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Abstract: Hepatobiliary cancers, including hepatocellular carcinoma (HCC), cholangiocarcinoma
(CCA), and gallbladder carcinoma (GBC), are lethal cancers with limited therapeutic options.
Curative-intent treatment typically involves surgery, yet recurrence is common and many patients
present with advanced disease not amenable to an operation. Immunotherapy represents a promising
approach to improve outcomes, but the immunosuppressive tumor microenvironment of the liver
characteristic of hepatobiliary cancers has hampered the development and implementation of this
therapeutic approach. Current immunotherapies under investigation include immune checkpoint
inhibitors (ICI), the adoptive transfer of immune cells, bispecific antibodies, vaccines, and oncolytic
viruses. Programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein
4 (CTLA-4) are two ICIs that have demonstrated utility in HCC, and newer immune checkpoint
targets are being tested in clinical trials. In advanced CCA and GBC, PD-1 ICIs have resulted in
antitumor responses, but only in a minority of select patients. Other ICIs are being investigated for
patients with CCA and GBC. Adoptive transfer may hold promise, with reports of complete durable
regression in metastatic CCA, yet this therapeutic approach may not be generalizable. Alternative
approaches have been developed and promising results have been observed, but clinical trials are
needed to validate their utility. While the treatment of hepatobiliary cancers involves unique chal-
lenges that these cancers present, the progress seen with ICIs and adoptive transfer has solidified
immunotherapy as an important approach in these challenging patients with few other effective
treatment options.

Keywords: hepatocellular carcinoma; cholangiocarcinoma; gallbladder carcinoma; immunotherapy;
immune checkpoint inhibitor; adoptive cell transfer; tumor vaccine

1. Introduction

The development of novel immunotherapies has revolutionized the treatment of
patients with cancer. Unlike cytotoxic chemotherapy, which functions to directly kill
cancer cells or induce apoptosis, immunotherapy functions to bolster the endogenous
antitumor properties of the immune system, enabling immune cells to lyse cancer cells that
would otherwise escape immune surveillance. Immunotherapy comes in various forms
and more novel approaches are being developed. Current therapies being used clinically
include immune checkpoint inhibitors, the adoptive transfer of tumor-specific T cells
including tumor infiltrating lymphocytes (TIL) or gene-engineered T cells (T cell receptor
or Chimeric Antigen Receptor transduced), bispecific antibodies, vaccines, and oncolytic
viruses. Immunotherapy has become a valuable treatment in many cancers, including
malignant melanoma, mismatch repair-deficient colorectal cancer, human papilloma virus-
positive cervical cancer, and small cell lung cancer [1,2].

One area of ongoing research is to develop and validate novel immunotherapies
for the treatment of patients with hepatobiliary cancers, which includes hepatocellular
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carcinoma, cholangiocarcinoma, and gallbladder carcinoma. Due to the specific challenges
that these cancers present, the development of new treatments has lagged behind that of
other cancers [3,4]. Hepatobiliary cancers progress rapidly and are associated with a high
case fatality. Since many existing treatments have limited efficacy, there is a substantial
unmet clinical need to develop novel immunotherapies [5,6]. Herein, we review the current
state of treatment and how immunotherapy is being integrated towards the care of patients
with hepatobiliary cancers, discuss the tumor microenvironment and unique challenges to
using immunotherapy in hepatobiliary cancers, and examine early-phase, novel approaches
that hold great promise in treating patients with hepatobiliary cancers.

2. Hepatocellular Carcinoma
2.1. Current Therapeutic Approach

Hepatocellular carcinoma (HCC) is a primary tumor of the liver, often arising from
cirrhosis, and is frequently associated with chronic hepatitis B infection, chronic hepatitis C
infection, and alcoholism [7,8]. HCC is the most common primary liver tumor, making up
80–90% of all primary liver neoplasms. Approximately 900,000 new cases of liver cancer
were reported in 2020 and liver cancer was the third leading cause of cancer-related deaths
worldwide in the same year [9]. In the United States, liver cancer has a 5-year survival rate
of 18%, making it the second deadliest site of cancer [6,10].

Treatment of HCC is dictated by the Child–Pugh class and/or the Barcelona Clinic
Liver Cancer staging system (BCLC). Early-stage HCC that is confined to the liver is
primarily treated with surgical resection and/or ablation, which seek to completely remove
the tumor [11]. Transplantation is another therapeutic option that removes both the HCC
as well as the underlying cirrhotic liver [6,12,13]. Despite the curative intent of these
treatment modalities, tumors frequently recur and the 5-year recurrence after surgical
resection can be as high as 40–70%, and recurrence after transplantation can be as high
as 20–40% [6,14]. In addition, since many patients with HCC present with advanced
disease or complications related to cirrhosis, only 5–10% of HCC patients are candidates
for surgical therapy [15]. Transarterial therapies including transarterial chemoembolization
(TACE) and selective internal radiation therapy (SIRT) can be considered for patients with
unresectable, intermediate-staged BCLC B HCC [6]. While these approaches can be helpful,
their efficacy as a monotherapy has been limited.

Effective systemic therapies could potentially prolong the survival of patients with
HCC. HCC, however, has been traditionally resistant to conventional cytotoxic chemother-
apy, and only recently have small-molecule inhibitors been used. In 2008, sorafenib was
tested in a phase III trial in patients with advanced HCC and was found to be associated
with both an improvement in survival and delay in radiologic progression of 3 months
versus placebo [16,17]. As a result, sorafenib was the first systemic therapy approved for
the treatment of HCC. Other small-molecule inhibitors including lenvatinib, regorafenib,
cabozantinib, and ramucirumab have been developed for HCC [6,18–21]. Of the newly
approved molecules, only sorafenib, lenvatinib, and regorafenib have been associated with
an increased median overall survival to 6.5–13.6 months depending on the study [15–19].
While this is an incremental improvement, the median survival for patients on these thera-
pies remains rather dismal, highlighting the need for more efficacious systemic therapies.
Given the success of immunotherapy in the treatment of some cancers, more recent efforts
have been aimed at translating this success to patients with HCC.

2.2. The Challenging Tumor Microenvironment of HCC

The development and testing of immunotherapies among patients with HCC have
taken significantly longer than in other cancers such as melanoma, mismatch repair-
deficient colon cancer, or even lung cancer. While the reason for this is multifactorial,
it likely is related to the reduced immunogenicity of HCC tumors. Compared with other
types of tumors, such as melanoma, the tumor mutational burden of HCC tends to be low
to moderate. With fewer somatic mutations within the tumor, there are a reduced number
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of tumor-specific neoantigens available to drive an adaptive immune response [22]. Tumor
mutational burden has been used as a biomarker to indicate the efficacy of T cells against a
tumor, with a lower tumor mutational burden indicating a weaker immune response [23].
In one study of 33 patients with HCC, the median TMB was 5.48 (range 1.68–16.07) and
did not correlate with pathologic features of HCC [24]. More so, the impact of the tumor
mutational burden in HCC on the adaptive immune response, and its relation to tumor
progression and patient outcome, is poorly understood [3]. Taken together, these unique
aspects to HCC have made it much more difficult to treat with immunotherapy and, im-
portantly, have resulted in a drastic delay in the development and use of immunotherapy
for patients with HCC.

Furthermore, the liver naturally creates an immunosuppressive microenvironment
that facilitates tumor development. The liver provides an “immune-tolerant” environment
due to its need to be accepting of new antigens encountered from food and microbial
antigens delivered from the gastrointestinal tract [25]. Tolerance of antigens is partially
achieved through myeloid-derived suppressor cells that secrete chemokines, cytokines, and
growth factors, which increase proliferation, protect from apoptosis, increase angiogenesis,
and support growth [26]. In addition, the activation and accumulation of regulatory T cells
alongside upregulated programmed cell death protein 1 ligand (PD-L1) may contribute to
the immunosuppressive environment. Lastly, these anti-inflammatory mediators can be
increased in patients with cirrhosis [27–29], further contributing to the immunosuppressive
tumor microenvironment of the liver. Taken together, the reduced mutational burden of
primary HCC and the immunosuppressive tumor microenvironment have created a hostile
landscape for the development and testing of novel immunotherapies for the treatment
of HCC.

2.3. Immune Checkpoint Inhibitors

The first immune checkpoint inhibitor (ICI) clinical trials for HCC began in 2008 [30].
These early ICIs targeted cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4). It was
discovered that CTLA-4 altered intracellular T cell signaling and blocked CD28 binding to
CD80 and CD86, which is needed for optimal T cell activation [31–33]. As a result, CTLA-4
decreases helper T cell activity and increases regulatory T cell activity [34], which further
inhibits the adaptive immune response to cancer. Blocking CTLA-4 with antibodies in
mouse models allowed for improved antitumor activity [35,36]. Clinical trials conducted in
2009 demonstrated that blocking CTLA-4 with monoclonal antibodies improved survival in
the treatment of patients with malignant melanoma [37]. Eventually, the effects of CTLA-4
were studied in other cancers, including HCC. A phase II clinical trial of tremelimumab, an
anti-CTLA-4 monoclonal antibody, in patients with hepatitis C-induced, advanced HCC
achieved a partial response or stable disease in 76.4% of patients and had the added benefit
of reducing hepatitis C viral load [30]. Despite these findings, the survival of patients
treated with tremilimumab was only 43% at one year. While these early efforts confirmed
that immunotherapy could be used to treat patients with HCC, subsequent clinical trials
with more novel checkpoint inhibitors would help to solidify the role of immunotherapy
as a treatment for HCC. Soon after the discovery of CTLA-4, another immune checkpoint
inhibitor was discovered. The binding of the T cell surface receptor, programmed death
receptor-1 (PD-1), to its ligand located on tumor cells, called programmed death ligand 1
(PD-L1), was found to inhibit T cell-mediated cytotoxicity when bound to tumor cells [34].
Early studies suggested that blockade of this interaction would improve T cell-induced
immunity against cancer by disinhibiting the T cells and facilitating improved cytotox-
icity [38–40]. Figure 1 illustrates the mechanism of anti-PD-1 therapy. Clinical trials in
patients with melanoma, colorectal cancer, prostate cancer, non-small-cell lung cancer, and
renal cell carcinoma established the benefit of the PD-1/PD-L1 blockade in humans and
have revolutionized the treatment of patients with these cancers [41].
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firmed in two additional phase III clinical trials. In the study by Finn et al., second-line 
therapy with pembrolizumab following treatment with sorafenib resulted in reduced pro-
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with a minimum follow-up of 22.8 months, overall survival was not significantly different 
between the two cohorts [46]. In contrast, longer-term studies with a minimum follow-up 
of 33.6 months resulted in improved safety and survival among patients treated with 
nivolumab compared with sorafenib when used in the setting of advanced HCC [47]. Fig-
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sequently achieved a complete response after one year on nivolumab. In another phase III 
clinical trial, Finn et al. studied the effects of Atezolizumab, an anti-PD-L1 monoclonal 

Figure 1. Mechanism of PD-1 and PD-L1 immune checkpoint inhibitors. (Left) The binding of PD-1
on the T cell to PD-L1 on the tumor cell inhibits effector T cell function, despite binding of the T cell
receptor to an antigen. (Right) Blockade of PD-1 or PD-L1 with monoclonal antibodies prevents PD-1
binding with PD-L1 and promotes effector T cell function, leading to apoptosis of the tumor cell.
Used with permission from Terrese Winslow LLC.

Studies of the immune landscape within the TME of HCC have found that exhausted
CD8+ T cells (those that overexpress PD-1) were both preferentially enriched and poten-
tially clonally expanded. As such, the PD-1/PDL-1 axis represents an important pathway
to target in order to induce an immune response in patients with HCC [42]. In 2016 and
2017, anti-PD1/PD-L1 monoclonal antibodies were studied in advanced, unresectable HCC.
In two phase II trials, nivolumab and pembrolizumab prolonged survival and resulted
in a 15–20% objective response rate (ORR), of which there was one (1%) complete and 17
(16%) partial responses in the KEYNOTE-224 [43,44]. These findings were confirmed in
two additional phase III clinical trials. In the study by Finn et al., second-line therapy with
pembrolizumab following treatment with sorafenib resulted in reduced progression in
advanced HCC over two years versus placebo. The study also demonstrated prolonged sur-
vival; however, despite the results being significantly different from placebo, the prolonged
survival failed to meet the statistical threshold set by the investigators [3,45]. Likewise, a
phase III trial comparing nivolumab to sorafenib in patients with advanced HCC resulted in
an improvement in both 1-year and 2-year survival. However, with a minimum follow-up
of 22.8 months, overall survival was not significantly different between the two cohorts [46].
In contrast, longer-term studies with a minimum follow-up of 33.6 months resulted in
improved safety and survival among patients treated with nivolumab compared with
sorafenib when used in the setting of advanced HCC [47]. Figure 2 demonstrates a patient
with advanced HCC that progressed on sorafenib and subsequently achieved a complete
response after one year on nivolumab. In another phase III clinical trial, Finn et al. studied
the effects of Atezolizumab, an anti-PD-L1 monoclonal antibody, in combination with
Bevacizumab, a vascular endothelial growth factor (VEGF) inhibitor, in advanced HCC.
The combination of Atezolizumab with Bevacizumab led to an overall survival of 67.2%
at 12 months and a median progression-free survival of 6.8 months. This was superior to
sorafenib, which had a 12-month overall survival and median progression-free survival
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of 54.6% and 4.3 months, respectively. This trial demonstrates that combination therapy
with Atezolizumab with Bevacizumab may be superior to monotherapy with sorafenib in
patients with advanced HCC [48].
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Figure 2. Complete response to PD-1 immune checkpoint inhibitors. A 48-year-old man with HBV cirrhosis developed a
liver mass that was biopsied and found to be HCC. He underwent a laparoscopic partial right hepatectomy. Pathology
revealed a poorly differentiated HCC, 3.3 cm in size, and margins were negative. On surveillance, he was found to have
developed a rising AFP and to have bilateral lung nodules (Figure), but there was no evidence of recurrent or metastatic
disease in the abdomen or pelvis. Biopsy of one of the pulmonary nodules confirmed metastatic disease and he was started
on sorafenib. However, his disease progressed. He had no FGFR alteration, so he was started on nivolumab. After only
5 months of therapy, an objective response was seen on CT scan (middle). He completed a full year of therapy, and he
remains without evidence of disease one year after completion of therapy.

While these studies demonstrated a moderate improvement in outcomes with the use
of specific ICIs as monotherapy compared with sorafenib, the benefits are more obvious
when different ICIs are combined. Combination therapies allow targeting of multiple,
upregulated immune checkpoint pathways, which may improve patient outcomes versus
monotherapy with ICIs. However, these findings must be balanced with the potential for
increased toxicity and immune-related adverse events. The value of targeting multiple
ICIs has been demonstrated in patients with melanoma, and this strategy is under active
investigation in patients with HCC [49]. One ongoing study (NCT02519348) is treating
patients with HCC with durvalumab (anti-CTLA-4) and tremelimumab (anti-PD-1 agent).
Early results from this phase I/II trial indicated that a single, increased dose of tremeli-
mumab combined with a standard regimen of durvulumab led to an objective response
rate (ORR) of 22.7% and a median overall survival of 18.7 months, with an acceptable
side effect profile [50]. The combination of tremiliumumab and durvulumab is now being
studied in an ongoing phase III clinical trial (NCT03298451) as a first-line treatment for
advanced HCC in patients who are ineligible for locoregional therapy. Another study
(NCT01658878) reported the safety and efficacy of nivolumab in combination with ipili-
mumab in patients with advanced HCC. The study included three arms with combination
therapy, each with a varying dose and schedule of nivolumab and ipilimumab. The lack
of comparison to monotherapy arms makes the synergistic benefits unclear; however, the
investigators concluded that patients on both medications developed a 31% ORR, which
included a complete response rate of 6%, partial response rate of 24%, and a tolerable safety
profile [46]. Another study from the same investigator (NCT01658878) demonstrated that
adding ipilimumab to a regimen of nivolumab and cabozantinib (receptor tyrosine kinase
inhibitor) resulted in an improved ORR and median progression-free survival, but at the
cost of increased grade 3 and 4 adverse events [51]. In addition to these trials, numerous
ongoing clinical trials are being conducted to determine the therapeutic benefit of various
ICI combinations [52]. Other studies from the National Cancer Institute (NCT02465060) and
from the American Society of Clinical Oncology (NCT02693535) are using next-generation
sequencing of paraffin-embedded tumors after resection to improve patient selection for
available systemic therapies. Both studies are investigating a wide variety of cancer types,
including hepatobiliary cancers. Genotyping studies such as these will determine the
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utility of individualized treatment and may eventually inform the use of individualized
immunotherapies.

With evidence mounting to support the use of immunotherapy for advanced HCC
alone or in combination with other systemic therapies, other studies have been conducted
to investigate whether there is an advantage of combining ICIs with liver-directed ther-
apies. A phase I/II study by Duffy et al. combined tremelimumab (anti-CTLA-4) with
transarterial chemoembolization (TACE) or ablation and reported a median overall survival
of 12.8 months. Notably, patients who received TACE instead of ablation had improved
survival, with a 12-month survival rate of 80.8%. The investigators also noted an increase
in activated CD4+ and CD8+ T cells in the peripheral blood, though differences in TIL
between pre- and post-treatment samples were not significant. In addition, 12 out of
14 patients with concurrent hepatitis C infection had reduced viral loads. While impressive,
this early study lacked control arms of patients treated with transarterial therapy alone or
immunotherapy alone [53]. Additional clinical trials (NCT04517227, NCT03753659, and
NCT04102098) to evaluate the efficacy of PD-1 inhibitors combined with ablation or TACE
for HCC are currently accruing patients. In addition, several other clinical trials are evalu-
ating the value of adding ICIs to other systemic therapies and small-molecule inhibitors
such as vascular endothelial growth factor (VEGF) inhibitors and kinase inhibitors [52].
Such studies include NCT03713593, NCT03605706, and NCT03006926, among others, and
are anticipated to complete accrual in the next 2–5 years.

Other ICIs are in development but have yet to see widespread clinical use. Lymphocyte-
activation gene 3 (LAG-3) and T-cell immunoglobulin mucin-3 (TIM-3) are being studied as
potential targets for ICIs. LAG-3 binds to major histocompatibility complex (MHC) class II
and is found on CD8+ T cells [54]. LAG-3 expression is increased in HCC tumor-infiltrating
lymphocytes (TILs) and LAG-3 expression is correlated with impaired T cell effector func-
tion [55]. Mouse models have been used to validate the efficacy of LAG-3 blockade. In mice,
anti-PD-1 and anti-LAG-3 antibodies work synergistically to induce a complete response in
the majority of those bearing syngeneic melanoma or colorectal tumors. This is in contrast
to only a small minority of mice that develop complete remission when treated with either
agent alone [56]. Based on these preclinical results, phase I clinical trials are now open
and are evaluating the safety and efficacy of LAG-3-targeted ICIs in HCC. NCT04658147 is
evaluating Relatlimab, an anti-LAG-3 monoclonal antibody, among patients with HCC,
while NCT03849469 is assessing the utility of a bispecific antibody (an antibody capable of
binding two receptors at once) that targets both CTLA-4 and LAG-3. Table 1 contains a
full list of ongoing clinical trials using a combination of immune checkpoint inhibitors and
other novel immunotherapies for HCC.

TIM-3 is expressed on a variety of cells, including innate immune cells, CD4+ cells,
and CD8+ cells [57,58]. Similar to LAG-3, PD-1, and CTLA-4, TIM-3 has been demonstrated
to impair the adaptive immune response to cancer when bound to its cognate ligand [59].
TIM-3 is upregulated in the TILs of HCC patients, and increased TIM-3 expression is
associated with decreased survival and increased recurrence [60]. Meanwhile, blocking
TIM-3 binding to its ligand, galectin-9, reduces the population of regulatory T cells (T cells
that inhibit the immune response to cancer), improves TIL proliferation, and improves
effector cytokine production [58,61]. These studies highlight the importance of TIM-3 in the
immune response to HCC. There are several ongoing phase I and phase II clinical trials that
are evaluating the efficacy and safety of TIM-3 ICIs [59]. One study from the University of
Hawaii (NCT03680508) is specifically studying cobolimab, an anti-TIM-3 antibody, with
dostarlimab, an anti-PD-1 antibody, in 42 liver cancer patients. While promising, the
efficacy of TIM-3 ICIs in humans remains unknown.
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Table 1. Clinical trials currently evaluating immunotherapies in HCC. List of clinical trials involving combination immune
checkpoint inhibitors, adoptive cell transfer, and other innovative immunotherapies in HCC. Source: clinicaltrials.gov
(28 July 2021). HCC, hepatocellular carcinoma; TIL, tumor infiltrating lymphocyte; CAR-T cell, chimeric antigen
receptor T cell.

Trial Identifier Phase Status Immunotherapy Co-Treatments Participants

NCT04740307 II Recruiting
Combination immune
checkpoint inhibitors
(CTLA-4 with PD-1)

Lenvatinib 110

NCT02821754 II Recruiting
Combination immune
checkpoint inhibitors
(CTLA-4 with PD-1)

Transarterial catheter
chemoembolization,

radiofrequency ablation,
cryoablation

90

NCT04785287 I/II Recruiting
Combination immune
checkpoint inhibitors
(CTLA-4 with PD-1)

Stereotactic Body
Radiation Therapy 80

NCT04430452 II Not yet recruiting
Combination immune
checkpoint inhibitors
(CTLA-4 with PD-1)

Hypofractionated
Radiation Therapy 30

NCT03638141 II Recruiting
Combination immune
checkpoint inhibitors
(CTLA-4 with PD-1)

Drug-eluting bead
transarterial

chemoembolization
30

NCT03222076 II Active not
recruiting

Combination immune
checkpoint inhibitors
(CTLA-4 with PD-1)

N/A 30

NCT03652077 I Active, not
recruiting

Immune checkpoint
inhibitor (TIM-3) N/A 40

NCT03680508 II Recruiting
Combination immune
checkpoint inhibitors

(TIM-3 with PD-1)
N/A 42

NCT04658147 I Recruiting
Combination immune
checkpoint inhibitors
(LAG-3 with PD-1)

N/A 20

NCT03695250 I/II Active, not
recruiting

Immune checkpoint
inhibitor (PD-1) with

IDO1 inhibitor
N/A 8

NCT04728321 II Recruiting Bispecific antibody against
CTLA-4 and PD-1 lenvatinib 75

NCT04444167 I/II Recruiting Bispecific antibody against
CTLA-4 and PD-1 Lenvatinib 30

NCT04601610 I/II Not yet recruiting Bispecific antibody against
CTLA-4 and PD-L1

Ningetinib Tosylate
(tyrosine kinase

inhibitor)
70

NCT03849469 I Recruiting

Bispecific antibody against
CTLA-4 and LAG-3,

combination bispecific
antibody and immune
checkpoint inhibitor

(PD-1)

N/A 242

clinicaltrials.gov
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Table 1. Cont.

Trial Identifier Phase Status Immunotherapy Co-Treatments Participants

NCT04740307 II Recruiting
Combination immune
checkpoint inhibitors
(CTLA-4 with PD-1)

Lenvatinib 110

NCT02821754 II Recruiting
Combination immune
checkpoint inhibitors
(CTLA-4 with PD-1)

Transarterial catheter
chemoembolization,

radiofrequency ablation,
cryoablation

90

NCT04785287 I/II Recruiting
Combination immune
checkpoint inhibitors
(CTLA-4 with PD-1)

Stereotactic Body
Radiation Therapy 80

NCT04430452 II Not yet recruiting
Combination immune
checkpoint inhibitors
(CTLA-4 with PD-1)

Hypofractionated
Radiation Therapy 30

NCT03638141 II Recruiting
Combination immune
checkpoint inhibitors
(CTLA-4 with PD-1)

Drug-eluting bead
transarterial

chemoembolization
30

NCT03222076 II Active not
recruiting

Combination immune
checkpoint inhibitors
(CTLA-4 with PD-1)

N/A 30

NCT03652077 I Active, not
recruiting

Immune checkpoint
inhibitor (TIM-3) N/A 40

NCT03680508 II Recruiting
Combination immune
checkpoint inhibitors

(TIM-3 with PD-1)
N/A 42

NCT04658147 I Recruiting
Combination immune
checkpoint inhibitors
(LAG-3 with PD-1)

N/A 20

NCT03695250 I/II Active, not
recruiting

Immune checkpoint
inhibitor (PD-1) with

IDO1 inhibitor
N/A 8

NCT04728321 II Recruiting Bispecific antibody against
CTLA-4 and PD-1 lenvatinib 75

NCT04444167 I/II Recruiting Bispecific antibody against
CTLA-4 and PD-1 Lenvatinib 30

NCT04601610 I/II Not yet recruiting Bispecific antibody against
CTLA-4 and PD-L1

Ningetinib Tosylate
(tyrosine kinase

inhibitor)
70

NCT03849469 I Recruiting

Bispecific antibody against
CTLA-4 and LAG-3,

combination bispecific
antibody and immune
checkpoint inhibitor

(PD-1)

N/A 242

NCT03980288 I Recruiting GPC3 CAR-T cell Fludarabine,
cyclophosphamide 36

NCT04121273 I Recruiting GPC3 CAR-T cell N/A 20

NCT03884751 I Recruiting GPC3 CAR-T cells N/A 15
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Table 1. Cont.

Trial Identifier Phase Status Immunotherapy Co-Treatments Participants

NCT02905188 I Recruiting GPC3 CAR-T cells Cytoxan, Fludarabine 14

NCT04951141 I Recruiting GPC3 CAR-T cells N/A 10

NCT03302403 N/A Active, not
recruiting GPC3 CAR-T cell Fludarabine,

Cyclophosphamide 18

NCT04506983 1 Not yet recruiting GPC3-CAR-T cells N/A 12

NCT03198546 I Recruiting GPC3 and/or TGFβ
targeting CAR-T cells N/A 30

NCT03638206 I/II Recruiting DR5 CAR-T cells N/A 73

NCT03941626 I/II Recruiting DR5 CAR-T/TCR-T cells N/A 50

NCT03993743 I Recruiting CD147 CAR-T cells N/A 34

NCT04550663 I Not yet recruiting NKG2dLs CAR-T cells N/A 10

NCT03441100 1 Recruiting MAGEA1 TCR
engineered T cells

Cyclophosphamide,
fludarabine,

Interleukin-2
15

NCT04502082 I/II Recruiting

Alpha fetoprotein
peptide/HLA-A2

complex TCR
engineered T cells

N/A 50

NCT04634357 I/II Not yet recruiting

Alpha fetoprotein
peptide/HLA-A2

complex TCR
engineered T cells

N/A 25

NCT04518774 I Recruiting expanded allogeneic
gamma-delta T cells N/A 8

NCT03836352 II Recruiting

Induction of
survivin-specific

cytotoxic T lymphocytes
with immune

checkpoint inhibitors
(PD-1)

Cyclophosphamide 184

NCT04417764 I Recruiting PD-1 knockout
engineered T cells

Transarterial catheter
chemoembolization 10

NCT04317248 II Recruiting Autologous dendritic
cell vaccine Cyclophosphamide 600

NCT04912765 II Recruiting

Neoantigen Dendritic
Cell Vaccine with

immune checkpoint
inhibitor (PD-1)

N/A 60

NCT04147078 I Recruiting Autologous dendritic
cells vaccine N/A 80

NCT03228667 II Active, not
recruiting

PD-L1 targeting
high-affinity natural
killer with immune

checkpoint inhibitors
(PD-1 or PD-L1)

N-803 (interleukin-15
superagonist) 145

NCT03311334 I/II Recruiting

Peptide vaccine against
WT1 with immune

checkpoint inhibitors
(PD-1)

N/A 104
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Table 1. Cont.

Trial Identifier Phase Status Immunotherapy Co-Treatments Participants

NCT04246671 I/II Recruiting Peptide vaccine against
HER-2/neu N/A 45

NCT02432963 I Active, not
recruiting

Peptide vaccine against
P53 with immune

checkpoint inhibitors
(PD-1)

N/A 19

NCT04251117 I/II Recruiting

Personalized neoantigen
DNA vaccine with

immune checkpoint
inhibitor (PD-1)

Plasmid-encoded
interleukin 12 24

NCT04248569 I Recruiting

Peptide vaccine against
DNAJB1-PRKACA
fusion kinase with

combination immune
checkpoint inhibitors
(CTLA-4 with PD-1)

N/A 12

NCT03071094 I/II Active, not
recruiting

Oncolytic vaccine with
immune checkpoint

inhibitor (PD-1)
N/A 30

NCT04665362 I Not yet recruiting
Oncolytic vaccine with

immune checkpoint
inhibitor (PD-1)

Apatinib 10

NCT04665362 I Not yet recruiting
Oncolytic virus with
immune checkpoint

inhibitor (PD-1)
Apatinib 10

The efficacy of immune checkpoint inhibitors may be improved with the targeting of
Indoleamine 2,3-dioxigenase 1 (IDO1). IDO1 is involved in the conversion of L-tryptophan
into L-kynuernine and promotes immunosuppression by depleting L-tryptophan in effec-
tor cells and producing L-kynuernine derivatives that ultimately create signals leading to
increased regulatory T cell differentiation [62,63]. In mouse models of HCC, IDO1 block-
ade along with anti-CTLA-4 treatment proved a more effective means to reduce tumor
growth than anti-CTLA-4 monotherapy, paving the way for IDO1 inhibitors to be tested in
combination therapies [64]. Currently, one clinical trial (NCT03695250) is investigating the
safety and efficacy of an IDO1 inhibitor, BMS-986205, paired with nivolumab in patients
with stage III and stage IV HCC.

2.4. Future Directions and Novel Approaches

Other forms of immunotherapy beyond ICIs are currently in development and may
be tested in patients with HCC. One such example is the adoptive cell transfer (ACT) of
immune cells. ACT involves the collection of immune cells from a cancer patient, ex vivo
enrichment and expansion or genetic modification, followed by the administration of the
expanded T cells back into the patient [65]. The ACT of tumor-infiltrating lymphocytes
(TIL) has proven to be an effective treatment in advanced melanoma, some types of cervical
cancer, and small cell lung cancer, but its interest in HCC is still being investigated [65–67].
In an early randomized trial using autologous tumor-reactive peripheral blood mononu-
clear cells (PBMC) harvested prior to surgical resection, transfer of PBMCs led to an 18%
decrease in recurrence compared with corrected control patients that only underwent
surgery. However, with a median follow-up of 4.4 years, overall survival was no different
between the two cohorts [68].

Several studies have investigated the use of another type of cellular therapy in patients
with HCC called cytokine-induced killer (CIK). CIK cells are expanded ex vivo from
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peripheral blood mononuclear cells and function to improve the immune response to
cancer through non-MHC-restricted antitumor activity. In a meta-analysis of 13 clinical
trials, CIK cell infusion was noted to improve 1- and 2-year survival in patients with
HCC [69]. In this study, Pan et al. identified independent predictors of overall survival
in CIK immunotherapy, including tumor size, tumor capsule, pathological grades, total
bilirubin, albumin, prothrombin time, alpha-fetoprotein, and tumor number [70,71]. While
the results of CIK treatments for HCC have been promising, and large-scale, phase III
studies have been performed, the treatment has yet to be widely implemented.

More recently, CAR-T immunotherapy, which genetically modifies T cells using
lentiviruses or retroviruses, has emerged as a promising therapy. These T cells begin
to express CAR, which can bind antigens without MHC antigen presentation. Once CAR-T
cells are identified, they are expanded ex vivo and these cells are adoptively transferred into
the patient [72,73]. Due to the harsh tumor immune microenvironment, the use of the adop-
tive transfer of ex-vivo-expanded tumor reactive T cells has gained traction. By enriching
for a specific population of T cells that have a known affinity for a patient’s cancer-specific
antigens and injecting these cells at large numbers into the patient, researchers have tried
to overcome the harsh immune-inhibitory tumor microenvironment and induce tumor
regression. In xenograft models of HCC, CAR-T cells have been used successfully to inhibit
tumor growth and, in some instances, eradicate tumors. However, concerns exist about
the safety of CAR-T immunotherapy due to the potential for off-target toxicity, as well as
their ability to effectively function in the immunosuppressive environment of the human
liver [74–76]. The future of adoptive cell transfer for HCC will likely require more studies.
Fortunately, numerous ongoing clinical trials are investigating the utility of ACT for HCC
with a particular emphasis on CAR-T immunotherapy.

Inducing an immune response to cancer through the administration of tumor surface
antigens that are shared between tumors and patients is another approach currently being
investigated. Tumor peptides can be packaged or delivered in various ways to optimize
the immune response. Cancer vaccines are based on the delivery of full-length tumor
antigens or corresponding epitope peptides. These antigenic sequences can be delivered
either as naked peptides/proteins, naked DNA/RNA, or vectored via recombinant viruses
(oncolytic or not) or even bacteria, or via loaded cells such as dendritic cells. One phase
I clinical trial in HCC patients comparing dendritic cell infusion, dendritic cell infusion
with sorafenib, and sorafenib alone noted that dendritic cell infusion led to increased
tumor-specific CD8+ populations in peripheral blood, without evidence of autoimmune
reactions, and with a disease control rate of 35%. Overall survival was difficult to assess as
median overall survival was much lower than that in historical controls [77].

Traditional peptide vaccines have also been studied. A glypican-3-derived peptide
vaccine was well tolerated in a phase I trial. Out of 33 patients treated, only one partial
response was observed; nineteen patients had stable disease and the remaining had pro-
gressive disease. The median overall survival in this study was 9 months [78]. Another
peptide vaccine, this time with a telomerase peptide, did not exhibit antitumor efficacy in a
phase II clinical trial of HCC patients [79]. Numerous other peptide vaccine candidates
are being studied in HCC, including alpha-fetoprotein, NY-ESO, SSX-2, and melanoma
antigen-encoding gene A [80]. Peptides can also be packaged into viruses that are designed
to infect rapidly dividing cancer cells. After tumor cell infection, viral RNAs are expressed
and encode for antigenic peptide or protein sequences, thus aiding in stimulating an im-
mune response to cancer. This exciting approach has been tested clinically in patients
with HCC. Pexastimogene devacirepvec (Pexa-Vec), an oncolytic vaccine that preferentially
infects HCC cancer cells, increased overall survival, particularly when administered at
high doses (109 PFU), in a phase II clinical trial [81]. A phase III clinical trial, NCT02562755,
evaluating the efficacy of Pexa-Vec, was completed in December 2020 and is awaiting
published results. The results of these promising studies may determine the direction of
novel immunotherapies in HCC.
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While progress is being made and immunotherapy is proving itself to be an important
approach in the armamentarium of the treating oncologist, significant challenges remain.
Unlike other tumors, such as pancreatic cancer, colon cancer, or malignant melanoma,
there is no reliable biomarker available to predict tumor response to immunotherapy in
patients with HCC [82,83]. In addition, the fact that neither tumor mutational burden
nor the expression of PDL-1 is predictive of the tumor response to ICIs in patients with
HCC makes patient selection for immunotherapy difficult (Oncotarget 2019, 10, 4018–4025;
Genome Med. 2019, 11, 28). Despite these challenges, novel clinical trials and continued
efforts will ultimately decide the continued role of immunotherapy in patients with HCC.

3. Biliary Tract Cancer
3.1. Current Therapeutic Approach

Cholangiocarcinoma (CCA) and gallbladder carcinoma (GBC) are both malignancies
that can arise from the biliary tract. CCA is a neoplasm of the bile duct, generally originat-
ing from cholangiocytes, which can be located in the intrahepatic (arising proximal to the
formation of the common hepatic duct), perihilar (proximal to common bile duct), or distal
(distal to common bile duct) biliary tree [84]. Risk factors, clinical presentation, and prog-
nosis vary depending on CCA location [84]. The incidence of CCA has been increasing and
varies based on geography [84,85]. The frequency of GBC also varies by geographic region
and most new cases are identified incidentally during routine cholecystectomy [86–88].
Cancers of the gallbladder are relatively rare, yet advanced stages of gladder cancer can
be associated with a high case fatality [9]. In fact, patients with advanced GBC can have
5-year survival in the range of 5%; however, earlier stages of disease can have a much
better prognosis, with 5-year survival in the range of 75–85% [86,87,89].

Biliary tract cancers are generally characterized by an aggressive tumor biology and
most patients present at advanced stages that preclude surgical resection. Transplantation
may be an option for select patients with unresectable hilar CCA [84,90–94]. For patients
with GBC, resection typically involves removal of the gallbladder segment 4b/5 with a
concomitant lymphadenectomy, as well as bile duct resection depending on the margin
status of the cystic duct [89]. Despite curative-intent surgery, recurrence can occur within
the first two years of resection and 5-year disease-free survival can be as low as 20%
depending on disease stage [84,95–101]. Similarly, the median overall survival of patients
with distal, perihilar, and intrahepatic CCA after surgical resection has been relatively poor,
at 21.9 months, 35–40 months, and 18–39 months, respectively [102–105].

For patients with locally advanced or metastatic disease, the administration of sys-
temic, cytotoxic chemotherapy remains the mainstay of therapy. First-line treatment gener-
ally consists of gemcitabine with cisplatin, which has been demonstrated to be superior
to gemcitabine monotherapy [106]. Second-line therapies consist of various combinations
of chemotherapy and/or small-molecule inhibitors including VEGF inhibitors, IDH1 in-
hibitors, or FGFR2 inhibitors [107]. Despite the numerous combinations and targeted
agents available, the most efficacious second-line therapy for biliary tract cancer has been
difficult to determine. Triple combination therapy with folinic acid, 5-FU, and oxaliplatin
may be a more promising regimen, but, overall, outcomes remain dismal. As such, there is
a significant clinical need to develop novel approaches to treat biliary tract cancer. Given
recent successes using immunotherapy for patients with solid tumors that have histori-
cally been considered “immune-cold”, there has been increasing interest in the medical
community to test immunotherapy in patients with biliary tract cancers [4,84].

3.2. The Challenging Tumor Microenvironment of Biliary Tract Cancers

Biliary tract tumors are characterized by genomic heterogeneity. In addition to arising
in varied locations throughout the biliary tract and gallbladder, each tumor has a unique
tumor microenvironment with significant variation at both the genomic and epigenetic
levels within cancer cells [108]. GBC often arises from chronic inflammation of the gall-
bladder, including gallstones, porcelain gallbladder, chronic cholecystitis, and primary
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sclerosing cholangitis [86,87,109–111]. Meanwhile, the main etiology of CCA in western
countries is primary sclerosing cholangitis (PSC). CCA often arises sporadically, though
several conditions, including parasitic infections, biliary tract disorders such as PSC, and
exposure to toxins, have been identified as risk factors for CCA [112]. In turn, the tumor
microenvironment in CCA can be characterized by chronic inflammation and excessive
cytokine secretion. Of note, IL-6 may induce proliferation in neoplastic cholangiocytes and
epigenetic changes induce a constitutive state of IL-6/STAT-3 signaling [113,114]. Tumor-
associated-macrophages infiltrate a majority of CCA tumors in high densities. These
macrophages are associated with poorer survival and may have a role in supporting metas-
tasis and degrading the extracellular matrix [115]. In addition, studies in other cancers have
demonstrated that tumor-associated-macrophages may aid in the immune escape of cancer
cells and immunosuppression by IL-10 secretion [116]. Similarly, the microenvironment
in GBC is characterized by sustained inflammatory signaling molecules, which creates a
hostile environment for the host adaptive immune response to cancer [117].

Several biomarkers are being studied as predictors of response to therapy and to define
a cohort of patients more likely to benefit from immunotherapy. Immunohistochemistry
staining of CCA tumors has demonstrated that 7.3% of intrahepatic CCA and 5.2% of
perihilar or distal CCA are PD-L1 positive, indicating that PD-L1 is relatively poorly
expressed in CCA compared with other cancers such as melanoma or colon cancer. The
minority of tumors that are PD-L1 positive also express higher rates of other biomarkers
including BRAF, BRCA2, RNF43, TP53, and TOP2A mutations, with increased tumor
mutational burden and increased microsatellite instability, which could lead to more
therapeutic options for patients with PD-L1-positive tumors [118]. In addition, regulatory
T cells in CCA tend to express high levels of CTLA-4 and FoxP3, contributing to immune
escape [119,120]. In GBC, cancer cells with ectopic expression of ERBB2/ERBB3 mutants
had increased PD-L1 expression, indicating the potential advantages of PD-L1 blockade in
these patients [121]. Taken together, these biomarkers may be used to better select patients
for immunotherapy.

3.3. Immune Checkpoint Inhibitors

As with HCC, PD-1 and CTLA-4 ICIs are currently the most studied forms of im-
munotherapy in patients with biliary tract cancers. Unfortunately, anti-PD-1 ICIs have not
yet demonstrated robust utility for CCA and GBC. In a phase II study (NCT02628067) and
in a phase Ib study (NCT02054806) of pembrolizumab in advanced biliary tract cancer,
durable antitumor activity was only noted among 6–13% of patients [122]. Similarly, a
phase II trial (NCT02829918) of nivolumab for advanced, refractory biliary tract cancer
noted that nivolumab led to a modest ORR of 11%, including one partial response, and
a disease control rate of 50%. Interestingly, all responders to nivolumab in this trial had
mismatch repair protein-proficient tumors [123]. These data contrast with other studies
in which mismatch repair status was a predictor of response to pembrolizumab [124,125].
The disparate results may be due to the rarity of mismatch repair-impaired or microsatel-
lite instability-high CCA [125,126]. In a phase II clinical trial (NCT02628067) of several
non-colorectal cancers, including 22 CCA patients, the ORR of pembrolizumab for tumors
with impaired DNA mismatch repair and with high microsatellite instability was 34.3%.
This study was, however, difficult to apply specifically to biliary tract cancers since it also
included multiple other forms of cancer, yet it did not include GBC. The findings could,
however, indicate that DNA mismatch repair and microsatellite instability biomarkers still
predict the response to PD-1 blockade despite their rarity [127]. These studies demonstrates
that, while PD-1 blockade may be beneficial in the treatment of biliary tract cancers, this
benefit may not be universal and may be predicted using biomarkers to individualize
therapy. Given the rarity of traditional biomarkers used to predict the success of anti-PD-1
therapy, novel biomarkers or ex vivo models to predict patient responses to ICIs are an area
of active research. In addition, other clinical trials are ongoing to characterize anti-PD-1 ICI
for biliary tract cancers, including several phase III trials (NCT04003636 and NCT04924062).
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Compared with PD-1, the benefit of CTLA-4 blockade for biliary tract cancers is poorly
understood. Interestingly, immunohistochemistry of paraffin-embedded tumor blocks
from perihilar and distal CCA patients who underwent surgery demonstrated that high
levels of CTLA-4 on TILs were associated with prolonged overall survival, suggesting that
CTLA-4 may have prognostic value [128]. In general, TILs in CCA overexpress CTLA-4
and ex vivo blockade of CTLA-4 in CCA-derived TILs can lead to increased effector T cell
function and proliferation [129]. The majority of clinical trials with CTLA-4 ICIs focus on
combination therapy. Preliminary results from a recent phase I clinical trial (NCT01938612)
noted that durvalumab with tremelimumab for biliary tract cancer led to a median overall
survival of 10.1 months versus 8.1 months with durvalumab monotherapy [130]. Another
phase II trial (NCT03046862) studied the same drug combination yet in combination with
gemcitabine and cisplatin for advanced biliary tract cancer. The ORR, disease control rate,
and the median overall survival in the durvalumab plus chemotherapy group versus the
durvalumab plus tremelimumab group were 73.4% vs. 73.3%, 100% versus 97.8%, and 18.1
months vs 20.7 months, respectively [131]. The similarities in outcomes between these two
arms suggests that the addition of multiple ICIs to chemotherapy was not more effective
than a single ICI with chemotherapy.

Ongoing trials with CTLA-4 ICIs continue to focus on combination therapies. A phase
II clinical trial, NCT02834013, is investigating nivolumab and ipilimumab in rare tumors
including CCA and GBC. Similarly, another phase II study (NCT04634058) is investigating
combination ICIs, but with anti-PD-L1 antibodies instead of anti-PD-1 in combination with
CTLA-4 antibodies, for patients with advanced intrahepatic cholangiocarcinoma following
progression despite receiving standard chemotherapy. Other studies are investigating
combination ICIs alongside novel chemotherapies (NCT03058289) or with loco-regional
therapies (NCT02821754). In addition, NCT03849469, which was previously discussed
relative to HCC, is also investigating a bispecific antibody for CTLA-4 and LAG-3 for
intrahepatic cholangiocarcinoma. A list of ongoing clinical trials with combination im-
mune checkpoint inhibitors and novel immunotherapies in CCA or GBC can be found
in Tables 2 and 3.

Few studies have investigated other ICI targets besides PD-1 and, to a lesser degree,
CTLA-4. It has been observed that 45% of biliary tract tumors express high levels of
immune checkpoint inhibitors such as IDO-1, LAG-3, HAVCR2, TNFRSF9, BTLA, CD274,
PDCD1, and TNFRSF4. In addition, increased activity of immune checkpoint molecules has
been associated with worse prognosis [132]. There are few ongoing clinical trials studying
these targets of ICIs. One phase Ib clinical trial (NCT04641871) is evaluating anti-PD-1
therapies in combination with either anti-LAG-3 or anti-TIM-3 in a variety of metastatic
cancers, including BTC. More studies are needed to determine whether immune checkpoint
targets may improve CCA treatments.

Table 2. Clinical trials currently evaluating immunotherapies in CCA. List of clinical trials involving combination immune
checkpoint inhibitors, adoptive cell transfer, and other innovative immunotherapies in CCA. Source: clinicaltrials.gov
(28 July 2021). CCA, cholangiocarcinoma; TIL, tumor-infiltrating lymphocyte; CAR-T cell, chimeric antigen receptor T cell;
CIK, cytokine-induced killer.

Trial Identifier Phase Status Immunotherapy Co-Treatments Participants

NCT02834013 II Recruiting
Combination immune
checkpoint inhibitors
(CTLA-4 with PD-1)

N/A 818

NCT03473574 II Active, not
recruiting

Combination immune
checkpoint inhibitors
(CTLA-4 with PD-1)

Gemcitabine, Cisplatin 128

clinicaltrials.gov
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Table 2. Cont.

Trial Identifier Phase Status Immunotherapy Co-Treatments Participants

NCT02821754 II Recruiting
Combination immune
checkpoint inhibitors
(CTLA-4 with PD-1)

Transarterial catheter
chemoembolization,

radiofrequency ablation,
cryoablation

90

NCT04634058 II Not yet recruiting
Combination immune
checkpoint inhibitors
(CTLA-4 with PD-1)

N/A 40

NCT03058289 I/II Recruiting
Combination immune
checkpoint inhibitors
(CTLA-4 with PD-1)

Novel chemotherapy
(INT230-6) 180

NCT03849469 I Recruiting

Bispecific antibody against
CTLA-4 and LAG-3,

combination bispecific
antibody and immune
checkpoint inhibitor

(PD-1)

N/A 242

NCT04641871 I Active, not
recruiting

Combination immune
checkpoint inhibitors
(PD-1 with LAG-3 or

TIM-3)

N/A 200

NCT04672434 I Recruiting
Combination immune
checkpoint inhibitors

(PD-1 with CD73)
N/A 100

NCT03872947 I Recruiting

Monoclonal antibody
against undisclosed

tumor-associated antigen
with immune checkpoint

inhibitors (PD-1 or
CTLA-4)

Imiquimod Cream,
Irinotecan, Leucovorin,

5-FU, Gemcitabine,
Cisplatin, Carboplatin,

Ramucirumab,
Paclitaxel

75

NCT03801083 II Recruiting TIL adoptive cell transfer N/A 59

NCT03633773 I/II Recruiting MUC-1 CAR-T cell N/A 9

NCT04951141 I Recruiting GPC3 CAR-T cells N/A 10

NCT01868490 I/II Recruiting CIK adoptive cell transfer N/A 13

NCT03942328 I Recruiting Autologous dendritic cells

External Beam Radiation
Therapy, Pneumococcal

13-valent Conjugate
Vaccine

26

NCT04853017 I/II Recruiting Peptide vaccine against
KRAS mutations N/A 159

3.4. Future Directions and Novel Approaches

Other immunotherapies are in development for CCA and GBC, including ACT and
tumor vaccines. Due to the harsh tumor immune microenvironment in patients with GBC,
the use of the adoptive transfer of ex-vivo-expanded tumor-reactive T cells has gained
traction. By enriching for a specific population of T cells that have a known affinity for a
patient’s cancer cells and injecting these cells at large numbers into the patient, researchers
have tried to overcome the harsh immune-inhibitory tumor microenvironment. Success
using ACT for CCA has been described in case studies, but it has not yet been confirmed in
larger trials [133,134]. The potential of ACT using fourth-generation CAR-T cells targeting
CD133 has been demonstrated in ex vivo tissue models [135]. CD133 is an attractive
target since it is expressed in over 50% of biliary cancers. Another phase I clinical trial
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(NCT01869166) studied CAR-T cells in EGFR-positive, advanced, unresectable biliary
cancers. The investigators concluded that CAR-T cell therapy was safe in this population
and, in the 17 evaluable patients from the study, one patient achieved a complete response
and 10 patients achieved stable disease [136]. Additionally, a phase I/II clinical trial
(NCT04426669) is studying ACT in gastrointestinal tumors, including GBC, using TIL after
knockdown of cytokine-induced SH2 protein by CRISPR gene editing. ACT with CIK cells
is another area of ongoing research. One phase I/II study in Thailand (NCT01868490) is
using ACT of CIK cells in CCA. There is also a phase III trial (NCT02482454) using ACT of
CIK cells in conjunction with radiofrequency ablation for CCA. Given the rarity of GBC,
the anticipated completion of accrual is estimated to occur in 2030, and this highlights
another challenge in the development of novel therapies for such a rare disease.

Table 3. Clinical trials currently evaluating immunotherapies in GBC. List of clinical trials involving combination immune
checkpoint inhibitors, adoptive cell transfer, and other innovative immunotherapies in GBC. Source: clinicaltrials.gov
(28 July 2021). GBC, gallbladder carcinoma; TIL, tumor-infiltrating lymphocyte; CRISPR, clustered regularly interspaced
short palindromic repeats.

Trial Identifier Phase Status Immunotherapy Co-Treatments Participants

NCT02834013 II Recruiting
Combination immune
checkpoint inhibitors
(CTLA-4 with PD-1)

N/A 818

NCT03473574 II Active, not
recruiting

Combination immune
checkpoint inhibitors
(CTLA-4 with PD-1)

Gemcitabine, Cisplatin 128

NCT02821754 II Recruiting
Combination immune
checkpoint inhibitors
(CTLA-4 with PD-1)

Transarterial catheter
chemoembolization,

radiofrequency
ablation, cryoablation

90

NCT04641871 I Active, not
recruiting

Combination immune
checkpoint inhibitors
(PD-1 with LAG-3 or

TIM-3)

N/A 200

NCT04672434 I Recruiting
Combination immune
checkpoint inhibitors

(PD-1 with CD73)
N/A 100

NCT03801083 II Recruiting TIL adoptive cell transfer N/A 59

NCT04426669 I/II Recruiting CRISPR gene editing in
TIL adoptive cell transfer

Aldesleukin,
Cyclophosphamide,

Fludarabine
20

NCT04853017 I/II Recruiting Peptide vaccine against
KRAS mutations N/A 159

Early studies have been performed using a variety of tumor vaccines for biliary tract
cancers. Tumor vaccines are an attractive approach to biliary tract cancers due to the rapidly
dividing nature of BTCs and the unique, macrophage-rich tumor microenvironment that
the liver provides. Peptide vaccines have been designed to induce an immune response to
the cell surface molecules Wilms Tumor 1 (WT1) and Mucin 1 (MUC1). In one study using
a WT1 peptide vaccine and gemcitabine combination therapy for pancreatic and biliary
tract cancers, including eight patients with advanced CCA and eight with advanced GBC,
the disease control rate in biliary tract cancer was 50% and median overall survival was
278 days [137]. A phase I study of the MUC1 vaccine in advanced pancreatic and biliary
tract cancers, which included three patients with biliary tract cancer, concluded that the
vaccine was safe. However, two of the three patients with biliary tract cancer continued to

clinicaltrials.gov
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have progressive disease and the other was not evaluated, making it difficult to determine
the benefit of this treatment [138].

Improved response rates have been observed using vaccines in patients with biliary
tract cancers when multiple, different peptides were combined in the vaccine treatment.
In a phase I clinical trial Aruga et al. demonstrated that peptide vaccines for cell divi-
sion cycle-associated 1 (CDCA1), cadherin 3 (CDH3), and kinesin family member 20A
achieved stable disease in five out of nine patients and a median overall survival of
9.7 months [139]. In a separate study, Aruga et al. tested a different vaccine with four
peptides (lymphocyte antigen 6 complex locus K, TTK protein kinase, insulin-like growth
factor-II mRNA-binding protein 3, and DEP domain containing 1) and observed a median
overall survival of 380 days [140]. A phase I/II clinical trial (UMIN000005820) studied the
utility of dendritic cell vaccines in combination with ACT of CD3 activated peripheral blood
T cells in patients undergoing surgical resection for intrahepatic CCA. This combination of
immunotherapy improved median overall survival from 17.4 months in the surgery only
group to 31.9 months in the surgery plus immunotherapy group [141]. Several ongoing
studies are using peptide vaccines (NCT04853017) or autologous dendritic cell vaccines
(NCT03942328). While several proof of concept studies have been performed, a significant
improvement in objective response rate and survival will need to be achieved to support
the use of tumor vaccines in biliary tract cancers.

While oncolytic viruses have not been used clinically, there is increasing preclinical
evidence to support the efficacy of this approach in patients with GBC or CCA. For example,
the adenovirus AxdAdB-3 reduced the growth of subcutaneous GBC tumors in nude mice
compared to placebo, and the addition of 5-Fluorouracil to the viral treatment resulted in
complete tumor regression in almost 50% of mice treated [142]. Other oncolytic viruses,
including a replication-competent herpes simplex virus, as well as a myxoma virus, have
shown preclinical efficacy in both in vitro and in vivo preclinical models of GBC [143,144].
Similarly, oncolytic viruses have been used successfully in preclinical models of CCA. In a
study by Pugalenthi et al., the vaccinia virus, GLV-1h68, was able to infect, replicate, and
lyse three human CCA cell lines in vitro. In addition, when a single dose of GLV-1h68 was
given as an intratumoral injection to nude mice bearing CCA flank tumors, a 46% reduction
in tumor volume was observed compared to those injected with phosphate-buffered saline
(PBS) [145]. Given the promise of these approaches, significant efforts are being undertaken
to translate these results in human clinical trials.

4. Conclusions

The aggressive tumor biology, reduced tumor mutational burden, and immunosup-
pressive tumor microenvironment characteristic of hepatobiliary cancers have significantly
delayed the development and adoption of novel immunotherapies for the treatment of
patients with hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), and gallblad-
der cancer (GBC). However, the once barren therapeutic landscape has begun to change
in recent years, partly because of significant breakthroughs using immune checkpoint
inhibitors (ICIs). ICIs are now standard of care in patients with unresectable or metastatic
HCC, and new immune checkpoints are being investigated alone and in combination
with established other therapies. Similar to HCC, recent prospective clinical trials have
established immunotherapy as a valuable treatment option in select patients with CCA
and GBC, but overall objective response rates are much lower and overall survival remains
poor. Immunotherapy represents a potential avenue for developing new treatments, but
research on other immune checkpoint inhibitors and other forms of immunotherapy is
rare in patients with CCA and GBC. Additional research is needed to evaluate further the
utility of immunotherapy. While other approaches including cellular therapies, oncolytic
viruses, and tumor vaccines are on the horizon and may prove beneficial for patients with
hepatobiliary cancers, special consideration will be needed to avoid autoimmunity and
toxicity in this often frail patient population.
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