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Abstract: Noroviruses are highly diverse viruses that are the major viral cause of acute gastroenteritis
in humans. Although these viruses can infect multiple mammalian species, their potential for
zoonosis is not well understood, especially within Genogroup IV (GIV), which contains viruses that
infect humans, canines, and felines. The study of GIV viruses has been, in part, hindered by the
limited number of complete genomes. Here, we developed a full-genome amplicon-based platform
that facilitated the sequencing of canine noroviruses circulating in the United States. Eight novel
nearly full-length canine norovirus genomes and two nearly complete VP1 sequences, including four
GIV.2, three GVI.1, and three GVI.2 viruses, were successfully obtained. Only animal strains exhibited
GVI/GIV chimeric viruses, demonstrating restrictions in norovirus recombination. Using genomic,
phylogenetic, and structural analyses, we show that differences within the major capsid protein
and the non-structural proteins of GIV and GVI noroviruses could potentially limit cross-species
transmission between humans, canines, and felines.
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1. Introduction

Noroviruses are a highly diverse group of viruses from the Caliciviridae family. They have
a positive-sense RNA genome of approximately 7.5 kilobases that is organized into at least three
open reading frames (ORFs). ORF1 encodes a polyprotein that is co-translationally cleaved into
the individual non-structural (NS) proteins involved in replication: NS1/2 (N-term), NS3 (NTPase),
NS4 (3A-like), NS5 (VPg), NS6 (Protease), and NS7 (Polymerase). ORF2 encodes the major capsid
protein, VP1, which forms the virus capsid. The norovirus VP1 protein is divided into two structural
domains: (i) the shell domain, the conserved region that makes up the inner core of the capsid; and
(ii) the protruding domain, a highly variable region containing protective epitopes and motifs that
interact with attachment factors, such as histo-blood group antigens (HBGAs), that could facilitate
viral infection [1–4]. ORF3 encodes the minor capsid protein, VP2, which is thought to play a role in
capsid stabilization and viral entry [5–7]. Both VP1 and VP2 are expressed from a subgenomic RNA
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that is synthesized during replication and includes the ORF2, ORF3, 3′-untranslated region (3′-UTR),
and the terminal poly-A tail [8].

Noroviruses are classified into at least seven genogroups based on the genetic diversity of VP1;
genogroups I, II, and IV (or GI, GII, and GIV) include viruses which infect humans. Noroviruses
have also been identified in cows and sheep (GIII), mice and rats (GV), pigs (GII), canines (GIV, GVI,
GVII), and felines (GIV, GVI), suggesting a strong segregation of genogroups based on taxonomic
orders. Among humans, they are the most common viral cause of acute gastroenteritis, with symptoms
including diarrhea, vomiting, fever, headache, and myalgia. Although most infections are mild with
symptoms lasting 12–48 h, noroviruses can produce severe disease in high-risk populations, such as
immunocompromised or malnourished individuals and the elderly. Thus, they have been implicated
in an estimated 200,000 deaths per year, mainly in developing countries [9].

In contrast to human noroviruses, the importance of noroviruses as pathogens of canines and
felines has not been extensively analyzed. Studies have shown that canine norovirus can be detected
in varying percentages (~2–40%) in dog fecal samples [10–12], and the virus was more likely to
be detected in dogs experiencing symptoms of gastroenteritis [12]. Likewise, feline norovirus was
suggested to be responsible for an outbreak of gastroenteritis in kittens from an animal shelter in the
United States [13]. Moreover, norovirus-specific antibodies have been detected in cats and dogs [14–16].
Thus, while animal noroviruses from GIV and GVI are widespread, they seem to have a moderate
impact on disease in canines and felines. Although GVI viruses have only been detected in animals,
the similarity of human, canine, and feline noroviruses within GIV raises concerns over the potential
for zoonosis. Several studies have suggested that dogs may play a role in the transmission of human
noroviruses and that humans present antibodies against canine norovirus [17–20]. However, no study
has been able to present concrete evidence that human norovirus causes disease and/or replicates
within animals or vice versa.

Despite being discovered over 20 years ago and that similar viruses have been identified in
humans and companion animals, there are a limited number of complete genome sequences available
for GIV and GVI noroviruses. The goal for this study was to increase the number of complete
genome sequences from canine noroviruses to gain insights into their diversity and potential for
inter-species transmission. We report newly designed primers that were used to amplify and facilitate
the sequencing of viral genomes from GIV and GVI noroviruses detected in samples from domestic
dogs in the United States. Sequence, phylogenetic, and structural-modeling analyses revealed that
GIV and GVI strains are separated into animal and human lineages with multiple amino acid (aa)
differences that could potentially hinder inter-species transmission.

2. Materials and Methods

2.1. Sample Collection

Stool samples or rectal swabs were collected from domestic canines that had been admitted to
veterinary care for symptoms of gastroenteritis in Arkansas, USA. Collections from Cohort 1 spanned
from 2009–2013 and collections from Cohort 2 were from 2017. Samples were suspended in MEM (4%
for Cohort 1 and 10% for Cohort 2) and stored at −80 ◦C.

2.2. RNA Extraction and RT-PCR

RNA was extracted from 115 µL of suspension with the MagMax Viral RNA Isolation Kit
(ThermoFisher Scientific, Sunnyvale, CA, USA). cDNA was synthesized using the Tx30SXN primer
(5′-GACTAGTTCTAGATCGCGAGCGGCCGCCCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT-3′) [21]
at a final concentration of 10 µM with the Maxima First Strand cDNA Synthesis Kit (ThermoFisher
Scientific, Sunnyvale, CA, USA), according to the manufacturer’s protocol, except that 0.1 µL of
enzyme was added per reaction. Samples were screened for the presence of norovirus with primers
that amplify a short region of the polymerase, JV12Y (5′-ATACCACTATGATGCAGAYTA-3′) and
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JV13I (5′-TCATCATCACCATAGAAIGAG-3′). Samples positive for norovirus genomes were screened
with new primers that were designed based on previously determined GIV and GVI sequences
to amplify the subgenomic (SG) region and/or the full-length (FL) genome: Canine_1-23_For
(5′-GTGAATGATGATGGCGTCTAACG-3′) and Tx30SXN amplifies the subgenomic region, while
Canine_1-34_For (5′-GTGAATGATGATGGCGTCTAACGACGCTATCCCC-3′) and Tx30SXN amplifies
the full-length genome and the subgenomic region. The protocol for full-genome amplification, which
was also used for subgenomic amplification, is described elsewhere [22]. RT-PCR products were run on
1% agarose gels, and bands corresponding to the full-length genome (~7800 bp) and the subgenomic
region (~2500 bp) were excised from the gels and purified using the QIAquick Gel Extraction Kit
(Qiagen, Hilden, Germany). Samples were sequenced using the Illumina MiSeq. The 3′ ends were
amplified with a semi-nested PCR using the gel-purified FL or SG amplicons as templates. The primers
used for PCR were Canine_VP2_For1 (5′-GTTGACTGGAATGGCAC-3′) and Tx30SXN. The 3′ ends
were sequenced with Sanger sequencing using the Canine_VP2_For1 primer.

2.3. Sequence and Phylogenetic Analyses

Sequence assembly was performed with the High-performance Integrated Virtual Environment
(HIVE) platform using the HIVE-hexagon reference guided alignment tool [23,24], which is an
algorithm designed to align next-generation sequencing (NGS) reads to reference genomes. Sequence
alignments and phylogenetic analyses were performed with the MEGA software (version 7.0.18) [25]
or with MAFFT (version 7) [26], depending on the complexity of the alignment. Trees were modified
in FigTree (version 1.4.3). The accession numbers for previously published sequences (as of April 2018)
used in the analyses, as well as for the new full-length canine genomes and subgenomic amplicons, are
listed in Table S1. The Shannon entropy, a measure of the variation of a protein sequence alignment,
was determined using the Shannon Entropy-One tool using amino acid class equivalents for the
calculation (available at https://www.hiv.lanl.gov/content/sequence/ENTROPY/entropy_one.html).
Entropy values for each position were plotted in GraphPad Prism v7 (San Diego, CA, USA).

2.4. Structural Modeling

A model of the P-domain dimer of canine AN843 based on the crystal structure of a feline
norovirus P-domain (4QUZ) was inferred using the Iterative Threading Assembly Refinement
(I-TASSER) server (https://zhanglab.ccmb.med.umich.edu/). Protein models were visualized
and analyzed with UCSF Chimera (version 1.11), developed by the Resource for Biocomputing,
Visualization, and Informatics at the University of California, San Francisco, USA [27].

3. Results

3.1. Amplification, Sequencing, and Characterization of Novel Canine Norovirus Strains

Rectal swabs and stool samples were collected from two cohorts of canines admitted to veterinary
care for symptoms of gastroenteritis in Arkansas, USA. The presence of norovirus genomes was
confirmed in 34/89 (38.2%) samples in Cohort 1 (2009–2013) and 12/124 (9.7%) samples in Cohort 2
(2017) by reverse-transcription (RT)-PCR targeting the polymerase region [12,28]. Samples positive for
noroviruses were tested for full-genome sequencing by using primers that anneal to the conserved
5′ end and the 3′ poly-A tail of the genomes (Figure 1A). We successfully amplified eight canine
norovirus nearly complete genomes, one from Cohort 1 and seven from Cohort 2. Two additional
canine norovirus subgenomic amplicons were isolated from Cohort 2 using primers that preferentially
amplify the subgenomic region (Figure 1A). The nearly full-length and subgenomic amplicons were
purified and sequenced using next-generation sequencing (NGS) technologies with a depth of coverage
that ranged between 5300 and 21,000 reads per site.

https://www.hiv.lanl.gov/content/sequence/ENTROPY/entropy_one.html
https://zhanglab.ccmb.med.umich.edu/
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Figure 1. Amplification and characterization of novel canine norovirus strains. (A) Scheme used to
amplify nearly full-length (FL) genome and the subgenomic (SG) region (left). The primers used for
amplification are represented by arrows below the genome. Electrophoresis gels showing amplicons
obtained from FL and SG RT-PCR from a representative sample (right). L = 1 kb ladder. (B) Phylogenetic
analyses of norovirus major capsid protein (VP1) from representative strains from each genogroup.
Phylogenetic tree of the complete aa sequence of VP1 based on the Neighbor Joining method. The
phylogenetic tree was calculated with MEGA software (version 7.0.18). Strains described in this study
are labeled with an asterisk (*). (C) Genome map of canine norovirus with predicted ORF1 cleavage
sites for genotypes within GIV and GVI. The 5′ end of the genome is predicted to be capped with the
VPg protein (encoded by NS5), while the 3′ end consists of a short 3′ untranslated region (3′-UTR) and
a poly-A tail. AA numbers of the GVI noroviruses are based on the feline norovirus strain CU081210E
(JF781268).

To characterize the sequenced noroviruses, we mined the public databases for complete norovirus
VP1 sequences, representing viruses from all genogroups (GI–GVII). Sequence and phylogenetic
analyses showed that the novel strains were determined to be GIV.2 (four strains), GVI.1 (three strains),
and GVI.2 (three strains) (Figure 1B). We successfully amplified full-length and/or the subgenomic
amplicon from 1/34 (2.9%) of norovirus-positive samples from Cohort 1 (2009–2013) and from 9/12
(75%) of norovirus-positive samples from Cohort 2 (2017). The large discrepancy in successful genome
amplification between these two cohorts could be explained by the age of the samples, the large
diversity of canine noroviruses, or the differences in dilution of the original suspensions (4% vs. 10%).
The new GIV.2 strains cluster together with canine strain 170, which was detected in Italy in 2007.
The two feline strains, Pistoia 387 (lion) and CU081210E (domestic cat), form a branch separate from
the canine strains. Likewise, the novel canine GVI.1 and GVI.2 strains clustered apart from the sole
feline GVI.1 and GVI.2 strains, respectively (Figures 1B and 2). We also looked at the GIV and GVI
aa diversity within and between genotypes of the complete VP1 protein. As expected, there were a
greater number of aa differences between genotypes than within a genotype (202.1 vs. 16.11 differences,
p < 0.0001) (Figure S1).

The predicted cleavage sites for the NS proteins from each genotype within GIV and GVI
were identified based on the high conservation of the cleavage sites between norovirus genogroups
(Figure 1C). ORF2, which encodes for VP1, is predicted to start between nucleotide (nt) positions
5200 and 5225 and to be between 1716 and 1749 nts (572–583 aa) in length. ORF3, which encodes for
the minor structural protein VP2, is estimated to start between nt positions 6959 and 6961 and to be
between 765 and 840 nts (255–280 aa) in length. The 3′ end of the genome is flanked by a 3′-UTR that
ranged from 111 to 136 nts and a poly-A tail. While the hotspot for recombination has been mapped at
the junction of ORF1/ORF2 [29], studies in human and murine noroviruses have found recombination
events at the ORF2/ORF3 junction [30,31]. To determine the evolutionary relationship between the
major and minor capsid proteins of GIV and GVI noroviruses, we conducted phylogenetic analysis
using complete VP2 sequences of GIV and GVI noroviruses and showed that the strains clustered in a
genotype-dependent manner, similar to the clustering of VP1 (Figure 2).
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Figure 2. Phylogenetic analyses of GIV and GVI norovirus major (VP1) and minor (VP2) capsid proteins
reveal clustering into distinct lineages and suggest their co-evolution. Maximum likelihood tree of
the complete aa sequence of VP1 based on the Jones-Taylor-Thornton (JTT) matrix-based model. The
phylogenetic tree was calculated with MEGA software (version 7.0.18). Strains described in this study
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noroviruses, respectively. Co-evolution is indicated by connecting strains from each of the phylogenetic
trees. A diagram of the genome indicating the region used for the analyses (light grey) is shown on top.

3.2. Structural Analyses of VP1 Reveal Species-Specific Differences between Human, Canine, and Feline Capsid
Proteins

To define the differences between human, canine, and feline noroviruses, we analyzed the number
of aa differences within the VP1 of GIV noroviruses by species. The number of aa differences within
each species was lower than between species (<12 aa differences within each species compared to 50–164
aa differences between species), even when comparing canine norovirus to feline norovirus, which are
both within the GIV.2 genotype (Figure 3A, orange box). This variation helps to explain the separation of
canine and feline noroviruses in the phylogenetic tree (Figure 2). Of note, the GIV.3 human norovirus
appears to be remarkably different from the GIV.1 human strains (Figure 3A, black box).

To determine whether order-specific aa differences appear on the surface of VP1, we aligned the
GIV.2 VP1 aa sequences and identified all conserved residues that were different between human and
animal viruses (Figure 3B). Interestingly, the GIV noroviruses contain many differences within the VP1
protein that differentiate GIV.1, GIV.2, and GIV.3 viruses (Table S2), suggesting that these particular
residues likely help to define the GIV genotypes. To determine the location of the differences, the
I-TASSER server was used to predict a model of the canine norovirus AN843 P-domain dimer based
on the crystal structure of feline norovirus CU081210E (Protein Data Base [PDB] ID = 4QUZ) [13,32].
Although aa variation exists between strains, for this analysis, only aa residues that were conserved at
the human or animal level were considered. Sixteen out of 22 (72.7%) of the residues were located on
the surface of the structure. Notably, the GIV.2 P-domain contains a large insertion that forms a loop
on the top of the structure (residues 307–324) (Figure 3C). This insertion was previously identified
in a feline norovirus strain [32]. All canine and feline noroviruses within GIV.2 and GVI share this
insertion near the top of the structure, in contrast to the human GIV.1 and GIV.3 noroviruses (Figure 3B,
Table S3). We also aligned all GIV.2 VP1 sequences to compare aa differences between canine and
feline viruses (Figure S2A). Twenty-one out of 26 (80.8%) of the residues were located on the surface of
the P-domain (Figure S2B). Taken together, the VP1 proteins of canine and feline norovirus contain
multiple surface-exposed differences and a large insertion that differentiates them from the human
norovirus VP1 protein.



Viruses 2019, 11, 204 7 of 16

Viruses 2019, 11, x FOR PEER REVIEW 7 of 16 

 

was previously identified in a feline norovirus strain [32]. All canine and feline noroviruses within 
GIV.2 and GVI share this insertion near the top of the structure, in contrast to the human GIV.1 and 
GIV.3 noroviruses (Figure 3B, Table S3). We also aligned all GIV.2 VP1 sequences to compare aa 
differences between canine and feline viruses (Figure S2A). Twenty-one out of 26 (80.8%) of the 
residues were located on the surface of the P-domain (Figure S2B). Taken together, the VP1 proteins 
of canine and feline norovirus contain multiple surface-exposed differences and a large insertion that 
differentiates them from the human norovirus VP1 protein. 

 

A)

C) Side View Top View

B)

AA Differences

24
9

25
6

26
0

26
7

26
9

27
8

28
4

30
7

30
8

30
9

31
0

31
1

31
2

31
3

31
4

31
5

31
6

31
7

31
8

31
9

32
0

32
1

32
2

32
3

32
4

32
7

36
5

37
3

37
5

37
8

37
9

38
3

38
6

38
9

39
2

39
4

42
1

42
2

44
2

49
2

52
2

55
9

Cat/GIV.2/CU081210E L A H T E L C P P L E D E V A D G A A A T Y T L A A T S A H D D P A T S I A A N T A

Cat/GIV.2/M81 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lion/GIV.2/Pistoia387 . . . . . . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . .

Dog/GIV.2/170 . . . . . . . . . . . . . . . H . . . . . . A V G . . . . . . . . . . . . . . . . .

Dog/GIV.2/AN843 . . . . . . . . . . . . . . . . . V . D . . A I G . . . . . . . . . . . . . . . . .

Dog/GIV.2/AN1610 . . . . . . . . . . . . . . . . . V . D . . A I G . . . . . . . . . . . . . . . . .

Dog/GIV.2/AN1638 . . . . . . . . . . . . . . . . . V . D . . A I G . . . . . . . . . . . . . . . . .

Dog/GIV.2/AN1663 . . . . . . . . . . . . . . . . . V . D . . A I G . . . . . . . . . . . . . . . . .

Human/GIV.1/Saint Cloud 624 M P Q H D V A - - - - - - - - - - - - - - - - - - G F - S N E N - S A A F G S Q V S

Human/GIV.1/Fort Lauderdale 560 M P Q H D V A - - - - - - - - - - - - - - - - - - G F - S N E N - S A A F G S Q V S

Human/GIV.1/Alphatron 98-2 M P Q H D V A - - - - - - - - - - - - - - - - - - G F - S N E N - S A A F G S Q V S

Human/GIV.1/OC01017023 M P Q H D V A - - - - - - - - - - - - - - - - - - G F - S N E N - S A A F G S Q V S

Human/GIV.1/Canet-en-Roussillon H7477 M P Q H D V A - - - - - - - - - - - - - - - - - - G F - S N E N - S A A F G S Q V S

Human/GIV.1/CCDC GR1113-59 M P Q H D V A - - - - - - - - - - - - - - - - - - G F - S N E N - S A A F G S Q V S

Human/GIV.1/Ahrenshoop246 M P Q H D V A - - - - - - - - - - - - - - - - - - G F - S N E N - S A A F G S Q V S

Human/GIV.1/LakeMacquarie NSW2680 M P Q H D V A - - - - - - - - - - - - - - - - - - G F - S N E N - S A A F G S Q V S

Human/GIV.3/WI7002 M P Q H D V A - - - - - - - - - - - - - - - - - - G F - S N E N - S A A F G S Q V S

An5’ 3’

VP1: 
P-Domain

H
um

an

Fe
lin

e

C
an

in
e

B
et

w
ee

n 
Sp

ec
ie

s

0
25
50
75

100
125
150
175
200

# 
of

 A
A 

D
iff

er
en

ce
s

AA Differences By Species: GIV Viruses

Within Species



Viruses 2019, 11, 204 8 of 16

Figure 3. Human and animal GIV noroviruses present major differences in their VP1 sequences. (A)
Number of amino acid differences within and between species of GIV viruses. A black box denotes
aa differences between GIV.1 and GIV.3 human noroviruses. An orange box highlights aa differences
of feline versus canine norovirus. (B) Table of conserved mutations within the P-domain of human
and animal GIV capsid proteins. Surface-exposed mutations are highlighted in red and insertions are
highlighted in green. A diagram of the genome indicating the region used for the analyses (light grey)
is shown on top. (C) Model of the P-domain dimer of AN843 (GIV.2). The model is based on the crystal
structure of GIV.2 feline norovirus CU081210E (PDB ID = 4QUZ) and consists of aa residues 225 to 565.
The P-domain monomers are colored in light and dark grey. Surface-exposed aa differences between
the human and animal structures are highlighted in red and insertions are highlighted in green. The
model, which was produced with the I-TASSER server, was visualized in Chimera (version 1.11).

3.3. Analyses of Non-Structural Proteins Suggest Order-Specific Differences within the Replication Machinery

The addition of eight new canine norovirus nearly full-length genomes allows for better analyses
of the NS proteins involved in replication and host interactions. Conventionally, norovirus classification
has been based on both the polymerase and VP1 genotypes [8]. The capsid genotyping is based
on the complete ORF2 sequence; however, polymerase typing is based on sequences from the
C-terminal region of the polymerase (NS7). Thus, we first constructed a phylogenetic tree using
the C-terminal region of the polymerase, as there are more sequences of this region available in the
database. Interestingly, phylogenetic analysis of this region (aa 427–512) revealed two distinct groups:
one (GIV) included only human strains, and another (GVI) included all animal strains (Figure 4).
Notably, clustering into these groups was independent of the capsid genotype, as in animals, the GVI
polymerases were associated with both GIV.2 and GVI capsids, while the human GIV polymerases
were only associated with GIV capsids. Thus, genogroup recombination appears to be relaxed for the
animal noroviruses.

To further elucidate evolutionary differences within the NS proteins that may discriminate
human, canine, and feline noroviruses, we constructed phylogenetic trees of the individual NS proteins
using the available full-length norovirus sequences. In agreement with analyses done with the partial
polymerase-encoding region (Figure 4), phylogenetic analysis of the complete polymerase also revealed
the clustering into the GIV (human) and GVI (animal) groups (Figure 5A). Similar clustering was
seen with the other individual NS proteins (NS1/2, NS3, NS4, NS5, and NS6) (Figure 5A), suggesting
co-evolution of the proteins within ORF1 with a marked host specificity. Analysis of the sequence
diversity of GIV and GVI norovirus polymerases revealed high conservation within each group
and large numbers of aa differences between groups (Figure 5B, Table S4). The human norovirus
polymerase proteins (GIV) were ~22.7% different compared to those of canines and felines (GVI);
in contrast, the difference between canine and feline polymerases (4.0%) fell within the range of
aa differences within each species (1.9 to 5.5%). Sixty-four conserved residues (12.5% of the total
aa residues) that distinguish human from animal polymerases were identified; these residues were
highlighted in the model of the canine polymerase (Figure S3). Most of the differences were located
on the surface of the polymerase, where they could potentially interact with host and viral proteins
involved in the formation of the replication complex.
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Figure 5. Analyses of GIV and GVI norovirus ORF1 reveal high diversity within regions of the
non-structural proteins and the clustering into two distinct groups. (A) Maximum likelihood trees
of the complete aa sequence of the individual non-structural proteins based on the Le Gascuel (2008)
model. The phylogenetic trees were calculated with MEGA software (version 7.0.18). Strains described
in this study are labeled with an asterisk (*). Strains highlighted in green and black represent animal
and human noroviruses, respectively. (B) AA differences of the complete polymerase within and
between groups (GIV and GVI). (C) Diversity plots, as calculated by Shannon entropy, spanning the
ORF1 of canine noroviruses (intra-species, top panel) and canine and human noroviruses (inter-species,
bottom panel). The values for each individual NS protein are differentiated by color.
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To determine the sequence differences within the ORF1 polyprotein, we calculated the Shannon
entropy value, or the measure of uncertainty at each nucleotide or amino acid position, of the complete
aa sequence alignment of the GIV and GVI canine noroviruses (intraspecies). The entropy values
across ORF1 were low (mean: 0.044, range: 0–0.13), suggesting that the canine NS proteins are highly
conserved. Most variation was observed within NS1/2, particularly at the N-terminal end, and within
NS4 (Figure 5C, top panel). The large entropy values detected at the NS1/2 region were mostly due
to aa deletions within the GVI.1 genotype, and the high divergence of the GVI.2 sequence (AN1640)
from the other canine sequences. The entropy values of a canine and feline norovirus alignment were
similar (Figure S2C). However, when human and canine viruses were considered, the Shannon entropy
values spanning the whole ORF1 region were high (mean: 0.17, range: 0–1.47, Figure 5C, bottom
panel), reinforcing the differences between human and animal noroviruses.

4. Discussion

Noroviruses present an extreme genetic diversity that is, in part, associated with the large number
of different mammals that the viruses infect. Despite this large host range, each of the virus genogroups
seems to be restricted to specific taxonomic groups. Numerous attempts have been made to develop
animal models to study human noroviruses, with varying success [33–39], but this strong segregation at
the host level could be involved in limiting the robustness of most of these models. Recently, an animal
model, which recapitulated the natural course of infection seen in humans, has been reported with
feline noroviruses [40]. Noroviruses infecting felines have been classified as GIV and GVI, with GIV
viruses also being detected in humans. While extensive genetic information is available for noroviruses
infecting humans [22], little is known about canine and feline noroviruses, which complicates studies
on their evolution and biological properties. Simplification of virus genome amplification from clinical
samples has greatly advanced genomics analyses for different human viruses [41–43]. We designed
primers that allowed broad amplification of the full-length genome of GIV and GVI noroviruses and
successfully amplified and sequenced full-length and/or subgenomic regions of noroviruses detected
in dogs. The new data facilitate genomic studies for GIV and GVI noroviruses, which present evidence
that differences in both structural and non-structural proteins segregate human and animal noroviruses
into distinct genetic groups.

Attachment and entry is an important first step of the viral life cycle and accounts for one of
the first barriers to cross-species transmission and infection. In noroviruses, it was recently shown
that the expression of murine norovirus receptor (molecules from the CD300 family) allows murine
norovirus (GV.1) replication in non-murine mammalian cells that were otherwise resistant to the
infection [44,45]. Here, we show that the major capsid protein, VP1, is conserved among samples
from the same taxonomic order, but highly variable between orders, specifically between humans
and carnivores. Although the cellular receptor and the exact motifs involved in attachment to HBGA
carbohydrates have not been identified for feline or canine noroviruses [32], both GIV and GVI viruses
have been shown to interact with HBGA carbohydrates, specifically the H and A antigens [18]. A
major difference between human and animal noroviruses is a large insertion that maps at between
beta sheets β2 and β3 on the top of the P domain [32,46], thus potentially restricting the interaction of
VP1 and host factors (carbohydrates and/or receptor) required for viral entry.

While the precise role of norovirus VP2 has not been conclusively demonstrated, previous studies
have shown that VP2 could help virion stability or could play a role in regulating the maturation of
antigen-presenting cells and of protective immunity in a virus strain-specific manner [47–49]. Moreover,
by examining the cryo-electron microscopy structures of feline calicivirus, a Vesivirus, it was shown
that VP2 forms a portal-like assembly that creates a pore in the capsid shell that could function as a
channel for the delivery of the viral genome into the host cell cytoplasm [7]. In this pore, VP2 interacts
with the protruding domains of the capsid. Strain-specific VP1–VP2 interactions have been shown
for GII.4 noroviruses, resulting in the covariation of the P domain of VP1 and the central region of
VP2 [50]. In our genomic analyses, VP2 clustered into groups similar to that of VP1, further supporting
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that co-evolution between these two proteins is functionally driven. Norovirus VP2 is over two times
larger in length as compared to that of Vesiviruses [6,51], thus it remains to be determined whether the
function of norovirus VP2 is similar to that of the feline calicivirus.

The addition of eight canine norovirus genomes allows for sequence analyses of the canine GIV
and GVI NS proteins for the first time. Phylogenetic analyses of the individual NS proteins revealed
the clustering into two distinct groups: one comprised all animal GIV and GVI noroviruses, while
the other comprised the human GIV viruses. Thus, animal noroviruses presented GVI polymerases
with GIV.2, GVI.1, and GVI.2 capsids, while humans noroviruses presented GIV polymerases with
GIV.1 and GIV.3 capsids. These data support inter-genogroup recombination events in noroviruses,
something considered rare for this group of viruses [10,52,53]. Moreover, these analyses also report
inter-genogroup recombinant norovirus strains in canines from the United States, expanding their
geographic distribution at the global scale. Minor differences between the animal noroviruses,
which can be putatively divided into two lineages, can also lead to intra-group recombination at
the ORF1/ORF2 junction between lineages [11]. Together, this suggests that both structural and
non-structural proteins differentiate human and animal noroviruses.

Several studies have suggested that NS proteins of other viruses can be involved in determining
host range and can contribute to pathogenicity [54–57]. The effects of the NS proteins range from
mediating innate immunity [54] to influencing the compatibility of proteins from the viral replicative
machinery with host proteins [55–57]. Sequence analyses of the GIV and GVI norovirus genomes
revealed high diversity throughout the ORF1 region, particularly when comparing human and animal
strains. Although the functions of some of the norovirus NS proteins are not completely elucidated,
current data suggest that these proteins are involved in the formation of the viral replication complex
through interactions with host proteins [58–64]. Comparison of the crystal structures of human and
animal norovirus polymerases revealed differences on the surface and within the polymerase. Whether
these differences have any effect on mediating binding to species-specific host proteins involved in the
viral life cycle, as shown for other viruses with zoonotic potential [57], remains to be determined.

In conclusion, we present a simple method to sequence the nearly full-length genome of GIV and
GVI noroviruses that could facilitate closing the knowledge gap for genetic information of noroviruses
circulating in canines and felines. Using novel genomes sequenced with this method, we showed that (i)
inter-genogroup GIV/GVI recombinants circulate in canines and felines from different continents, and
(ii) human and animal GIV and GVI noroviruses clustered separately at non-structural and structural
proteins, which may restrict inter-species transmission. The development of robust cell culture systems
and animal models for human and animal noroviruses would more definitively support or dispute the
claim of inter-species transmission [17–19].
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feline noroviruses used for analyses, Table S2: Amino acid differences within VP1 that differentiate the genotype
of GIV noroviruses, Table S3: Amino acid alignment within VP1 (aa 301–337) of GIV and GVI noroviruses, Table
S4: Number of amino acid differences (% differences) of the complete polymerase (total of 511 residues) within
and between species.
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