
Evolutionary Bioinformatics 2010:6 197–203

doi: 10.4137/EBO.S6259

This article is available from http://www.la-press.com.

© the author(s), publisher and licensee Libertas Academica Ltd.

This is an open access article. Unrestricted non-commercial use is permitted provided the original work is properly cited.

Open Access
Full open access to this and
thousands of other papers at

http://www.la-press.com.

Evolutionary Bioinformatics

S h O r T r E p O r T

Evolutionary Bioinformatics 2010:6 197

cost-effective cloud computing: A case study Using
the comparative Genomics Tool, Roundup

parul Kudtarkar, Todd F. DeLuca, Vincent A. Fusaro, peter J. Tonellato and Dennis p. Wall
Center for Biomedical Informatics, harvard Medical School, Boston, MA 02115.
Corresponding author email: dpwall@hms.harvard.edu

Abstract
Background: Comparative genomics resources, such as ortholog detection tools and repositories are rapidly increasing in scale and
complexity. Cloud computing is an emerging technological paradigm that enables researchers to dynamically build a dedicated virtual
cluster and may represent a valuable alternative for large computational tools in bioinformatics. In the present manuscript, we optimize
the computation of a large-scale comparative genomics resource—Roundup—using cloud computing, describe the proper operating
principles required to achieve computational efficiency on the cloud, and detail important procedures for improving cost-effectiveness
to ensure maximal computation at minimal costs.
Methods: Utilizing the comparative genomics tool, Roundup, as a case study, we computed orthologs among 902 fully sequenced
genomes on Amazon’s Elastic Compute Cloud. For managing the ortholog processes, we designed a strategy to deploy the web service,
Elastic MapReduce, and maximize the use of the cloud while simultaneously minimizing costs. Specifically, we created a model to
estimate cloud runtime based on the size and complexity of the genomes being compared that determines in advance the optimal order
of the jobs to be submitted.
Results: We computed orthologous relationships for 245,323 genome-to-genome comparisons on Amazon’s computing cloud, a
 computation that required just over 200 hours and cost $8,000 USD, at least 40% less than expected under a strategy in which genome
comparisons were submitted to the cloud randomly with respect to runtime. Our cost savings projections were based on a model that
not only demonstrates the optimal strategy for deploying RSD to the cloud, but also finds the optimal cluster size to minimize waste
and maximize usage. Our cost-reduction model is readily adaptable for other comparative genomics tools and potentially of significant
benefit to labs seeking to take advantage of the cloud as an alternative to local computing infrastructure.

Keywords: cloud computing, elastic computing cloud, Roundup, comparative genomics, high performance computing, Amazon,
orthologs

http://dx.doi.org/10.4137/EBO.S6259
http://www.la-press.com
http://www.la-press.com
http://www.la-press.com/evolutionary-bioinformatics-journal-j17
http://www.la-press.com
mailto:dpwall@hms.harvard.edu

Kudtarkar et al

198 Evolutionary Bioinformatics 2010:6

Introduction
Roundup1 is one of many bioinformatics applications
that computationally compares hundreds, and soon to
be thousands, of genomes to predict the evolutionary
relationship between genes, organisms, and biological
functions.2 At the core of Roundup is the reciprocal
smallest distance algorithm (RSD),3,4 which uses
global sequence alignment and estimates of evolu-
tionary distance to detect orthologous genes between
pairs of organisms. The RSD algorithm employs a
computational pipeline that includes local homology
(BLAST),5 global alignment (clustalw),6 and maxi-
mum likelihood estimates of evolutionary distances
(paml)7 to find sequences in a pair of genomes that
have reciprocally close evolutionary distances. The
use of evolutionary distance and reciprocity in RSD
can more effectively recover putative orthologs than
other methods, such as reciprocal BLAST procedures.4
However, this improvement in quality comes at the cost
of increased computation. For comparative genomics
resources like Roundup, the demand for computational
power scales with the square of the number of genomes.
A survey of UniProtKB,8 a comprehensive resource
of protein sequences, shows that the number of fully
sequenced genomes has doubled almost every year
since 2003 while the increase in processing speed has
lagged behind, continuing to grow under Moore’s
Law of doubling every 18–24 months. As a conse-
quence, Roundup’s computational demand has grown
as much as eight times faster than processor capacity.
This disparity is consistent with other complex bio-
informatics computational tasks and underscores the
necessity of building optimized code even in cases
where massive compute capacity is available, and of
seeking alternative strategies for computational pro-
cessing in general.

In designing computational genomics tools that
keep pace with the rate of genome sequencing, the
challenge is to optimize the computational task
while simultaneously optimizing the cost associated
with expansion of local compute clusters. Issues
that add to cost or complexity of expanding local
 compute clusters include: funding (up front cost,
grant funding), efficiency (variable usage patterns,
long queues), maintenance costs (datacenters, system
administrators, shared usage), and the gap between
demand and scaling the local cluster (demand can

fluctuate hourly and daily while renting new space,
hiring administrators, buying and installing new
computers can take months and years).9 An emerging
solution to these challenges is cloud computing.

Cloud computing offers rapid scaling, reduced
management, pay-as-you-go pricing, code repro-
ducibility and the potential for 100% utilization.10,11
The demand pricing model of cloud services is espe-
cially attractive when compared to local clusters that
have highly variable usage patterns and the standard
management and logistical issues—(eg, hiring sys-
tems administrators, acquiring space, installation,
configuration, maintenance and full costs including
electricity, etc.)—typical of local compute farms.12
However, the value of the cloud is vastly diminished if
its ‘elastic’ (scaled up or down depending on demand)
nature is not fully exploited.

In the present manuscript, we demonstrate
fundamental principles to optimize large-scale bio-
informatic operations using the comparative genom-
ics tool Roundup and the cloud services offered by
 Amazon. We highlight the importance of optimizing
code in order to reduce costs, and also describe
the steps necessary to estimate costs on standard
cloud infrastructures prior to launch. We show how
our procedures can substantially reduce cloud-
 computing costs and discuss how the principles we
have developed can be generalized to other types of
 bioinformatic tasks.

Methods
Cloud implementation
We previously published a series of methods to
port the reciprocal smallest distance algorithm of
Roundup to the Amazon cloud.13 Briefly, the cloud-
based pipeline uses a combination of Simple Storage
Service (S3), Elastic Compute Cloud (EC2), and
Elastic MapReduce (EMR) provided by Amazon
Web Services.14–16 The services are all based on a
pay-per-use model (Cost Breakdown). We used the
persistent storage provided by S3 to store Roundup’s
code base, all genomes (Genome Data), executable
programs linked to Roundup (BLAST, ClustalW,
and codeml), and all computed results. For compu-
tations, we provisioned 8-core High-CPU instances
with 7 GB of memory and 1.7 TB of local storage
from EC2. For workflow management, we used

http://www.la-press.com

Cost-effective cloud computing

Evolutionary Bioinformatics 2010:6 199

EMR, Amazon’s implementation of Hadoop17 on
EC2. By default, Hadoop is configured to run Java
programs. Thus, we devised an approach to use the
streaming mode of EMR to allow any program to
be executed from the command line and still take
advantage of MapReduce {Wall, 2010 #205}. This
approach enabled us to run our existing codebase
with almost no changes and demonstrated that the
method could be easily adapted to any complex task
and codebase.

We used the Ruby command line interface18 to
launch a cluster and configure jobs on EMR. The RSD
pipeline was divided into BLAST computation fol-
lowed by ortholog computation. Figure 1 demonstrates
the cloud-computing infrastructure for Roundup. We
monitored job completion status on the Hadoop user

interface by establishing a SOCKS server on the
local machine and an SSH tunnel between the local
machine and master node.

Code optimization
For the purposes of the present case study, and to ensure
maximal cost reduction on the cloud, we optimized
the speed and stability of RSD. Specific improvements
included reducing disk I/O, increasing in-memory
caching, and eliminating excessive invocations of the
BLAST executable. In addition, we rewrote the RSD
algorithm to simultaneously find orthologs for any
number of parameter combinations, a feature particu-
larly useful for Roundup because it contains orthologs
for 12 combinations of E-values (1e-20, 1e-15,
1e-10, 1e-5) and divergence values (0.2, 0.5, 0.8).

Elastic MapReduce cluster

1) Cluster instantiation

4) Cluster termination

2) Blast computation

HDFS

Blast result
[Dynamic storage]

Simple
storage service

[Persistent storage]

(S3)

Transfer RSD cloud
code, genomes and

executables to slave nodes

Blast result

Orthology result

3) Ortholog computation

Figure 1. Cloud computing setup for executing the reciprocal smallest distance algorithm (rSD) used within the roundup resource. Thin lines represent
components of rSD for cloud computing infrastructure and connections among them. Thick lines emphasize the multi-step execution of the cloud-
 computing pipeline for execution of the rSD package. Steps 2 and 3 are the major stages of rSD, the BLAST computation stage, and ortholog detection
stage. Further description of the workflow is provided in the text and in Wall et al.13

http://www.la-press.com

Kudtarkar et al

200 Evolutionary Bioinformatics 2010:6

This optimized cloud-ready RSD may be found at
http://wall.hms.harvard.edu/software.

Genome data
We tested the optimized configuration of RSD on
a selection of 334 new genomes available in the
Roundup database, which contained 568 genomes
in total at the time of writing. Our genome selection
contained a wide array of genomes from across the
tree of life, and consequently a wide variety of sizes
and sequence complexity sufficient to test the speed
and cost of the cloud. The number of amino acid
sequences per genome varied by over 2 orders of
magnitude, with an average of 4,415 sequences. The
total storage requirement to host all 334 genomes was
4.3 gigabytes (GB).

Cost breakdown
Following from our previous experiences with
Amazon cloud services,13 we used 8-core High-CPU
instances listed at a price of $0.68/hr at the time of
writing. In addition, we used the Elastic MapReduce
(EMR) processing service at $0.12 and S3 storage at
$0.15 per gigabyte.

“Bin” model of computation time
We developed a model to simulate the computation
time of executing RSD on a set of genomes on
cluster of a given size. Given that RSD is a two-
stage computational process—first BLAST is run for
all pairs of genomes and then ortholog detection is
run using pre-computed BLAST results to calculate
orthologs over a range of parameters—we fit two
linear models to account for computational complex-
ity of both stages. For the BLAST stage of the RSD
pipeline, we first fit a linear model between BLAST
computational time and the product of the number
of sequences in a pair of genomes. This model was
based on the work of Altschul et al,19 who show that
the expected time complexity of BLAST is O(WN),
where W is linear in the length of a query sequence
and N is the number of residues in the subject
genome. By extension, running BLAST on all the
sequences in a query genome is O(QN), where Q is
the number of residues in the query genome. We used
the number of sequences in a genome as an proxy
for the number of residues, a proxy that, based on fit
of the linear model (r2 = 0.8; P = 2.2e-16), yielded

time estimations accurate enough for the purpose of
ordering genome computations on a cluster in order
to approximately minimize cluster idle time. For the
ortholog detection stage, we fit a linear relationship
between time and the minimum number of sequences
in a pair of genomes (r2 = 0.3; P = 2.2e-16). This was
based on a time complexity analysis of the ortholog
detection stage, which internally performs O(1) work
for each sequence in the genome with the fewest
sequences (unpublished results). We fit these models
using a preselected set of 30 genomes ranging in size
from 75 to 66,710 sequences that were adequately
representative of the phylogenetic diversity present
in our larger sample.

We elected to estimate the overall runtime of
an EMR cluster for both the BLAST and ortholog
detection stages of the RSD algorithm, utilizing
two different strategies of ordering the jobs for
submission: 1) lexicographically by genome name
and 2) descending order of estimated runtime. The
first ordering was designed to be essentially random
with respect to runtime, while the second was
designed to avoid mixtures of long and short jobs that
would tend to increase the number of idle nodes in a
cluster at the end of a computation. In our simula-
tions, we grouped jobs into “bins” equal to the num-
ber of nodes in a cluster, for a wide range of cluster
sizes. We continually repopulated bins as computa-
tions on any given node in the cluster completed,
with repopulation dictated by the style of ordering
described above. We used the time estimates from
these simulations to compare the alternative order-
ing strategies in terms of their predicted utilization
of the cloud and percentage of idle nodes for a wide
range of cloud cluster sizes in an effort to determine
the optimal balance between speed of computation
and cost.

Results
For the purposes of testing RSD on the cloud, we
added 334 genomes to the 568 genomes currently in
the Roundup database. This addition amounted in a
total of 245,323 genome-to-genome pairs, following
the formula (N*O + N*(N − 1)/2), where N was the
number of new genomes and O was the number of
pre-existing genomes in Roundup. The genomes
varied considerably in size, and because RSD scales
with the product of the sizes of the input genome pair,

http://www.la-press.com
http://wall.hms.harvard.edu/software

Cost-effective cloud computing

Evolutionary Bioinformatics 2010:6 201

the time to process individual pairs of genomes also
 varied considerably, from 35 seconds to 71 hours.

roundup optimization and computation
Reduction in disk I/O, in-memory caching, and the
single invocation of the BLAST executable for a
given genome-to-genome comparison lead to a two-
fold increase in the speed of the BLAST stage of
RSD in comparison to our un-optimized RSD code.
In addition, simultaneous detection of orthologs for
all 12 RSD parameter combinations reduced the total
number of calculations by 12 and yielded a 7-fold
increase in the speed of the orthology detection stage.
These optimizations totaled to a 4.9 fold increase in
speed over the earlier version of RSD across the set
of genomes in Roundup. An additional benefit of the
code optimization was increased stability, leading to
fewer failed jobs and machines, an important benefit
when running more jobs per machine and more
machines per cluster.

Using the optimized code, we initiated computation
of our 245,323 genome-to-genome comparisons on a
50-node cluster. In the testing phase of this run, we
determined that the variation in genome size and con-
comitant variation in runtime left a large percentage
of the cluster idle while long-running jobs finished
computations. Because “out-of-the-box”, EMR did
not have the capacity to reduce the size of the cluster
without also terminating active processes, the varia-
tion in job size translated directly into wasted expense.
To avoid this undesirable property of EMR on EC2,
we elected to group genomes by size in terms of num-
bers of sequences (and presumably by runtime), rea-
soning that this would yield more effective utilization
of nodes within a cloud cluster. To test this reasoning,
we devised a strategy to predict computation time,
percentage of cluster usage, and total costs that would
model the optimal conditions for running RSD on the
cloud.

Deployment of a strategy for optimal
use of a cloud cluster
We designed a model to simulate the computational
time over a range of different cluster sizes and
orderings of jobs. Based on historical records of
runtimes, we were able to determine that our model
could predict actual run performance with greater
than 95% accuracy. Figure 2 depicts a computational

simulation for the BLAST stage of Roundup, and
demonstrates the differences in efficiency between
ordering jobs by genome name and ordering jobs in
descending rank of estimated runtime. The simulation
yielded the percentage of cluster idle time for the
genomes currently in Roundup and provided a direct
measurement of wasted expense, as idle nodes con-
tributed to the total cost at the same rate as operational
nodes. The simulation demonstrated that increas-
ing the size of a cluster results in a tradeoff between
reduction of overall computation time (via a larger
cluster that can run more jobs simultaneously) and
percentage of cluster idle time. For example, Figure 2
illustrates the inflection point at which the percent-
age of idle time across the cluster outweighs the over-
all speed of computation for the BLAST stage of the
RSD algorithm. Figure 2 also highlights the fact that
when jobs were ordered by estimated runtime rather
than lexicographically by genome name, a cluster size
of 250 minimized the total runtime while also mini-
mizing the percentage of idle processors. In general,
our simulations demonstrated that ordering jobs by
descending order of runtime rather than by genome
name yielded the most efficient cloud costs for a wide
range of cluster sizes.

0
20

40
60

80
10

0

Cluster size

%
 C

PU
 id

le
 ti

m
e

(h
ou

rs
)

50 100 150 200 250 300 350 400 450 500 550

Lexicographic ordering of genomes
Ordering of genomes based on descending order
of computation time

Figure 2. Graphical model to predict % CpU idle time for the BLAST
stage of the rSD cloud-computing pipeline. The plot estimates CpU
idle time for computation of 902 genomes on clusters of varying size
ranging from 50 to 550 instances. The green line represents idle time
when genomes are ordered lexicographically by genome name. The
red line represents idle time when genomes are ordered in decreasing
order of runtime. Under this simulation, use of 250-node cluster with jobs
ordered by runtime rather than by genome name yielded the optimal
cost-to-computation ratio.

http://www.la-press.com

Kudtarkar et al

202 Evolutionary Bioinformatics 2010:6

By taking advantage of these cost estimation
models and our cloud-optimized RSD code, we suc-
cessfully completed 245,323 genome comparisons
in just over 200 hours for a total cost of $8,000
USD. Plugging the same computation into our cost
estimation model with order determined lexico-
graphically by genome name, the total cost would
have exceeded $11,000 USD, at least 40% more than
our observed costs.

Discussion
The pay-per-use model of cloud computing provides
an attractive alternative for high performance
computing algorithms in bioinformatics. However,
few case studies have been published to demonstrate
how and when such infrastructure can be of benefit.
In the present manuscript, we use a common ortholog
detection tool, the reciprocal smallest distance
algorithm (RSD) to demonstrate best usage practices
of the Amazon Elastic Computing Cloud (EC2). We
detail how RSD can be run on EC2 via the web service
Elastic MapReduce (EMR), a service that facilitates
spawning and management of large numbers of jobs
over a cloud-based cluster of predefined size.

Amazon’s EMR is a Hadoop-based implementation
of MapReduce on Amazon’s cloud. Hadoop was
 originally developed with the intent of crawling,
indexing and processing huge amounts of data for
Internet search engines. Several companies like
Yahoo!, Facebook, and New York Times have taken
advantage of Hadoop with great success. In gen-
eral, the style of cluster computing embodied by
EMR offers considerable advantages including job
monitoring and flow management. However, EMR
and similar Hadoop-based computing frameworks do
not adapt well to batch-based algorithms like RSD.
One significant disadvantage identified through our
case study was the inability to identify and system-
atically terminate idle processors without impact-
ing active jobs running on other nodes within the
same cluster. Given the variance in genome size
and sequence complexity among fully sequenced
genomes, the time required to compute orthologs can
vary widely, from minutes to days. We determined
that such variation in runtime translates directly into
substantial cloud waste, in terms of idle processors
and unnecessary costs, if jobs run using EMR on EC2
are not managed appropriately a priori.

To account for this issue, we devised a model to
consider the relationship between cluster size, job
order, and idle time, as a means to predict and avoid
unnecessary costs. We demonstrate how this model
can be used to design an appropriate strategy for
submitting jobs to a cloud-computing cluster and
to determine the ideal size of the cloud cluster that
maximizes both computational speed and cluster occu-
pancy while minimizing costs. Applying our model
to the RSD ortholog detection algorithm, we were
able to estimate runtime for a wide array of genome-
to-genome comparisons, and test the performance of
two potential means of queuing the jobs for submis-
sion to EC2 via EMR, either lexicographically by
genome name, or in descending order of runtime.
Our tests demonstrated that the latter approach sig-
nificantly improved performance and maximized uti-
lization of the cloud cluster. By grouping our jobs by
runtime, we were able to run 245,323 RSD ortholog
detection processes in 200 hours for a total cost of
$8,000 USD. Had we ordered by genome name, or
 randomly with respect to runtime, our observed costs
would have been at least 40% higher, stressing the
importance of job management prior to launch.

Our case study highlights the importance of using
services like EMR with some caution, and provides
a valuable model of how to do so. Given the relative
simplicity of our model, we expect it to be adaptable
to other bioinformatics programs seeking to invest in
cloud services for either supplanting or augmenting
existing local computing infrastructure.

conclusions
When faced with computational bottlenecks imposed
by availability of local resources, cloud-computing
services like Amazon represent potential alternatives.
In the present manuscript, we used a common ortholog
detection tool (the reciprocal smallest distance algo-
rithm, RSD) to directly test the efficacy of the cloud
offered by Amazon. Our work was motivated by our
own local computing bottlenecks, and by the need to
keep the coverage of genomes in Roundup1 up-to-date
with the explosive rate of genome sequencing. We
demonstrated how best to utilize the EMR webservice
offered by Amazon for optimal job management and
minimal costs. Specifically, we designed a model to
predict job runtime and costs for an array of cloud
cluster sizes, and showed how this model can be used

http://www.la-press.com

publish with Libertas Academica and
every scientist working in your field can

read your article

“I would like to say that this is the most author-friendly
editing process I have experienced in over 150

publications. Thank you most sincerely.”

“The communication between your staff and me has
been terrific. Whenever progress is made with the
manuscript, I receive notice. Quite honestly, I’ve
never had such complete communication with a

journal.”

“LA is different, and hopefully represents a kind of
scientific publication machinery that removes the

hurdles from free flow of scientific thought.”

Your paper will be:
• Available to your entire community

free of charge
• Fairly and quickly peer reviewed
• Yours! You retain copyright

http://www.la-press.com

Cost-effective cloud computing

Evolutionary Bioinformatics 2010:6 203

to identify the optimal cluster size as well as the best
strategy for ordering jobs prior to submission to the
cloud. Most importantly, we show how our model can
be used to achieve at least a 40% reduction in over-
all cloud computing costs. Our effective use of the
cloud enabled a dramatic expansion of the Roundup
database20 to over 900 genomes, making it among
the largest publicly available orthology databases.
In summary, our case study indicates that the cloud
is a viable solution for boosting large-scale projects
like Roundup, and provides a best-practice model
for cloud computing that can be adapted to similar
comparative genomics algorithms.

Acknowledgements
We would like to thank the Amazon Web Services
for providing access to computational resources
throughout the duration of the project. We are grateful
to Prasad Patil, Rimma Pivovarov, Kristian Che
St-Gabriel, and Jike Cui for feedback and advice dur-
ing the project. Our work was funded by grants from the
National Science Foundation (0543480 and 0640809)
and National Institutes of Health (LM009261 and
LM009261-02S1) awarded to Dennis P. Wall.

Disclosure
This manuscript has been read and approved by
all authors. This paper is unique and is not under
 consideration by any other publication and has not
been published elsewhere. The authors and peer
reviewers of this paper report no conflicts of interest.
The authors confirm that they have permission to
reproduce any copyrighted material.

References
1. Deluca TF, Wu IH, Pu J, et al. Roundup: a multi-genome repository of

orthologs and evolutionary distances. Bioinformatics. 2006 Jun 15.
2. Altenhoff AM, Dessimoz C. Phylogenetic and functional assessment

of orthologs inference projects and methods. PLoS Comput Biol. 2009
Jan;5(1):e1000262.

3. Wall DP, Deluca T. Ortholog detection using the reciprocal smallest distance
algorithm. Methods Mol Biol. 2007;396:95–110.

4. Wall DP, Fraser HB, Hirsh AE. Detecting putative orthologs. Bioinformatics.
2003 Sep 1;19(13):1710–11.

5. Altschul SF, Lipman DJ. Protein database searches for multiple alignments.
Proc Natl Acad Sci U S A. 1990 Jul;87(14):5509–13.

6. Chenna R, Sugawara H, Koike T, et al. Multiple sequence alignment with the
Clustal series of programs. Nucleic Acids Res. 2003 Jul 1;31(13):3497–500.

7. Yang Z. PAML: a program package for phylogenetic analysis by maximum
likelihood. Comput Appl Biosci. 1997 Oct;13(5):555–6.

8. Boutet E, Lieberherr D, Tognolli M, Schneider M, Bairoch A. UniProtKB/
Swiss-Prot. Methods Mol Biol. 2007;406:89–112.

 9. Rosenthal A, Mork P, Li MH, Stanford J, Koester D, Reynolds P. Cloud
computing: a new business paradigm for biomedical information sharing.
J Biomed Inform. 2009 Apr;43(2):342–53.

 10. Dudley JT, Pouliot Y, Chen R, Morgan AA, Butte AJ. Translational
bioinformatics in the cloud: an affordable alternative. Genome Med. 2010;
2(8):51.

 11. Dudley JT, Butte AJ. In silico research in the era of cloud computing. Nat
Biotechnol. 2010 Nov;28(11):1181–5.

 12. Armbrust M, Fox A, Griffith R, et al. Above the clouds: a Berkeley view
of cloud computing. EECS Department, University of California, Berkeley.
2009 Feb 10.

 13. Wall DP, Kudtarkar P, Fusaro VA, Pivovarov R, Patil P, Tonellato PJ. Cloud
computing for comparative genomics. BMC Bioinformatics. 2010;11:259.

 14. Dean J, Ghemawat S. MapReduce: Simplified Data Processing on Large
Clusters. OSDI’04: Sixth Symposium on Operating System Design and
Implementation. San Francisco, CA2004.

 15. http://developer.amazonwebservices.com/connect/entry.jspa?externalID=
2264&categoryID=266

 16. http://aws.amazon.com/console/
 17. http://hadoop.apache.org/core/
 18. Elastic Map Reduce Ruby Client. Available at: http://developer.amazon

webservices.com/connect/entry.jspa?externalID=2264&categoryID=
266. Accessed on 2010 Nov 10.

 19. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment
search tool. J Mol Biol. 1990 Oct 5;215(3):403–10.

 20. http://roundup.hms.harvard.edu

http://www.la-press.com
http://www.la-press.com
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=2264&categoryID=266
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=2264&categoryID=266
http://aws.amazon.com/console/
http://hadoop.apache.org/core/
http://developer.amazon webservices.com/connect/entry.jspa?externalID=2264&categoryID= 266
http://developer.amazon webservices.com/connect/entry.jspa?externalID=2264&categoryID= 266
http://developer.amazon webservices.com/connect/entry.jspa?externalID=2264&categoryID= 266
http://roundup.hms.harvard.edu

