunit (Extended Data 

Fig. 6b). (f-g) Pre-translocation hybrid-state dipeptidyl-tRNA in the 70S with the fully 

rotated 30S subunit and different elbow positions of the A/P and A/P* tRNA (as defined in 

Supplementary Information). (h) During accommodation, partial 30S rotation depresses 

tRNA and allows the tRNA to bypass H89. (i-j) Near-cognate tRNA in elbow-

accommodated states (IV-B1-nc, IV-B2-nc) sample open (i) and closed (j) 30S 

conformations. (k) Near-cognate tRNA with accommodated CCA end samples open and 

closed 30S conformations, coupling the shoulder movement with tRNA destabilization. (l) 
The 30S decoding center samples open 30S conformations with near-cognate tRNA in both 

EF-Tu-bound and accommodation structures (n.d. not detected for cognate tRNA).
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Fig. 4. 
Schematic of mRNA decoding. Black arrows denote events and conformational changes 

(EF-Tu rearrangements, 30S domain closure, and/or tRNA or EF-Tu dissociation) on both 

cognate (green tRNA) and near-cognate (red tRNA) decoding complexes. Green and red 

arrows denote events predominant for cognate and near-cognate complexes, respectively.
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