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At the time of translation, nascent proteins are thought to be sorted into their final 
subcellular localization sites, based on the part of their amino acid sequences (i.e., sorting 
or targeting signals). Thus, it is interesting to computationally recognize these signals from 
the amino acid sequences of any given proteins and to predict their final subcellular 
localization with such information, supplemented with additional information (e.g., k-mer 
frequency). This field has a long history and many prediction tools have been released. 
Even in this era of proteomic atlas at the single-cell level, researchers continue to develop 
new algorithms, aiming at accessing the impact of disease-causing mutations/cell 
type-specific alternative splicing, for example. In this article, we overview the entire field 
and discuss its future direction.

Keywords: protein sorting/targeting, subcellular loalization, sorting/targeting signals, prediction methods, 
bacteria, archaea, eukarya

INTRODUCTION

Although we  should not underestimate the importance of non-coding genes, the main players 
of the genetic system of living organisms are still regarded as protein-coding genes, which 
specify amino acid sequence information. Thus, in principle, we  should be  able to infer the 
in vivo fate of any protein from its amino acid sequence, if its environmental conditions, such 
as the cell type where it is synthesized, are appropriately given. For example, we  should be  able 
to predict the three-dimensional structure of a protein from its sequence or to design novel 
amino acid sequences that take a desired three-dimensional structure (Baker, 2019), as well as 
to predict how it binds/interacts with other proteins/small molecule ligands (Vakser, 2020). 
Another important information to be predicted is which kind of post-translational modifications, 
if any, it will take [at which residue(s); Audagnotto and Dal Peraro, 2017]. Also, it may be possible 
to predict the half-life of a given protein/peptide-based on the degradation signals (degrons) 
and/or other properties (Mathur et  al., 2018; Eldeeb et  al., 2019). Finally, the prediction of 
subcellular localization of a protein based on its amino acid sequence is a challenging field in 
bioinformatics. It is well accepted that the protein sorting for subcellular localization is regulated 
by so-called protein sorting (or targeting) signals, which are typically represented as a short 
stretch(es) of its amino acid sequence. Nowadays, many of the protein localization mechanisms/
pathways that recognize and utilize such signals have been clarified. Therefore, many predictors 
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have been developed for the recognition of such sorting signals 
and attempts have been done to combine such predictors, 
leading to the comprehensive prediction of the final localization 
site. However, not all such signals have been clarified. Moreover, 
not all proteins are equipped with such typical signals and use 
some alternative (minor/exceptional) pathways. Adding the 
knowledge of such exceptional cases will make the prediction 
system gradually more realistic but the objective assessment of 
its performance, like the ones commonly used in the field of 
machine learning, will become difficult because the knowledge 
of exceptional cases are quite unlikely to be  generalized (in 
other words, any sequence features of such exceptional proteins, 
which are nothing to do with their sorting mechanisms, would 
work as clues for their prediction). It should be  also noted 
that the practical value of subcellular localization predictors 
has been degraded because the localization information is being 
comprehensively determined with subcellular proteomics 
experiments (Harvey Millar and Taylor, 2014). However, the 
rise of synthetic biology as well as precision medicine will 
demand prediction tools that enable the prediction against 
artificial proteins and/or the prediction of the impact of mutations/
polymorphic variations on potential sorting signals.

In this review article, we  will introduce the outline of  
this field, emphasizing its recent progress. The readers are 
recommended to refer to additional reviews by other authors 
and ourselves, too (Imai and Nakai, 2010, 2019; Du and Xu, 2013; 
Nielsen, 2017; Nielsen et  al., 2019).

PREDICTION OF SUBCELLULAR 
LOCALIZATION SITES FOR BACTERIAL/
ARCHAEAL PROTEINS

Even in the simplest type of organisms, which are unicellular 
organisms without any subcellular compartments, proteins can 
be  localized at either the cytoplasmic space, the cellular 
membrane, or the extracellular space (i.e., secreted). This is 
basically the case for so-called Gram-positive bacteria and 
archaea, but, in reality, they also have a cell wall for another 
localization site. The basic prediction strategy for these proteins 
is to combine two kinds of predictors: a predictor for N-terminal 
signal peptides and that for transmembrane segments. Namely, 
a protein that neither has an N-terminal (and cleavable) signal 
peptide nor any hydrophobic transmembrane segment(s) is 
predicted to be  localized at the cytoplasmic space; a protein 
that has any transmembrane segment(s) (including an N-terminal 
uncleavable segment) is predicted to be localized at the cellular 
membrane; and finally, a protein that has a cleavable N-terminal 
signal peptide but does not have any transmembrane segment(s) 
is predicted to be  secreted to the extracellular space or to 
be localized at the cell wall. In Gram-positive bacteria, proteins 
that are anchored to the cell wall are characterized with the 
existence of the LPXTG-motif, followed by a hydrophobic 
domain and a tail of positively-charged residues (for recent 
review, see Siegel et  al., 2017). On the other hand, Gram-
negative bacteria contain one more membrane, the outer 

membrane, instead of the cell wall. Therefore, their possible 
localization sites are the cytoplasmic space, the inner membrane 
(which is equivalent to the membrane of Gram-positive bacteria), 
the periplasm, the outer membrane, and the extracellular space. 
Generally speaking, proteins that are localized at the latter 
three sites (the periplasm, the outer membrane, and the 
extracellular space) have an N-terminal cleavable signal peptide 
but do not have any hydrophobic transmembrane segment(s). 
Proteins that are integrated into the outer membrane are typically 
β-barrel proteins (Bakelar et  al., 2017). To distinguish these 
three types of proteins, their difference in amino acid composition 
and/or k-mer frequency as well as motif/homology-based 
methods are often used.

A pioneering work to propose the above formalism is 
published in 1991 (Nakai and Kanehisa, 1991), where the 
predictor was named PSORT (I). In 2003, its approach was 
inherited and elaborated by Fiona Brinkman’s group (Gardy 
et  al., 2003); their software is named PSORTb (or PSORT-B). 
Its latest version is PSORTb 3.0 (Yu et  al., 2010). The group 
published an excellent review of bacterial protein subcellular 
localization in 2006 (Gardy and Brinkman, 2006). According 
to the assessment shown in the review, PSORTb was the best 
predictor at that time. The group also releases PSORTdb, which 
contains a collection of experimentally-determined information 
of subcellular localization as well as systematic outputs of 
PSORTb applied to thousands of bacterial proteomes [its latest 
reference reports v. 3.0: (Peabody et  al., 2016) but its latest 
version is v. 4.0]. The same group also proposes PSORTm, a 
variant of PSORTb designed for the prediction of metagenomic 
data (Peabody et  al., 2020). The basic idea of PSORTm is to 
first identify the taxonomy of each read based on a reference 
database of microbial proteins. From the estimated taxonomy, 
the read is automatically classified with cell envelope types 
and then it is subject to a variant of PSORTb, which uses 
various types of analyses (such as motif/profile analysis) for 
its subcellular localization prediction. Although the assessment 
of its precise accuracy would be  difficult, they report an 
assessment using artificial data and the comparison with the 
prediction against pre-assembled data. In view of the rapid 
growth of microbiome analyses, the need of characterizing 
metagenome data should increase even more and thus the 
field looks promising. Of course, other groups have developed 
a variety of predictors for bacterial/archaeal proteins, among 
which PSO-LocBact (Lertampaiporn et  al., 2019), GPos-ECC-
mPLoc/Gneg-ECC-mPLoc (Wang et al., 2015), BUSCA (Savojardo 
et  al., 2018b), which will be  introduced below, and ClubSub-P 
(Paramasivam and Linke, 2011) are released relatively recently. 
Some of them claim that they can deal with proteins with 
multiple-locations. Although once a database for (eukaryotic) 
proteins with multiple subcellular localizations is released (Zhang 
et al., 2008), it still seems difficult to classify multiple localizations 
objectively and quantitatively because the data come from 
different sources which rely on different experimental conditions 
(but see the discussion below).

Beyond the basic scheme described above, there are several 
issues to be  further explored. One is the prediction of several 
specialized localization sites, such as host-associated, type III 
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secretion, fimbrial, flagellar, and spore. In PSORTb, they are 
treated as subcategories. Of course, it is favorable that a predictor 
can deal with such localization sites but it is questionable if 
such a predictor can also deal with artificial proteins that are 
transported to such locations. In other words, it is likely that 
such predictions are easily done with simple homology transfer 
from known examples. Another issue is how to deal with the 
proteins that are transported with minor pathways. For the 
users’ convenience, it is desirable that a predictor can inform 
users which pathway the input protein will use. For example, 
it is surely useful if a predictor informs us that the input 
protein will be  transported via the twin-arginine translocation 
pathway (Palmer and Stansfeld, 2020) or the lipoprotein signal 
peptidase II-dependent pathway (El Arnaout and Soulimane, 
2019). This can already be done with several predictors, including 
SignalP-5.0 (Almagro Armenteros et  al., 2019, see below). 
Hopefully, more knowledge of various protein sorting pathways 
should be  incorporated into predictors, even if the objective 
assessment of their predictability would become difficult. In 
this sense, more benchmarking efforts/systematic analysis of 
subcellular localization from various viewpoints would 
be  valuable (Stekhoven et  al., 2014; Orioli and Vihinen, 2019; 
see below).

PREDICTION OF SUBCELLULAR 
LOCALIZATION SITES FOR 
EUKARYOTIC PROTEINS

So far, many prediction methods of eukaryotic protein subcellular 
localization have been developed. They are mainly based on 

biological/empirical sequence features related to subcellular 
localization. In these methods, a variety of machine learning 
algorithms, such as the k-nearest neighbor (k-NN) classifier, 
the Random Forest classifier, the support vector machine (SVM), 
and the deep learning, have been used. Those methods usually 
target 10 main localization sites, where subcompartments of 
localization sites are merged into 10 major sites in order to 
increase the number of proteins per localization site (see 
Table  1). As further explained below, for the prediction of 
subcellular localization sites, three types of prediction features 
are generally used: targeting signal features, sequence-based 
features, and annotation-based features (Figure 1). The features 
associated with targeting signals are most powerful, when 
available, and many subcellular localization predictors based on 

TABLE 1 | Representative subcellular locations covered by predictors for 
eukaryotic proteins.

Main location Representative subcompartments

Nucleus inner and outer membranes, matrix, chromosome, 
nucleus speckle, etc.

Mitochondrion inner and outer membranes, matrix, 
intermembrane space

Endoplasmic reticulum (ER) ER membrane and lumen, microsome, rough ER, 
smooth ER, etc.

Plastid inner and outer membranes, stroma, thylakoid, etc.
Golgi apparatus Golgi apparatus membrane, lumen
Lysosome/Vacuole vacuole lumen and membrane, lysosome lumen 

and membrane, etc.
Peroxisome matrix, membrane
Cytoplasm cytosol, cytoskeleton
Cell membrane cell membrane, cell projection, apical, basal, etc.
Extracellular –

FIGURE 1 | Summary of representative prediction approaches of different subcellular localization.
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targeting signal features have been developed. Thus, we  first 
overview the representative targeting-signal predictors and then 
predictors for localization sites.

Prediction of Targeting Signals
The targeting signals are roughly grouped into two categories: 
N-terminal targeting signals and non-N-terminal targeting 
signals. The mitochondrial targeting signal (presequences), the 
signal sequence for the secretory pathway (signal peptides), 
and the transit signal for chloroplast (transit peptides) are 
well-known as N-terminal targeting signals, while the nuclear 
localization signal (NLS) and the nuclear export signal (NES) 
are internal signal sequences. Peroxisome matrix proteins 
contain peroxisomal targeting signal type 1 (PTS1) in the 
C-terminus.

Prediction of Mitochondrial Targeting Signal
Mitochondria have been estimated to host 1,000 to 1,500 distinct 
proteins. Approximately, 99% of mitochondrial proteins are 
encoded in the nuclear genome and are imported by translocases 
in the mitochondrial outer and inner membranes. Approximately 
60% of mitochondrial proteins possess an N-terminal cleavable 
targeting signal (presequence; Vögtle et  al., 2009). These 
presequences are typically recognized by the translocase of the 
outer membrane (TOM) receptors, which consist of Tom20 
and Tom22, in the TOM complex. Then, they direct the 
translocation of signal-containing proteins through the main 
protein translocation channel, Tom40 (Pfanner et  al., 2019). 
Upon translocation across the outer membrane, the presequence-
containing proteins are transferred across the inner membrane 
by the translocase of the inner membrane complex (TIM23) 
with the presequence translocase-associated motor (PAM). The 
length of presequences is 20–60 amino acid residues (Calvo 
et  al., 2017). The representative features of presequences are 
high and low composition of arginine residues and negatively-
charged residues, respectively (von Heijne, 1986; Schneider 
et  al., 1998). Positively charged amphiphilicity (amphiphilic 
α-helical structure with hydrophobic residues on one face and 
positively-charged residues on the opposite face) is also a well-
characterized feature (Chacinska et  al., 2009; Fukasawa et  al., 
2015). Recently, the TOM complex structure was revealed by 
cryo-electron microscopy and it provided structural insights 
into the import path of precursor protein containing presequence 
through the TOM complex (Araiso et  al., 2019). Presequence 
is typically cleaved by three mitochondrial peptidases in the 
matrix (MPP, Icp55, and Oct1; Mossmann et  al., 2012). The 
cleavage by MPP occurs after the position of two amino acids 
of C-terminal to an arginine (the R-2 motif). Icp55 and Oct1 
subsequently cleave off one amino acid and eight amino acids 
from the newly-emerged N-terminus, respectively. Therefore, 
proteins processed by MPP and Icp55 have an arginine at 
position -3 (the R-3 motif) in the presequence, while proteins 
processed by MPP and Oct1 have an arginine at position 
-10  (the R-10 motif).

MitoProtII (Claros, 1995), TargetP (Emanuelsson et al., 2000), 
Predotar (Small et al., 2004), TPpred3.0 (Savojardo et al., 2015), 

and MitoFates (Fukasawa et  al., 2015) were widely used 
presequence prediction methods. Those are developed using 
machine-learning techniques with these features of 
presequences. Those tools are also capable of predicting the 
existence of presequence as well as their cleavage site. 
MitoProtII and MitoFates are specific predictors for 
(mitochondrial) presequences, while TargetP, Predotar, and 
TPpred3.0 can also predict other N-terminal targeting signals, 
such as secretory signal sequence and chloroplastic targeting 
signal. Recently, TargetP2.0 is developed as a deep learning 
model, using bidirectional long-short-term memory (LSTM) 
and a multi-attention mechanism (Armenteros et  al., 2019). 
Among existing tools, three of them (MitoFates, TPpred3.0, 
and TargetP2.0) perform better in the prediction of both 
the presequence existence and its cleavage site. MitoFates 
employs an SVM classifier by combining amino acid 
composition and physicochemical properties with positively 
charged amphiphilicity, discovered presequence motifs, and 
position-weight matrices of cleavage site patterns. TPpred3.0 
is a combination of a Grammatical Restrained Hidden 
Conditional Random Field, N-to-1 Extreme Learning 
Machines, and SVMs. We  compared the performance of 
those three methods, using recent proteomic data of the 
N-termini of mouse mitochondrial proteins (we omitted 
proteins whose length of cleaved N-terminal sequences is 
shorter than 10 or longer than 100 amino acids in the 
comparison; Calvo et  al., 2017). The recalls of presequence 
prediction by TPpred3.0, MitoFates, and TargetP2.0 are 63.2, 
75.9, and 79.9%, respectively. Whereas the recalls of the 
cleavage prediction by TPpred3.0, MitoFates, and TargetP2.0 
are 27.0, 28.8, and 45.5%, respectively. MitoFates and 
TargetP2.0 show better performance on the presequence 
prediction. In the cleavage site prediction, TargetP2.0 far 
outperformed other methods, though the cleavage site 
prediction is still a challenging task. About 20% of mouse 
cleavage site data does not match with the R-2, R-3, and 
R-10 motifs (Calvo et  al., 2017). It will be  necessary to 
better characterize these untypical presequences.

Prediction of Signal Sequence
The targeting signal sequence for the secretory pathway (signal 
peptides) is located at the N-terminal of protein sequence in 
both eukaryotes and prokaryotes. The length of signal peptides 
is 16–30 amino acid residues. It is estimated that about 10–20% 
of eukaryotic proteome and 10% of bacterial proteome have 
the signal peptide at N-terminus (Kanapin et al., 2003; Ivankov 
et  al., 2013). In eukaryotic cells, the signal recognition particle 
(SRP) co-translationally recognizes signal peptides upon their 
emergence from the ribosome and transfers them to the Sec61 
translocon in the endoplasmic reticulum (ER) membrane via 
the SRP receptor (Nilsson et  al., 2015). The signal peptidase 
cleaves off signal peptides and thus mature proteins are generated. 
Signal peptides share several characteristic features (von Heijne, 
1990); they have tripartite architecture: a positively charged 
N-terminus (n-region), a hydrophobic segment (h-region), and 
a cleavage site for signal peptidase (c-region). The cleavage 
site is characterized by the (-1, -3) rule; amino acids with 
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small, uncharged side chains at the -1 and -3 position relative 
to the cleavage site.

For predicting signal peptides and their cleavage sites, many 
prediction methods, such as SignalP 4.0 (Petersen et al., 2011), 
SPEPlip (Fariselli et  al., 2003), Phobius (Krogh et  al., 2007), 
and DeepSig (Savojardo et  al., 2018a), have been developed. 
The discrimination between secretory and non-secretory proteins 
based on the signal peptide prediction has been most successful 
in targeting signal predictions because SignalP  3.0 has already 
achieved the best Matthews’ Correlation Coefficient (MCC) 
of 0.76  in eukaryotic data sets in an assessment study in 
2009 (Choo et  al., 2009). Recently, SignalP has been further 
improved as a deep neural network-based method, combining 
with conditional random field classification and optimized 
transfer learning (SignalP-5.0; Almagro Armenteros et  al., 
2019). According to their benchmark results, SignalP-5.0 
outperforms other methods in predicting both the signal 
peptide existence and the cleavage site: the MCC was 0.88  in 
the signal peptide prediction and the recall of cleavage site 
detection was 72.9%.

Prediction of Chloroplastic Targeting Signal
The translocons at the outer and the inner membranes of 
chloroplasts, the TOC and TIC complexes mediate the targeting 
and import of ~3,500 different nuclear-encoded proteins. Those 
proteins are imported from the cytoplasm via interaction 
between their cleavable, N-terminal chloroplast targeting signal 
(transit peptides), and the TOC–TIC import systems (Li and 
Chiu, 2010; Paila et  al., 2015). The transit peptide is removed 
off by the activity of stroma processing peptidase (SPP), which 
is related to the mitochondrial peptidase, MPP. SPP does 
not interact stably with the TOC–TIC import system, thus 
the cleavage event occurs after protein translocation or upon 
the emergence of the transit peptide cleavage site into the 
stroma. Chloroplast transit peptides are mostly unstructured 
but can form α-helical structures in hydrophobic environments 
(Bruce, 2001; Jarvis, 2008). In addition, chloroplast transit 
peptides have a high content of hydroxylated amino acids 
(e.g., serine residues) and positively charged amino acids and 
a very low content of negatively charged amino acids (Bhushan 
et  al., 2006). Transit peptides and presequences are therefore 
similar in several aspects. In spite of the similarities, chloroplast 
transit peptides direct precursor proteins specifically to 
chloroplasts. Ge et al. (2014) demonstrated that transit peptides 
and presequences can be  discriminated by their charge 
properties and hydrophobicity. Also, the analysis of 916 
chloroplast proteins revealed an N-terminal domain beginning 
with Met-Ala and the low composition of arginine in the 
N-terminal portion (Zybailov et  al., 2008). Moreover, Lee 
et al. (2019) recently showed that mitochondrial or chloroplast 
targeting specificities are characterized by the N-terminal 
regions of these targeting signals: an N-terminal multiple-
arginine motif was identified as the mitochondrial specificity 
factor and chloroplast evasion signal. Cleavage sites of transit 
peptides are characterized by higher content of Ala, Ile, Cys, 
and Val residues (Gavel and von Heijne, 1990). The three 
motifs, [V,I][R,A]↓[A,C]AAE, S[V,I][R,S,V]↓[C,A]A, and [A,V]

N↓A[A,M]AG[E,D], are derived by a set of 198 cleavage sites 
(Savojardo et  al., 2015).

The existing prediction tools for the chloroplastic targeting 
signal deal with cleavable N-terminal transit peptides. Widely 
used prediction methods have been integrated as a part of 
prediction of N-terminal targeting signals in general: e.g., 
TargetP (Emanuelsson et  al., 2000), iPSORT (Bannai et  al., 
2002), Predotar (Small et  al., 2004), and TPpred3 (Savojardo 
et  al., 2015). Among those tools, TPpred3 achieved better 
performance for transit peptide prediction (46% precision 
and 64% recall). As mentioned above, TargetP is recently 
updated to version 2.0 as a deep learning model (TargetP2.0; 
Armenteros et  al., 2019). In their comparison, the precision 
and recall of chloroplastic transit peptide identification of 
TargetP2.0 are 90 and 86%, respectively, while those of 
TPpred3 are 76 and 69%. In the cleavage site prediction, 
the recalls of TargetP2.0 and TPpred3 are 49 and 30%, 
respectively. Like mitochondrial presequence prediction, the 
cleavage site prediction of chloroplastic targeting signal is a 
difficult problem. Comparing with the data size of signal 
peptides, that of transit peptides is quite small and thus the 
lower performance could have been caused by this reason. 
Larger-scale N-terminal proteomics data of chloroplastic 
proteins would be  necessary for the improvement of their 
cleavage site prediction.

Prediction of Nuclear Localization Signals and 
Nuclear Export Signals
Nuclear proteins are transported into or out of the nuclei 
through the nuclear pore complex by the importin-β (Impβ) 
family nucleocytoplasmic transport receptors (Kimura and 
Imamoto, 2014). The human proteome contains 20 Impβ family 
proteins: 10 are nuclear import receptors (importin-β, 
transportin-1, -2, -SR, importin-4, -5 (RanBP5), -7, -8, -9 and -11), 
seven are export receptors (exportin-1 (CRM1), -2(CAS/CSE1L), 
-5, -6, -7, -t, and RanBP17), two are bi-directional receptors 
(imporin-13 and exportin-4), while the function of remaining 
RanBP6 is undetermined (Kimura and Imamoto, 2014). Those 
nucleocytoplasmic transport receptors are thought to recognize 
specific targeting signals on those cargo proteins. Several types 
of NLSs and NESs have been reported, so far. The most studied 
NLS is the classical NLS (cNLS) that binds to Impα, which 
is a cargo-binding adaptor exclusively used for Impβ (Lange 
et  al., 2007). Sequences similar to the Impβ binding (IBB)-
domain in Impα act as NLSs that bind directly to Impβ. 
Other known NLSs/NESs that bind directly to Impβ family 
are: the PY-NLS for Trn1 and Trn2 (Lee et  al., 2006), the 
Leu-rich NES for CRM1 (Hutten and Kehlenbach, 2007), the 
SR-domain for TrnSR (Maertens et  al., 2014), and the β-like 
importin binding (BIB)-domain, which binds to several 
nucleocytoplasmic transport receptors (Jäkel and Görlich, 1998). 
In addition, the RG/RGG-rich segment for Trn1 and the 
RSY-rich segment for TrnSR were reported recently (Bourgeois 
et al., 2020). However, these known NLSs/NESs do not explain 
all of the cargo recognition sites. Moreover, recent proteomic 
analysis for the identification of cargo proteins of 12 
nucleocytoplasmic transport receptors (10 nuclear import 

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Imai and Nakai Prediction of Protein Subcellular Localization

Frontiers in Genetics | www.frontiersin.org 6 November 2020 | Volume 11 | Article 607812

receptors and 2 bi-directional receptors; Kimura et  al., 2017) 
also pointed out that about 30% of identified cargos are 
shared by multiple receptors. The degree of multiplicity and 
diversity of cargo recognition by nucleocytoplasmic transport 
receptors are still controversial.

Among known nuclear targeting signals, cNLS and NES 
of CRM1 are well characterized. Thus, existing prediction 
methods of NLSs and NESs mainly target these two types. 
cNLSs are grouped into monopartite and bipartite NLSs. 
Monopartite NLS is characterized with a single stretch of basic 
residues (e.g., KR[K/R]R and K[K/R]RK), while bipartite NLS 
has two clusters of basic residues, separated by a spacer region 
of 10–12 amino acids (e.g., KRX10–12K[K/R][K/R]; Kosugi et al., 
2009). Lisitsyna et al. (2017) assessed the prediction performance 
of widely used methods, Nucpred (Brameier et  al., 2007), 
cNLSmapper (Kosugi et  al., 2008a), NLStradamus (Ba et  al., 
2009), NucImport (Mehdi et  al., 2011), and SeqNLS (Lin and 
Hu, 2013), using a human NLS dataset (Lisitsyna et  al., 2017). 
NucPred, seqNLS, and NLStradamus showed better MCCs 
(~0.3); however, the recalls of those methods were still ~45%. 
Recently, Guo et  al. (2020) reported INSP, which is a NLS 
predictor based on a multivariate regression model integrating 
PSSM-based conservation score, protein language-based SVM 
learning score, disorder-based structural score, and amino acid 
physical chemistry property-based score. On their test dataset, 
INSP showed 50.6% precision at 67.0% recall, whereas seqNLS, 
NLStradamus, and cNLSmapper obtained 60.6% precision at 
36.4% recall, 53.9% precision at 35.6% recall, and 50.9% 
precision at 50.9% recall, respectively. INSP showed a favorable 
balance between the prediction precision and recall, but NLS 
prediction seems to be still difficult because the cNLS sequence 
patterns are often observed in non-nuclear protein sequences 
(i.e., false positives).

Nuclear export signals function as essential regulators for 
the export of hundreds of distinct cargo proteins by interacting 
with CRM1. So far, 11 consensus patterns of NES have been 
proposed by a peptide-library study and structure analyses 
of CRM1-NES (Kosugi et  al., 2008b; Fung et  al., 2015, 2017). 
In general, NESs are represented by Φ0-x1-2-Φ1-(x)2-3-Φ2-(x)2-

3-Φ3-x-Φ4 (Φ1-4 denote Leu, Val, Ile, Phe, and Met while 
x is any amino acid. Φ0 is not restricted to the hydrophobic 
amino acids). Those hydrophobic residues in Φ0–Φ4 are 
bound to the corresponding hydrophobic pockets in CRM1. 
Based on the pattern of these Φ’s and spacing sequences, 
the NES motifs are classified into seven classes and four 
additional reverse classes, representing binding in the opposite 
direction. Several prediction tools for NESs, such as NetNES 
(La Cour et al., 2004), NESsential (Fu et al., 2011), NESmapper 
(Kosugi et  al., 2014), Wregex (Prieto et  al., 2014), LocNES 
(Xu et  al., 2015), and NoLogo (Liku et  al., 2018) have been 
developed, representing the consensus sequences with regular 
expressions or PSSMs as well as biophysical properties (disorder 
propensity, solvent accessibility, and secondary structure 
information). Among those tools, LocNES outperformed other 
prediction tools; however, the precision is ~50% at 20% recall. 
The low performance is caused by high false-positive rates. 
As mentioned above, the NES consensus patterns are simple 

and commonly observed in other protein sequences. Thus, 
it seems to be difficult to improve the prediction performance 
by only using the sequence information. Recently, Lee et  al. 
(2019) provided a comprehensive table for cargo proteins, 
containing the location of the NES motifs with the disordered 
propensity, the predicted secondary structures, and the 
conserved domain information. They also proposed a structure 
modeling-based prediction which predicts the binding energy 
of the NES peptide bound to the binding groove of CRM1, 
using multiple structures of CRM1-NES peptide complex as 
templates (Lee et  al., 2019). The structure-based methods 
performed at the same level as LocNES in recall rate but 
outperformed LocNES in specificity and false-positive rate. 
Thus, combining sequence-based and structure-based 
predictions seems promising in significantly improving the 
NES prediction. Moreover, NLSdb, which is a database 
containing NLSs and NESs, has been recently updated 
(Bernhofer et  al., 2018). In this update, the potential set of 
novel NLSs and NESs has been generated by an in silico 
mutagenesis protocol. Then, the potential NLSs and NESs 
match at least one nuclear protein but do not match any 
non-nuclear proteins. The updated NLSdb contains 2,253 
NLSs (1,614 are potential NLSs) and 398 NESs (192 are 
potential NESs). The data would be useful to further improve 
the NLS and NES prediction performances.

Prediction of Subcellular Localization Site 
of Protein in a Cell
Existing methods for predicting subcellular localization sites 
can be  grouped into four categories. The first category of 
prediction methods uses only sequence-based features. Some 
sequence-based features are used in localization site prediction 
because their differences are empirically known to be correlated 
with the differences between localization sites. Such empirical 
features include the frequency of dipeptides, n-grams, and 
k-mers as well as the pseudo amino acid composition of 
the entire amino acid sequence (or that of predicted mature 
sequence). Pseudo amino acid composition is more informative 
in terms of incorporating sequence-order information of a 
protein sequence (Chou, 2001). These empirical sequence-
based features have also been popular in various amino acid 
sequence-based predictions. Besides these systematically 
defined features, sequence features of various known targeting 
signals are more or less useful, as mentioned above. Functional 
motifs are also used in the prediction because sequence 
motifs associated with the function of a protein are closely 
related to its localization site (for example, a protein containing 
a DNA-binding motif is likely to be localized in the nucleus). 
The first sequence-based method was PSORT (I) (Nakai and 
Kanehisa, 1992), which was developed about 30  years ago, 
and later many other methods, such as WoLF PSORT 
(Horton et al., 2007), CELLO2.5 (Yu et al., 2006), and DeepLoc 
(Almagro Armenteros et  al., 2017), have been developed. 
WoLF PSORT is an update of PSORT II (Horton and Nakai, 
1997), which converts the input amino acid sequences into 
a numerical vector consisting of amino acid composition and 
PSORT/iPSORT (Nakai and Kanehisa, 1992; Bannai et al., 2002) 
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localization features, and then classifies proteins into subcellular 
locations with a weighted k-NN classifier. CELLO2.5 is a 
two-level SVM classifier system: the first level comprises a 
number of SVM classifiers, each based on distinctive sets 
of feature vectors generated from amino acid sequence data, 
and the second level SVM classifier functions as the jury 
machine to generate the probability distribution of decisions 
for possible localizations. Recently, several deep learning-
based predictors are developed. DeepLoc is their representative. 
DeepLoc uses recurrent neural networks (RNNs) with long 
short-term memory (LSTM) cells that process the entire 
amino acid sequence and an attention mechanism identifying 
sequence regions important for the subcellular localization.

The second category of predictors uses annotation-based 
features obtained from experimental evidence. GO terms, 
localization annotation in UniProt, functional domain, protein-
protein interaction, and literature information from PubMed 
abstracts are categorized into this type of features. mGOASVM 
(Wan et al., 2012) is a predictor for the subcellular localization 
of multi-location proteins based on GO-terms. In mGOASVM, 
multi-label GO vectors, which are the occurrences of GO terms 
of homologous proteins, are constructed, and then GO vectors 
are recognized by SVM classifiers equipped with a decision 
strategy that can produce multiple-class labels for a query 
protein. pLoc-mEuk (Cheng et  al., 2018) is recently developed 
by extracting the key GO information into “Chou’s general 
Pseudo Amino Acid Composition.” pLoc-mEuk can also deal 
with proteins with multiple locations. Generally speaking, 
however, compared with those features, the transfer of localization 
annotation from homologous protein seems to be  simpler and 
more useful. We previously pointed out that a simple homology-
based inference outperforms methods based on machine learning 
if a homologous protein with localization annotation is available 
(Imai and Nakai, 2010).

The third category is the predictors combining sequence-
based and annotation-based features, such as MultiLoc2 (Blum 
et  al., 2009), SherLoc2 (Briesemeister et  al., 2009), YLoc 
(Briesemeister et  al., 2010), and LocTree3 (Goldberg et  al., 
2014). MultiLoc2 utilizes an SVM predictor, MultiLoc (Höglund 
et  al., 2006), which is based on overall amino acids and the 
presence of known sorting signals, combined with phylogenetic 
profiles and GO terms. SherLoc2 combines MultiLoc2 and 
EpiLoc (Brady and Shatkay, 2008), a prediction system based 
on features derived from PubMed abstracts. YLoc is based on 
a simple naive Bayes classifier, which combines various features 
ranging from simple amino acid composition to annotation 
information, like PROSITE domains, and GO terms from close 
homologs. LocTree3 improves over a machine learning-based 
predictor, LocTree2 (Goldberg et al., 2012), by the combination 
of the machine learning-based method with a homology-based 
inference transfer through PSI-BLAST.

The fourth category is the ensemble of several prediction 
methods (meta-servers), which collects prediction scores of 
several predictors, and then they are trained by a machine 
learning technique, such as the Random Forest classifier 
and SVM. SubCons (Salvatore et  al., 2017) is a recent 
ensemble method, which combines four predictors (CELLO2.5, 

LocTree2, MultiLoc2, and SherLoc2) using a Random Forest 
classifier. BUSCA also integrates different prediction methods. 
Prediction pipeline of BUSCA consists of predictors for 
targeting signals [DeepSig (Savojardo et  al., 2018a) and 
TPpred3 (Savojardo et al., 2015)], for GPI-anchors [PredGPI 
(Pierleoni et  al., 2008)], for transmembrane domains 
[ENSEMBLE3.0 (Martelli et al., 2003) and BetAware (Savojardo 
et al., 2013)], and for discriminators of subcellular localization 
of both globular and membrane proteins [BaCelLo (Pierleoni 
et  al., 2006), MemLoci (Pierleoni et  al., 2011), and SChloro 
(Savojardo et  al., 2017)].

Recent Benchmarks for Subcellular 
Localization Prediction
Evaluation of prediction performance of subcellular localization 
prediction is often difficult due to the following reasons: (i) 
There are often overlaps between their own training data and 
the test data of different methods. In those cases, the 
performances could be  overestimated. (ii) Comparison of 
sequence-based methods with annotation-based methods or 
methods combining sequence- and annotation-based methods 
tends to be  unfair. For example, the measured accuracy of 
annotation-based methods would become apparently higher 
if the majority of test data used for sequence-based methods 
are included in the databases used for the prediction by 
annotation-based methods.

To evaluate the prediction performance with less bias, 
Salvatore et  al. recently made a benchmark dataset which 
consists of proteins containing identical subcellular annotations 
in at least two out of the three resources (Salvatore et  al., 
2017): two large-scale study data on subcellular localization 
of human proteins (Uhlen et  al., 2010; Fagerberg et  al., 2011; 
Breckels et  al., 2013; Christoforou et  al., 2014) and proteins 
with “manually curated” annotation of subcellular localization 
in UniProt (UniProt Consortium, 2019). Then, they examined 
the performance of six state-of-the-art methods [CELLO2.5 
(Yu et  al., 2006), LocTree2 (Goldberg et  al., 2012), MultiLoc2 
(Blum et al., 2009), SherLoc2 (Briesemeister et al., 2009), WoLF 
PSORT (Horton et  al., 2007), and YLoc (Briesemeister et  al., 
2010)] as well as SubCons (Salvatore et  al., 2017) for eight 
localization sites (nucleus, mitochondria, ER, Golgi apparatus, 
lysosome, peroxisome, plasma membrane, and cytoplasm). They 
used the Generalized Squared Correlation (GC2; Baldi et  al., 
2000) for performance evaluation. GC2 is a subtype of Gorodkin 
measure (Gorodkin, 2004), which can be seen as a generalization 
of MCC that applies to K-categories. The Gorodkin measure 
is more informative than the accuracy measure when there is 
an imbalance of classes. For K  =  2, the Gorodkin measure 
squared is GC2. In this assessment, SubCons showed the best 
overall prediction performance, GC2  =  0.32, and the second 
best was SherLoc2 (GC2  =  0.27). On the other hand, during 
the development of DeepLoc (Almagro Armenteros et al., 2017), 
the authors made an independent test set by performing a 
stringent homology partitioning against experimentally annotated 
protein data in UniProt. Homologous proteins that fulfill a 
certain threshold of similarity were clustered, and then each 
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cluster of homologous proteins was assigned to one of the 
five folds, ensuring that similar proteins were not mixed between 
the different folds. Four were used for the training and validation 
while the remaining one for testing. Using the test set, they 
compared the prediction performance of DeepLoc with the 
above six methods (CELLO2.5, LocTree2, MultiLoc2, SherLoc2, 
WoLF PSORT, and YLoc) and iLoc-Euk (Chou et  al., 2011) 
in 10 localization sites (extracellular and plastid are added 
into the above eight localization sites). DeepLoc showed the 
best Gorodkin measure of 0.735, and the second and third 
best were achieved by iLoc-Euk at 0.682 and YLoc at 0.533, 
respectively.

Although efforts to evaluate the prediction performance with 
less bias have been made, more efforts seem to be  necessary. 
According to recent benchmarking reports based on human 
data sets and membrane proteins (Orioli and Vihinen, 2019; 
Shen et al., 2020), sequence-based methods tend to show lower 
performance than annotation-based methods, including meta 
methods. However, a certain number of proteins (or their 
highly homologous ones) in the benchmark test data seem to 
be included in the database used in annotation-based methods. 
In addition, methods trained and tested with newly constructed 
data tend to show better performance because older data tend 
to include more mislabeled or questionable examples. Indeed, 
Almagro Armenteros et  al. (2017) pointed out a considerable 
decrease of experimentally confirmed proteins in UniProt after 
a major change in the annotation standards on release 2014_09. 
The prediction performances of machine learning algorithms 
significantly depend on the datasets used. Some of the previously 
developed methods may outperform newer methods when they 
are trained and tested with the latest datasets. For fair assessments, 
performance comparison should therefore be  done in each 
category with standardized benchmark data sets, ensuring 
independence between training and test data sets. Unfortunately, 
to the best of our knowledge, such standardized benchmark 
data sets have not been constructed so far. The data sets used 
in previous studies are often used in the development of novel 
methods. The standardization of prediction performance 
comparison is a big challenge but this is essential and important 
in this field. Recent progress in proteome-wide subcellular 
protein mapping (see below) would provide substantial 
information on the subcellular localization of unverified or 
unseen proteins as well as the information for correcting 
mislabeled proteins, which should be  helpful in constructing 
standardized benchmark data sets, obviously.

PROTEIN LOCALIZATION RESOURCES 
OBTAINED FROM RECENT SPATIAL 
PROTEOMICS APPROACHES

Proteomics data for capturing the spatial distribution of proteins 
at the subcellular level (subcellular protein mapping) are useful 
resources for their predictive studies. Recent advances in high-
throughput microscopy, quantitative mass spectrometry (MS), 
interactome mapping, and machine learning applications for 

data analysis have enabled proteome-wide subcellular protein 
mapping (Lundberg and Borner, 2019; Borner, 2020). Three 
experimental approaches are generally used for spatial proteomics: 
proteome-wide imaging of protein localization, protein–protein 
interaction network analysis, and MS-based organelle profiling. 
All of these approaches have produced numerous available 
data of human protein subcellular localization. The Human 
Cell Atlas provides an invaluable resource of imaging data at 
a single-cell level (localization of 12,003 proteins; Thul et  al., 
2017). The global organellar map based on biotin identification 
(BioID) data is now available as a resource of protein–protein 
interaction network analysis (4,145 proteins; Go et  al., 2019). 
Several organelle profiling resources are obtained from fibroblasts 
(2,533 proteins; Jean Beltran et  al., 2016) and cell lines: HeLa 
(8,710 proteins; Itzhak et  al., 2016), five different cancer cell 
lines (12,418 proteins; Orre et  al., 2019), and U-2 OS (2,412 
proteins; Geladaki et  al., 2019). In addition, organelle profiling 
resources of mouse primary neurons (Itzhak et al., 2017), mouse 
liver (Krahmer et  al., 2018), mouse pluripotent stem cell 
(Christoforou et  al., 2016), rat liver (Jadot et  al., 2017), and 
Saccharomyces cerevisiae (Nightingale et  al., 2019) are 
also available.

Each of these approaches has its own merits for the 
identification of protein localization: the imaging approach 
provides multiple localizations and has a single-cell resolution 
while the MS-based approach can provide peptide-level resolution 
and reveal the differential localization of splicing isoforms, 
proteolytically processed forms, and the isoforms via differential 
post-translational modifications. A recent imaging-based large-
scale study reports that about a half of all proteins are localized 
at multiple compartments, suggesting that there is a shared 
pool of proteins even among functionally unrelated organelles 
(Thul et  al., 2017). Prediction of proteins that exist in two or 
more subcellular location sites is an important issue for 
understanding the biological process in a cell. A recent review 
summarizes the prediction methods that can deal with proteins 
with multiple locations (Chou, 2019).

A number of differentially localized isoform pairs were found 
by MS-based approaches (Christoforou et  al., 2016; Geladaki 
et  al., 2019). Such localization change at the isoform level is 
an interesting issue in terms of targeting signal usage. Protein 
isoforms seem to be  generated by a stress response or in a 
tissue-specific manner. Thus, a number of localization changes 
at the isoform level may have been unidentified still. For 
mitochondrial proteins, we  previously applied MitoFates to 
search for differentially-localized candidates of isoforms and 
obtained 517 genes, which were 44% of the predicted 
mitochondrial genes (Fukasawa et  al., 2015), suggesting that 
the major localization changes of mitochondrial protein isoforms 
are regulated by the changes in their N-terminal targeting 
signal. Recently, relative protein levels of more than 12,000 
genes across 32 normal human tissues were quantified and 
tissue-specific or tissue-enriched proteins were identified (Jiang 
et al., 2020). Also, they identified a total of 2,436 tissue-enriched 
protein isoforms. Those isoforms may be  useful for the 
investigation of tissue-specific localization changes at the 
isoform level.
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Multiple localization proteins and localization changes among 
isoforms imply potential “moonlighting” activity. Comprehensive 
analyses of these proteins should boost our further understanding 
in cell biology.

CONCLUSION

A number of computational tools for the analyses of protein 
subcellular localization are introduced in this review. Although 
many of the localization sites of a given protein would be  able 
to be  predicted through a mere homology transfer nowadays, 
we  would like to emphasize that the subcellular localization 
prediction problem is not a pedantic one at all. The authors 
believe that the in silico accumulation of various knowledge 
on protein sorting/targeting processes is important. Prediction 
methods can be  used for assessing how much we  understand 
these processes quantitatively. The future methods should 
be  useful for various purposes, such as for the evaluation of 
artificial proteins, for understanding why some proteins are 

localized at multiple positions and for inferring how tissue-
specific and/or condition-specific isoforms can change their 
localization sites. Therefore, in our opinion, the knowledge-
based approach would be  most important in the future of 
this field and such knowledge should be  integrated into the 
wider knowledge on the in vivo fate of proteins since all of 
the processes are interrelated with each other (Nakai, 2001).
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