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Abstract
Background: Comparative genomics resources, such as ortholog detection tools and repositories are rapidly increasing in scale and 
complexity. Cloud computing is an emerging technological paradigm that enables researchers to dynamically build a dedicated virtual 
cluster and may represent a valuable alternative for large computational tools in bioinformatics. In the present manuscript, we optimize 
the computation of a large-scale comparative genomics resource—Roundup—using cloud computing, describe the proper operating 
principles required to achieve computational efficiency on the cloud, and detail important procedures for improving cost-effectiveness 
to ensure maximal computation at minimal costs.
Methods: Utilizing the comparative genomics tool, Roundup, as a case study, we computed orthologs among 902 fully sequenced 
genomes on Amazon’s Elastic Compute Cloud. For managing the ortholog processes, we designed a strategy to deploy the web service, 
Elastic MapReduce, and maximize the use of the cloud while simultaneously minimizing costs. Specifically, we created a model to 
estimate cloud runtime based on the size and complexity of the genomes being compared that determines in advance the optimal order 
of the jobs to be submitted.
Results: We computed orthologous relationships for 245,323 genome-to-genome comparisons on Amazon’s computing cloud, a 
 computation that required just over 200 hours and cost $8,000 USD, at least 40% less than expected under a strategy in which genome 
comparisons were submitted to the cloud randomly with respect to runtime. Our cost savings projections were based on a model that 
not only demonstrates the optimal strategy for deploying RSD to the cloud, but also finds the optimal cluster size to minimize waste 
and maximize usage. Our cost-reduction model is readily adaptable for other comparative genomics tools and potentially of significant 
benefit to labs seeking to take advantage of the cloud as an alternative to local computing infrastructure.
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Introduction
Roundup1 is one of many bioinformatics  applications 
that computationally compares hundreds, and soon to 
be thousands, of genomes to predict the  evolutionary 
relationship between genes, organisms, and biological 
functions.2 At the core of Roundup is the reciprocal 
smallest distance algorithm (RSD),3,4 which uses 
global sequence alignment and estimates of evolu-
tionary distance to detect orthologous genes between 
pairs of organisms. The RSD algorithm employs a 
computational pipeline that includes local  homology 
(BLAST),5 global alignment (clustalw),6 and maxi-
mum likelihood estimates of  evolutionary distances 
(paml)7 to find sequences in a pair of genomes that 
have reciprocally close  evolutionary distances. The 
use of evolutionary distance and  reciprocity in RSD 
can more effectively recover  putative orthologs than 
other methods, such as reciprocal BLAST  procedures.4 
However, this improvement in  quality comes at the cost 
of increased computation. For comparative genomics 
resources like Roundup, the demand for computational 
power scales with the square of the number of genomes. 
A survey of UniProtKB,8 a  comprehensive resource 
of protein sequences, shows that the number of fully 
sequenced genomes has  doubled almost every year 
since 2003 while the increase in processing speed has 
lagged behind, continuing to grow under Moore’s 
Law of doubling every 18–24 months. As a conse-
quence, Roundup’s computational demand has grown 
as much as eight times faster than processor capacity. 
This  disparity is consistent with other complex bio-
informatics  computational tasks and underscores the 
necessity of building optimized code even in cases 
where massive compute capacity is available, and of 
seeking alternative strategies for computational pro-
cessing in general.

In designing computational genomics tools that 
keep pace with the rate of genome sequencing, the 
challenge is to optimize the computational task 
while simultaneously optimizing the cost associated 
with expansion of local compute clusters. Issues 
that add to cost or complexity of expanding local 
 compute clusters include: funding (up front cost, 
grant funding),  efficiency (variable usage patterns, 
long queues), maintenance costs (datacenters, system 
administrators, shared usage), and the gap between 
demand and scaling the local cluster (demand can 

fluctuate hourly and daily while renting new space, 
hiring administrators, buying and installing new 
computers can take months and years).9 An emerging 
solution to these challenges is cloud computing.

Cloud computing offers rapid scaling, reduced 
management, pay-as-you-go pricing, code repro-
ducibility and the potential for 100% utilization.10,11 
The demand pricing model of cloud services is espe-
cially attractive when compared to local clusters that 
have highly variable usage patterns and the standard 
management and logistical issues—(eg, hiring sys-
tems administrators, acquiring space, installation, 
configuration, maintenance and full costs including 
electricity, etc.)—typical of local compute farms.12 
However, the value of the cloud is vastly diminished if 
its ‘elastic’ (scaled up or down depending on demand) 
nature is not fully exploited.

In the present manuscript, we demonstrate 
fundamental principles to optimize large-scale bio-
informatic operations using the comparative genom-
ics tool Roundup and the cloud services offered by 
 Amazon. We highlight the importance of  optimizing 
code in order to reduce costs, and also describe 
the steps necessary to estimate costs on standard 
cloud infrastructures prior to launch. We show how 
our  procedures can substantially reduce cloud-
 computing costs and discuss how the principles we 
have  developed can be generalized to other types of 
 bioinformatic tasks.

Methods
Cloud implementation
We previously published a series of methods to 
port the reciprocal smallest distance algorithm of 
Roundup to the Amazon cloud.13 Briefly, the cloud-
based pipeline uses a combination of Simple  Storage 
Service (S3), Elastic Compute Cloud (EC2), and 
Elastic MapReduce (EMR) provided by Amazon 
Web Services.14–16 The services are all based on a 
pay-per-use model (Cost Breakdown). We used the 
persistent storage provided by S3 to store Roundup’s 
code base, all genomes (Genome Data), executable 
programs linked to Roundup (BLAST, ClustalW, 
and codeml), and all computed results. For compu-
tations, we provisioned 8-core High-CPU instances 
with 7 GB of memory and 1.7 TB of local storage 
from EC2. For workflow management, we used 
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EMR, Amazon’s implementation of Hadoop17 on 
EC2. By default, Hadoop is configured to run Java 
programs. Thus, we devised an approach to use the 
streaming mode of EMR to allow any program to 
be executed from the command line and still take 
advantage of MapReduce {Wall, 2010 #205}. This 
approach enabled us to run our existing codebase 
with almost no changes and demonstrated that the 
method could be easily adapted to any complex task 
and codebase.

We used the Ruby command line interface18 to 
launch a cluster and configure jobs on EMR. The RSD 
pipeline was divided into BLAST computation fol-
lowed by ortholog computation. Figure 1  demonstrates 
the cloud-computing infrastructure for Roundup. We 
monitored job completion status on the Hadoop user 

interface by establishing a SOCKS server on the 
local machine and an SSH tunnel between the local 
machine and master node.

Code optimization
For the purposes of the present case study, and to ensure 
maximal cost reduction on the cloud, we optimized 
the speed and stability of RSD. Specific improvements 
included reducing disk I/O, increasing in-memory 
caching, and eliminating excessive invocations of the 
BLAST executable. In addition, we rewrote the RSD 
algorithm to simultaneously find orthologs for any 
number of parameter combinations, a feature particu-
larly useful for Roundup because it contains orthologs 
for 12 combinations of E-values (1e-20, 1e-15, 
1e-10, 1e-5) and divergence values (0.2, 0.5, 0.8).  

Elastic MapReduce cluster 

1) Cluster instantiation 

4) Cluster termination

2) Blast computation 

HDFS 

Blast result
[Dynamic storage]

Simple 
storage service 

[Persistent storage]

(S3) 

Transfer RSD cloud 
code, genomes and

executables to slave nodes 

Blast result

Orthology result

3) Ortholog computation 

Figure 1. Cloud computing setup for executing the reciprocal smallest distance algorithm (rSD) used within the roundup resource. Thin lines represent 
components of rSD for cloud computing infrastructure and connections among them. Thick lines emphasize the multi-step execution of the cloud-
 computing pipeline for execution of the rSD package. Steps 2 and 3 are the major stages of rSD, the BLAST computation stage, and ortholog detection 
stage. Further description of the workflow is provided in the text and in Wall et al.13
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This optimized cloud-ready RSD may be found at 
http://wall.hms.harvard.edu/software.

Genome data
We tested the optimized configuration of RSD on 
a selection of 334 new genomes available in the 
Roundup database, which contained 568 genomes 
in total at the time of writing. Our genome selection 
contained a wide array of genomes from across the 
tree of life, and consequently a wide variety of sizes 
and sequence complexity sufficient to test the speed 
and cost of the cloud. The number of amino acid 
sequences per genome varied by over 2 orders of 
magnitude, with an average of 4,415 sequences. The 
total storage requirement to host all 334 genomes was 
4.3 gigabytes (GB).

Cost breakdown
Following from our previous experiences with 
Amazon cloud services,13 we used 8-core High-CPU 
instances listed at a price of $0.68/hr at the time of 
writing. In addition, we used the Elastic MapReduce 
(EMR) processing service at $0.12 and S3 storage at 
$0.15 per gigabyte.

“Bin” model of computation time
We developed a model to simulate the computation 
time of executing RSD on a set of genomes on 
cluster of a given size. Given that RSD is a two-
stage computational process—first BLAST is run for 
all pairs of genomes and then ortholog detection is 
run using pre-computed BLAST results to calculate 
orthologs over a range of parameters—we fit two 
linear models to account for computational complex-
ity of both stages. For the BLAST stage of the RSD 
pipeline, we first fit a linear model between BLAST 
computational time and the product of the number 
of sequences in a pair of genomes. This model was 
based on the work of Altschul et al,19 who show that 
the expected time complexity of BLAST is O(WN), 
where W is linear in the length of a query sequence 
and N is the number of residues in the subject 
genome. By extension, running BLAST on all the 
sequences in a query genome is O(QN), where Q is 
the number of residues in the query genome. We used 
the number of sequences in a genome as an proxy 
for the number of residues, a proxy that, based on fit 
of the linear model (r2 = 0.8; P = 2.2e-16), yielded 

time estimations accurate enough for the purpose of 
ordering genome computations on a cluster in order 
to approximately minimize cluster idle time. For the 
ortholog detection stage, we fit a linear relationship 
between time and the minimum number of sequences 
in a pair of genomes (r2 = 0.3; P = 2.2e-16). This was 
based on a time complexity analysis of the ortholog 
detection stage, which internally performs O(1) work 
for each sequence in the genome with the fewest 
sequences (unpublished results). We fit these models 
using a preselected set of 30 genomes ranging in size 
from 75 to 66,710 sequences that were adequately 
representative of the phylogenetic diversity present 
in our larger sample.

We elected to estimate the overall runtime of 
an EMR cluster for both the BLAST and ortholog 
detection stages of the RSD algorithm, utilizing 
two different strategies of ordering the jobs for 
submission: 1) lexicographically by genome name 
and 2) descending order of estimated runtime. The 
first ordering was designed to be essentially random 
with respect to runtime, while the second was 
designed to avoid mixtures of long and short jobs that 
would tend to increase the number of idle nodes in a 
cluster at the end of a computation. In our simula-
tions, we grouped jobs into “bins” equal to the num-
ber of nodes in a cluster, for a wide range of cluster 
sizes. We continually repopulated bins as computa-
tions on any given node in the cluster completed, 
with repopulation dictated by the style of ordering 
described above. We used the time estimates from 
these simulations to compare the alternative order-
ing strategies in terms of their predicted utilization 
of the cloud and percentage of idle nodes for a wide 
range of cloud cluster sizes in an effort to determine 
the optimal balance between speed of computation 
and cost.

Results
For the purposes of testing RSD on the cloud, we 
added 334 genomes to the 568 genomes currently in 
the Roundup database. This addition amounted in a 
total of 245,323 genome-to-genome pairs, following 
the formula (N*O + N*(N − 1)/2), where N was the 
number of new genomes and O was the number of 
pre-existing genomes in Roundup. The genomes 
varied considerably in size, and because RSD scales 
with the product of the sizes of the input genome pair, 
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the time to process individual pairs of genomes also 
 varied considerably, from 35 seconds to 71 hours.

roundup optimization and computation
Reduction in disk I/O, in-memory caching, and the 
single invocation of the BLAST executable for a 
given genome-to-genome comparison lead to a two-
fold increase in the speed of the BLAST stage of 
RSD in comparison to our un-optimized RSD code. 
In addition, simultaneous detection of orthologs for 
all 12 RSD parameter combinations reduced the total 
number of calculations by 12 and yielded a 7-fold 
increase in the speed of the orthology detection stage. 
These optimizations totaled to a 4.9 fold increase in 
speed over the earlier version of RSD across the set 
of genomes in Roundup. An additional benefit of the 
code optimization was increased stability, leading to 
fewer failed jobs and machines, an important benefit 
when running more jobs per machine and more 
machines per cluster.

Using the optimized code, we initiated computation 
of our 245,323 genome-to-genome comparisons on a 
50-node cluster. In the testing phase of this run, we 
determined that the variation in genome size and con-
comitant variation in runtime left a large percentage 
of the cluster idle while long-running jobs finished 
computations. Because “out-of-the-box”, EMR did 
not have the capacity to reduce the size of the cluster 
without also terminating active processes, the varia-
tion in job size translated directly into wasted expense. 
To avoid this undesirable property of EMR on EC2, 
we elected to group genomes by size in terms of num-
bers of sequences (and presumably by runtime), rea-
soning that this would yield more effective utilization 
of nodes within a cloud cluster. To test this reasoning, 
we devised a strategy to predict computation time, 
percentage of cluster usage, and total costs that would 
model the optimal conditions for running RSD on the 
cloud.

Deployment of a strategy for optimal  
use of a cloud cluster
We designed a model to simulate the computational 
time over a range of different cluster sizes and 
orderings of jobs. Based on historical records of 
runtimes, we were able to determine that our model 
could predict actual run performance with greater 
than 95% accuracy. Figure 2 depicts a computational 

simulation for the BLAST stage of Roundup, and 
demonstrates the differences in efficiency between 
ordering jobs by genome name and ordering jobs in 
descending rank of estimated runtime. The simulation 
yielded the percentage of cluster idle time for the 
genomes currently in Roundup and provided a direct 
measurement of wasted expense, as idle nodes con-
tributed to the total cost at the same rate as operational 
nodes. The simulation demonstrated that increas-
ing the size of a cluster results in a tradeoff between 
reduction of overall computation time (via a larger 
cluster that can run more jobs simultaneously) and 
percentage of cluster idle time. For example, Figure 2 
illustrates the inflection point at which the percent-
age of idle time across the cluster outweighs the over-
all speed of computation for the BLAST stage of the 
RSD algorithm. Figure 2 also highlights the fact that 
when jobs were ordered by estimated runtime rather 
than lexicographically by genome name, a cluster size 
of 250 minimized the total runtime while also mini-
mizing the percentage of idle processors. In general, 
our simulations demonstrated that ordering jobs by 
descending order of runtime rather than by genome 
name yielded the most efficient cloud costs for a wide 
range of cluster sizes.
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Figure 2. Graphical model to predict % CpU idle time for the BLAST 
stage of the rSD cloud-computing pipeline. The plot estimates CpU 
idle time for computation of 902 genomes on clusters of varying size 
ranging from 50 to 550 instances. The green line represents idle time 
when genomes are ordered lexicographically by genome name. The 
red line represents idle time when genomes are ordered in decreasing 
order of runtime. Under this simulation, use of 250-node cluster with jobs 
ordered by runtime rather than by genome name yielded the optimal 
cost-to-computation ratio.
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By taking advantage of these cost estimation 
models and our cloud-optimized RSD code, we suc-
cessfully completed 245,323 genome comparisons 
in just over 200 hours for a total cost of $8,000 
USD. Plugging the same computation into our cost 
estimation model with order determined lexico-
graphically by genome name, the total cost would 
have exceeded $11,000 USD, at least 40% more than 
our observed costs.

Discussion
The pay-per-use model of cloud computing  provides 
an attractive alternative for high performance 
computing algorithms in bioinformatics. However, 
few case studies have been published to demonstrate 
how and when such infrastructure can be of benefit. 
In the present manuscript, we use a common ortholog 
detection tool, the reciprocal smallest distance 
algorithm (RSD) to demonstrate best usage practices 
of the Amazon Elastic Computing Cloud (EC2). We 
detail how RSD can be run on EC2 via the web  service 
Elastic MapReduce (EMR), a service that facilitates 
spawning and management of large numbers of jobs 
over a cloud-based cluster of predefined size.

Amazon’s EMR is a Hadoop-based implementation 
of MapReduce on Amazon’s cloud. Hadoop was 
 originally developed with the intent of crawling, 
indexing and processing huge amounts of data for 
Internet search engines. Several companies like 
Yahoo!, Facebook, and New York Times have taken 
advantage of Hadoop with great success. In gen-
eral, the style of cluster computing embodied by 
EMR offers considerable advantages including job 
monitoring and flow management. However, EMR 
and similar Hadoop-based computing frameworks do 
not adapt well to batch-based algorithms like RSD. 
One significant disadvantage identified through our 
case study was the inability to identify and system-
atically terminate idle processors without impact-
ing active jobs running on other nodes within the 
same cluster. Given the variance in genome size 
and sequence complexity among fully sequenced 
genomes, the time required to compute orthologs can 
vary widely, from minutes to days. We determined 
that such variation in runtime translates directly into 
substantial cloud waste, in terms of idle processors 
and unnecessary costs, if jobs run using EMR on EC2 
are not managed appropriately a priori.

To account for this issue, we devised a model to 
consider the relationship between cluster size, job 
order, and idle time, as a means to predict and avoid 
unnecessary costs. We demonstrate how this model 
can be used to design an appropriate strategy for 
submitting jobs to a cloud-computing cluster and 
to determine the ideal size of the cloud  cluster that 
maximizes both computational speed and  cluster occu-
pancy while minimizing costs. Applying our model 
to the RSD ortholog detection algorithm, we were 
able to estimate runtime for a wide array of genome-
to-genome comparisons, and test the performance of 
two potential means of queuing the jobs for submis-
sion to EC2 via EMR, either lexicographically by 
genome name, or in descending order of runtime. 
Our tests demonstrated that the latter approach sig-
nificantly improved performance and maximized uti-
lization of the cloud cluster. By grouping our jobs by 
runtime, we were able to run 245,323 RSD ortholog 
detection processes in 200 hours for a total cost of 
$8,000 USD. Had we ordered by genome name, or 
 randomly with respect to runtime, our observed costs 
would have been at least 40% higher, stressing the 
importance of job management prior to launch.

Our case study highlights the importance of using 
services like EMR with some caution, and provides 
a valuable model of how to do so. Given the relative 
simplicity of our model, we expect it to be adaptable 
to other bioinformatics programs seeking to invest in 
cloud services for either supplanting or augmenting 
existing local computing infrastructure.

conclusions
When faced with computational bottlenecks imposed 
by availability of local resources, cloud-computing 
services like Amazon represent potential alternatives. 
In the present manuscript, we used a common ortholog 
detection tool (the reciprocal smallest distance algo-
rithm, RSD) to directly test the efficacy of the cloud 
offered by Amazon. Our work was motivated by our 
own local computing bottlenecks, and by the need to 
keep the coverage of genomes in Roundup1 up-to-date 
with the explosive rate of genome sequencing. We 
demonstrated how best to utilize the EMR webservice 
offered by Amazon for optimal job management and 
minimal costs. Specifically, we designed a model to 
predict job runtime and costs for an array of cloud 
cluster sizes, and showed how this model can be used 
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to identify the optimal cluster size as well as the best 
strategy for ordering jobs prior to submission to the 
cloud. Most importantly, we show how our model can 
be used to achieve at least a 40% reduction in over-
all cloud computing costs. Our effective use of the 
cloud enabled a dramatic expansion of the Roundup 
database20 to over 900 genomes, making it among 
the largest publicly available orthology databases. 
In summary, our case study indicates that the cloud 
is a viable solution for boosting large-scale projects 
like Roundup, and provides a best-practice model 
for cloud computing that can be adapted to similar 
comparative genomics algorithms.
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