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1  | INTRODUC TION

Animal activity patterns are governed by the acquisition of spatially 
and temporally variable resources from the landscape, such as food, 

mates, shelter, or hospitable environmental conditions. Successfully 
procuring food is particularly essential for individual survival, 
growth, reproduction, and ultimately fitness (Tetzlaff et al., 2017). 
Therefore, it is important to link the distribution and availability of 
food with an animal's space use to better understand the drivers of 
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Abstract
Food acquisition is an important modulator of animal behavior and habitat selection 
that can affect fitness. Optimal foraging theory predicts that predators should select 
habitat patches to maximize their foraging success and net energy gain, likely achieved 
by targeting areas with high prey availability. However, it is debated whether prey 
availability drives fine-scale habitat selection for predators. We assessed whether an 
ambush predator, the timber rattlesnake (Crotalus horridus), exhibits optimal forag-
ing site selection based on the spatial distribution and availability of prey. We used 
passive infrared camera trap detections of potential small mammal prey (Peromyscus 
spp., Tamias striatus, and Sciurus spp.) to generate variables of prey availability across 
the study area and used whether a snake was observed in a foraging location or not 
to model optimal foraging in timber rattlesnakes. Our models of small mammal spatial 
distributions broadly predicted that prey availability was greatest in mature decidu-
ous forests, but T. striatus and Sciurus spp. exhibited greater spatial heterogeneity 
compared with Peromyscus spp. We found the spatial distribution of cumulative small 
mammal encounters (i.e., overall prey availability), rather than the distribution of any 
one species, to be highly predictive of snake foraging. Timber rattlesnakes appear to 
forage where the probability of encountering prey is greatest. Our study provides 
evidence for fine-scale optimal foraging in a low-energy, ambush predator and offers 
new insights into drivers of snake foraging and habitat selection.
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movement and habitat selection (Heard et al., 2004; Williams et al., 
2013).

Given the fitness trade-offs of investing time and/or energy 
into one behavior instead of another (Beaupre, 2008; Glaudas & 
Alexander, 2017), optimal foraging theory predicts that predators 
should forage where they will have the greatest success (i.e., net 
energy gain; Charnov, 1976). Space use by predators in resource-
patchy environments depends on patch-scale prey availability rel-
ative to the surrounding habitat (Charnov, 1976; McNair, 1982). 
Predators could therefore forage optimally by distributing them-
selves in space proportionally to the availability of prey (Flaxman & 
Lou, 2009; Williams et al., 2013). However, the behavioral “response 
race” between predators and prey can produce varying predictions 
for the overlap of predator and prey spatial distributions. Predators 
are expected to aggregate in areas where prey are abundant at large 
spatial scales but less precisely match prey distributions at fine 
scales due to prey avoidance of predator-dense areas (Hammond 
et al., 2012; Sih, 2005). Accordingly, wolves (Kittle et al., 2017), sea 
lions (Womble et al., 2009), and snakes (Madsen & Shine, 1996) have 
all been documented selecting habitats with higher prey availability 
at broad (regional or macrohabitat) scales.

A complication to understanding drivers of foraging behavior is 
that habitat selection can be multi-scale and hierarchical (Johnson, 
1980; Mayor et al., 2009). Predators can demonstrate hierarchical 
foraging behavior as a result of multiple scale-dependent processes, 
such as predation risk or resource availability (McNeill et al., 2020). 
Conversely, observed foraging patterns can result from predomi-
nantly fine-scale resource selection (Harvey & Weatherhead, 2006). 
The space use of ectotherms is often driven by microhabitat con-
ditions that affect their ability to thermoregulate, avoid predation, 
and forage (Harvey & Weatherhead, 2006; Sutton et al., 2017). 
Therefore, snakes may not distribute themselves proportionally to 
prey availability and forage optimally if prey-rich patches do not co-
incide with optimal environmental conditions for thermoregulation 
(Blouin-Demers & Weatherhead, 2001; Carfagno et al., 2006).

Indeed, some studies have found no evidence of snakes selecting 
prey-rich areas (Carfagno et al., 2006; Michael et al., 2014; Sperry 
& Weatherhead, 2009). However, other studies have found mixed 
or scale-dependent support for prey-mediated habitat selection by 
snakes (Glaudas & Rodríguez-Robles, 2011; Whitaker & Shine, 2003). 
Multi-scale studies emphasize the importance of habitat structure 
coinciding with prey availability for snake habitat selection (Glaudas 
& Rodríguez-Robles, 2011; Heard et al., 2004). Therefore, whether 
snakes optimally forage remains unresolved. Investigating the spatial 
overlap of snakes and their prey is essential to understand potential 
drivers of foraging behavior and habitat selection.

One hypothesis for the spatial overlap of snakes and their small 
mammal prey is that similar habitat preferences drive spatial interac-
tion (Blouin-Demers & Weatherhead, 2001). Snakes therefore select 
habitat based on thermoregulation or other habitat requirements 
and opportunistically forage, which has been observed in gener-
alist predators such as ratsnakes (Pantherophis spp.) and Eastern 
racers (Coluber constrictor; Blouin-Demers & Weatherhead, 2001; 

Carfagno et al., 2006). Snakes that opportunistically forage may 
have home ranges containing high prey densities, but they may not 
exhibit fine-scale selection that maximizes potential prey encoun-
ters (Sperry & Weatherhead, 2009). An alternative hypothesis is 
that the spatial distribution of prey abundance drives snake habitat 
selection (Blouin-Demers & Weatherhead, 2001). Prey-mediated 
habitat selection suggests greater alignment of snake space use with 
prey availability. This pattern is more likely to be evident in dietary 
specialists (Madsen & Shine, 1996) or during times of environmental 
stress such as drought (Whitaker & Shine, 2003).

Although some studies support contrasting hypotheses, not all 
studies used effective metrics for assessing prey distributions and 
snake site selection. First, most studies are conducted on a mac-
rohabitat scale, which may not be appropriate when investigating 
snake habitat selection (Harvey & Weatherhead, 2006). Additionally, 
researchers typically evaluate prey abundance rather than prey avail-
ability. Prey abundance may not equate to prey availability when fac-
tors affecting prey detection are not considered (Reinert et al., 2011; 
Sperry & Weatherhead, 2009). Specifically, prey may be more abun-
dant in some habitat types but more easily detected by the preda-
tor in others (i.e., higher catchability; Hopcraft et al., 2005). To our 
knowledge, no study has estimated prey availability for snakes at a 
fine scale (but see Glaudas & Rodríguez-Robles, 2011) and assessed 
prey distributions as a driver of snake foraging site selection.

The paucity of studies examining prey availability at a fine scale 
may be due to the logistical challenges of determining the exact 
microhabitats where the predator forages (Glaudas & Rodríguez-
Robles, 2011). However, rattlesnake natural history characteristics 
make them ideal subjects to test hypotheses related to optimal 
foraging theory. We sought to determine whether foraging site se-
lection of timber rattlesnakes (Crotalus horridus; hereafter, TRS) is 
related to the availability of prey on a fine scale.

Timber rattlesnakes are sit-and-wait ambush predators that 
may wait at a site for many hours to several days (Clark, 2006). 
They also have a stereotyped foraging posture, in which they orient 
their head perpendicular to the long axis of a log or other downed 
wood while maintaining a tight body coil (Reinert et al., 2011). The 
species’ conspicuous foraging behavior allows for identification of 
exact foraging sites. In addition, TRS feed almost exclusively on small 
mammals, primarily shrews (Soricidae), voles (Cricetidae), mice in the 
genus Peromyscus, chipmunks (Tamias striatus), and squirrels (primar-
ily Sciurus carolinensis; Clark, 2002). This relatively narrow dietary 
breadth reduces the potential for complex interactive or conflicting 
relationships between primary prey, alternative prey, and TRS forag-
ing preferences (Carfagno et al., 2006).

Our multi-year radio-telemetry study provided a behaviorally 
and spatially explicit dataset of TRS activity that allowed us to dif-
ferentiate among behavior-specific site use and account for indi-
vidual variation in foraging site selection. The primary goals of our 
study were to define small mammal spatial distributions and their 
overlap with observed TRS foraging locations at a fine spatial scale 
to determine whether TRS optimally forage in prey-rich areas. Our 
approach entailed (1) quantifying small mammal relative availability 
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with widely distributed camera traps, (2) projecting small mammal 
encounters across the study area with landscape predictors, and (3) 
using radio-telemetry-derived TRS behavioral data and the spatially 
continuous prey encounter surface to assess the predictive strength 
of prey availability on TRS foraging site selection.

2  | METHODS

2.1 | Study site

We conducted our study within a mixed-use forest landscape 
(approximately 5000  ha) in southeastern Ohio. Vinton Furnace 
Experimental Forest (VFEF) consists primarily of second-growth 
forests punctuated by early-successional stands managed through 
various silvicultural and management practices (ODNRF, 2020). 
Forest communities in the region vary along topographic gradients. 
Ridgetops and southwestern-facing slopes are dominated by mixed 
oak (Quercus spp.) and hickory (Carya spp.) assemblages and shrubby 
(Vaccinium spp.) understory. Northeastern-facing slopes and river 
bottoms harbor mesophytic taxa such as Acer rubrum, Acer saccha-
rum, and Ulmus rubra (Adams et al., 2019).

2.2 | Camera trap design

Timber rattlesnakes hunt along logs (Reinert et al., 1984), and 
these microhabitats are also used by small mammals as “runways” 
(Douglass & Reinert, 1982; Figure 1A). To simulate this foraging be-
havior, we fixed passive infrared game cameras (Moultrie M-888) to 
metal fence posts approximately one meter aboveground and posi-
tioned them directly overlooking the nearest log (>15 cm diameter) 

at each site (Figure 2). We placed a canister with small holes that 
contained peanut butter under each camera. Our camera deploy-
ment protocol allowed us to obtain fine-scale rodent encounter 
rates, which we considered more informative of prey availability 
for TRS than representative macrohabitat-scale estimates of rodent 
abundance (Reinert et al., 2011).

We deployed game cameras from 2017–2018 at 242 randomly 
chosen, unique sites. We stratified these random points across 
the dominant macrohabitat types (deciduous forest, pine planta-
tions, clear cuts, and burns) to ensure adequate sampling of each 
land cover type proportional to its prevalence on the landscape. 
Accordingly, we sampled more sites from deciduous forests (repre-
senting approximately 80% of the landscape) than any other forest 
type (Table A1). We also set 26 camera traps (10% of all camera lo-
cations) at previously noted TRS foraging locations. We placed this 
subset of cameras at observed foraging sites between a day to a few 
weeks (range 1–86 days; median 15 days) of the snake's departure 
from the site.

Game camera active intervals varied by site and variability in 
deployment length was influenced in part by camera battery and 
site accessibility. We set game cameras at sites for 3–51 days (mean 
7.3 days; median 6 days) between June 15 and October 13, 2017, 
and 4–22 days (mean 8 days; median 6 days) between May 24 and 
September 26, 2018. We focused our analysis on likely prey items for 
TRS that were also consistently captured on camera: white-footed/
deer mice (Peromyscus leucopus/maniculatus), eastern chipmunks 
(Tamias striatus), and eastern gray squirrels/fox squirrels (Sciurus 
carolinensis/niger). We could not perform photo identification of 
individuals of each species. We therefore monitored occupancy 
(presence/absence) of each species during observation windows of 
roughly 12-h day (approximately 07:00–20:00 h) and night (approx-
imately 21:00–06:00  h) periods. Because night intervals spanned 

F I G U R E  1   Characteristic ambush 
posture of timber rattlesnakes (Crotalus 
horridus) used to identify foraging 
locations, including (a) foraging at logs and 
downed woody debris, (b) vertical tree 
foraging, and (c) non-log foraging along 
the forest floor. Snakes maintain a tight, 
“S”-shaped coil regardless of foraging 
orientation. Photo credits to B. Hiner and 
E. Scott

(a)

(c)

(b)
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two dates, we considered small mammals active in the early morning 
(e.g., before 06:00 h) as present in the night interval of the previous 
date. We used observations from all camera traps (random and pre-
vious TRS locations) to model prey availability across the study area.

2.3 | Landscape variables characterizing small 
mammal distributions

Habitat selection for small mammals, particularly as it relates to for-
est structural features, is typically assessed with microhabitat and 
vegetation structural characteristics, such as coarse woody debris 
and leaf litter cover (Nelson et al., 2019). However, it was not feasible 
to assess microhabitat features for each camera location and across 
the landscape. Airborne light detection and ranging (LiDAR) can 
describe horizontal and vertical vegetation structure across large 
areas, providing a valuable alternative to the use of intensive field-
based methods to assess forest structure (Simonson et al., 2014). 
Schooler and Zald (2019) demonstrated that LiDAR-derived metrics 
are effective predictors of small mammal diversity in a temperate 
mixed-forest community. We therefore used LiDAR and other re-
motely sensed data to quantify forest structure and predict small 
mammal occupancy across the landscape.

We described landscape composition and structure at each 
camera location with 16  land-use, floristic, and topographic vari-
ables from fine-scale (5-m) stand-level or remotely sensed data for 
our study area (Table 1). Stand-level forest management data, in-
cluding burn history and stand age, reflect active management at 
VFEF by the Ohio Division of Forestry and U.S. Forest Service over 
the past 60 years. We derived topographic variables, such as Beers’ 
aspect (Beers et al., 1966), slope, and elevation from a LiDAR dig-
ital terrain model (DTM). To describe forest composition, we con-
sidered compositional, multivariate metrics (NMDS1 and NMDS2) 
that allowed for continuous variation across the landscape. Adams 

et al. (2019) combined a LiDAR-derived DTM, vegetational plot 
data, and Landsat 8 OLI imagery to generate floristic gradients 
for the study area. We sourced the LiDAR-derived DTM from The 
Ohio Geographically Referenced Information Program (OGRIP; 
https://ogrip.oit.ohio.gov/Home.aspx) and Landsat 8 Imagery from 
the United States Geological Survey (USGS; https://earth​explo​
rer.usgs.gov), and corrected for known timber harvests occurring 
after data acquisition (Adams & Matthews, 2018; Adams et al., 
2019). We tested for multicollinearity among the predictors with 
Pearson's correlation coefficient, and no variables were correlated 
above 0.7 (see Schooler & Zald, 2019). We scaled and centered all 
continuous variables to have a mean of zero and standard devia-
tion of one.

2.4 | Timber rattlesnake radio-telemetry

As part of an ongoing study, we radio-tracked 37 adult TRS (21 males 
and 16 non-gravid females) between 2016 and 2019 to obtain 
behavior-specific spatial data (further described in Hoffman et al., 
2020). We relocated snakes 1–3 times per week and classified be-
havioral state (e.g., ecdysis, resting, foraging) upon relocation, result-
ing in 522 observed foraging locations. We noted foraging locations 
when snakes exhibited a characteristic “S”-shaped ambush posture: 
compactly coiled, with head extending past outer coil, and a greater 
number of anterior directional changes compared to a resting state 
(Figure 1; Reinert et al., 1984). We also identified the presumed for-
aging orientation type—log-oriented, non-log-oriented, or vertical 
tree-oriented (Goetz et al., 2016; Reinert et al., 2011). We defined 
a log-oriented posture as when snakes rested on or faced (within 
1-m) a log or fallen branch (Figure 1a; Reinert et al., 1984). We de-
fined a vertical tree-oriented posture as when snakes coiled at the 
base of standing trees, with their heads oriented upwards or facing 
(within 1-m) a tree (Figure 1b; Goetz et al., 2016). We considered 

F I G U R E  2   (a) Placement of a camera 
trap with bait for small mammals one 
meter above and directly overlooking a 
log in a mature forest site in southeastern 
Ohio. (b) Tamias striatus and (c) Peromyscus 
spp. captured on camera at this trap site

(a)

(c)

(b)

https://ogrip.oit.ohio.gov/Home.aspx
https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov
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snakes coiled in ambush on the forest floor but not log or vertical 
tree-oriented to be in a non-log-oriented posture (Figure 1c; Reinert 
et al., 2011). We found males and non-gravid females in our study 
equally likely to forage log-oriented (n = 244) as non-log-oriented 
(n = 239) and to rarely exhibit a vertical tree-orientation (n = 39). 
A preliminary analysis showed that foraging orientation type did 
not affect prey encounter rate for any prey species (Figure A1). We 
therefore used whether a snake was observed in an ambush posture 
(of any orientation) or not in relation to prey availability measures to 
assess optimal foraging in TRS.

2.5 | Small mammal encounter rate models

We modeled the number of days/nights with a small mammal spe-
cies’ observation on camera traps (random and previous TRS loca-
tions) using Bayesian zero-inflated generalized linear models (GLM). 
We considered a zero-inflated framework because of the coarse 
sampling of small mammals across our site and resulting overdisper-
sion in counts. Ecological datasets often contain a higher frequency 
of measured zeros than can be accommodated by standard statisti-
cal distributions and can therefore violate the assumptions of these 

TA B L E  1   Fine-scale (5-m) landscape covariates (n = 16) used to describe small mammal spatial distributions in a mixed-use forest in 
southeastern Ohio

Type Variable Description/interpretation
Summary statistics 
(Mean ± SD, range)

Forest management Presence of burns (Burn) Presence/absence of burned stands (No. 
camera sites).

Burns = 31 Non-
burns = 211

Stand age (Age) Approximate stand age (years), reflecting 
forest management activity.

72 ± 47, 4–151

Topography Beers’ transformed aspect index 
(Beers)

Transforms circular aspect to a range of 
xeric southwest to mesic northeast 
aspects.

0.95 ± 0.69, 0–2

Elevation (DEM) LiDAR-derived Digital Terrain Model (m). 258.4 ± 18.5, 203–292

Slope Slope (degrees). 15.3 ± 7.6, 0–36.9

Stream distance (Stream) Distance to the nearest stream (m). 154 ± 91, 1–381

Multipurpose—Ordination 
Axes

NMDS axis 1 of floristic variation 
(NMDS1)

Ordination axis representing a moisture 
and topographic gradient. Large, 
negative values represent drier 
southwestern-facing slopes and 
positive values represent floodplains.

−0.006 ± 0.236, 
−0.516–0.981

Multipurpose—Ordination 
Axes

NMDS axis 2 of floristic variation 
(NMDS2)

Ordination axis representing a forest 
structural and successional gradient. 
Large, positive values are associated 
with taller canopies and mature 
forests.

−0.048 ± 0.199, 
−0.760–0.420

Vegetation structure and 
composition

Canopy surface height (CHM) Canopy height model representing the 
maximum canopy height (m).

16.3 ± 10.7, 0–40

MacArthur's Foliage Height Diversity 
(FHD)

Shannon's diversity of vegetation hits 
throughout the vertical profile (3 
vertical layers, 0–5, 5–25, and >25 m) 
of each point location.

0.70 ± 0.26, 0–1.04

Enhanced vegetation index (EVI) Vegetation “greenness” or productivity. 0.703 ± 0.109, 0.095–0.878

Plant species richness (PSR) Number of woody plant taxa. 14.6 ± 1.5, 7.8–18.7

Overstory density (OVE) Amount of overstory (i.e., ≥8-cm DBH) 
foliage (stems/ha).

18.5 ± 24.2, 0–132.2

Understory density (UND) Amount of understory (<8-cm DBH) 
foliage (stems/ha).

164.2 ± 37.9, 41.9–316.6

Tree density (TDE) Combined density of overstory and 
understory size classes of woody 
plants (stems/ha)

444.7 ± 130.5, 56.3–954.6

Skewness of LiDAR returns (SKE) Skewness of LiDAR returns is expected 
to be greater (i.e., longer tail) for 
mature stands compared to younger 
stands.

0.93 ± 1.18, −0.06–8.45

Note: Summary statistics for each continuous variable provide the mean value (± SD) and range of values across 242 camera trap sites.
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distributions (Martin et al., 2005). Zero-inflated models combine two 
underlying processes, modeling non-zero counts and true zeros with 
a Poisson or negative binomial process and the potentially false zeros 
with a binomial process (Zi), generating the probability of measuring 
a zero in error (Zuur et al., 2009).

We tested the global set of landscape covariates (n = 16), year, an 
offset of the number of active camera days, and Zi covariates (i.e., the 
binomial “false-zero” process) under negative binomial and Poisson 
distributions, resulting in 10 candidate global models for each spe-
cies (Tables A2–A4). We suspected that interannual variation, likely 
representing acorn mast availability (Clotfelter et al., 2007), or the 
timing of camera placement during each season (i.e., seasonal fluctu-
ations in small mammal activity patterns) could affect our detection 
success at a particular location. We therefore accounted for tem-
poral variation in species encounter rates for zero-inflated models 
with the Zi term, using no covariates as a null, median date of camera 
deployment (modeled as a quadratic function), year, and the additive 
or interactive combinations of median date and year (Table A2–A4). 
We used diagnostic plots to compare each model's predictions of 
the mean and variance and selected the global model of best fit. For 
each small mammal species, a zero-inflated negative binomial model 
best represented encounters but the selected Zi covariates varied by 
species (Table A5).

We examined model coefficients for their magnitude of effect 
in each selected global model and removed covariates with no or 
a negligible effect, removed covariates with >15% posterior distri-
bution overlap with zero, and removed covariates with >20% of the 
posterior within the Region of Practical Equivalence (ROPE; Piironen 
& Vehtari, 2017). We considered the resulting species model with 
the lowest leave-one-out statistic (LOO) and Watanabe–Akaike in-
formation criterion (WAIC) value to be the most parsimonious.

We projected small mammal spatial relationships across the 
landscape by using the fitted encounter rate model for each species 
and the corresponding landscape raster surfaces using the “raster” 
package in R version 3.6.1 (Hijmans, 2020; R Core Team, 2020). We 
generated mean encounter probabilities for each species across the 
study site at a 10-m resolution for 2017 and 2018. In addition to 
landscapes of species-specific encounter rates, we considered the 

dietary breadth of adult TRS and generated grouped prey landscapes 
by adding the relevant encounter surfaces together. In one group, 
we combined mouse and chipmunk encounters (Cumulative MC) 
because they are most likely to be encountered at logs (Douglass 
& Reinert, 1982). We also combined mouse, chipmunk, and squirrel 
encounters (Cumulative Prey) to capture the body size gradient in 
prey selection for adult TRS. We extracted the predicted prey spe-
cies or prey group encounter rates at every TRS location (foraging 
and non-foraging).

2.6 | Snake foraging models

We used prey availability variables generated from camera trap ob-
servations of small mammals and whether a snake was observed in 
an ambush location or not to assess optimal foraging in TRS. We 
modeled snake foraging using mixed-effects Bernoulli GLMs with 
foraging behavior as a binomial function of the spatially explicit small 
mammal encounter rates. We included a random effect for individual 
snakes. We tested models with prey type variations for non-gravid 
adult females (NGF; n = 16), adult males (n = 21), and the combined 
adult TRS group (n = 37). We excluded gravid females (n = 10) be-
cause they fast during gestation (Reinert et al., 1984).

We did not monitor small mammal spatial distributions for two 
years (2016 and 2019) that we tracked snakes. Although we recog-
nize the potential for prey fluctuations in density corresponding with 
acorn mast cycles (Clotfelter et al., 2007), the predictive landscape 
metrics we considered did not vary over the course of the study. 
We therefore generalized our findings from 2017 to 2018 to all ob-
servations from our telemetry study. We estimated small mammal 
encounter rates, comprising mouse, chipmunk, squirrel, and the cu-
mulative prey surfaces (Cumulative MC and Cumulative Prey) for 
2017 and 2018, but used the two-year averaged encounter rates for 
each species or species group to represent prey availability in 2016 
and 2019. We report results from 2016 to 2019 but reference the 
2017–2018  subset in model selection tables and when applicable 
in results (see Table A6 for further details). We tested species-level 
and cumulative prey models for adults collectively, and non-gravid 

Sites with ≥1 
detection

Sites with >1 
detection

Maximum 
detections (days)

Mice (Peromyscus spp.) 148 (61%) 86 (36%) 17

Eastern chipmunks (Tamias 
striatus)

89 (37%) 48 (20%) 9

Squirrels (Sciurus spp.) 70 (29%) 15 (6%) 6

Shrews (Soricidae) 14 (6%) 2 (0.8%) 2

Voles (Microtus spp.) 1 (0.4%) 0 1

Eastern cottontails 
(Sylvilagus floridanus)

25 (10%) 8 (3%) 3

Birds 124 (51%) 65 (27%) 11

Note: Bird detections include common woodland residents, such as wood thrushes (Hylocichla 
mustelina), ovenbirds (Seiurus aurocapilla), and Carolina wrens (Thryothorus ludovicianus).

TA B L E  2   Camera trap (n = 242) daily 
detections of potential prey items for 
timber rattlesnakes (Crotalus horridus) in 
a mixed-use forest in southeastern Ohio 
from 2017 to 2018
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females and males separately. We considered the foraging models 
with the lowest LOO and WAIC scores as the best-supported model 
for each group. We used the “brms” package in R to fit all statistical 
models (Bürkner, 2017).

3  | RESULTS

3.1 | Prey diversity on camera traps

Across 242 camera sites and a cumulative 1901 trap days and 1662 
trap nights, we successfully captured the dominant prey species of 
TRS. We detected mice at most sites (61% of sites with ≥1 detec-
tion; Table 2) and the most extensively and frequently (range of 0–17 
camera days) of any species. We observed chipmunks and squirrels 
at fewer sites (37% and 29% of sites with ≥1 detection, respectively) 
and less frequently (maximum of 9 and 6 days, respectively; Table 2). 
In addition to these primary prey items, we also infrequently cap-
tured shrews (Soricidae), voles (Microtus spp.), and cottontail rabbits 
(Sylvilagus floridanus). We also frequently captured bird species that 
are potential opportunistic prey sources.

3.2 | Small mammal encounter rate models

3.2.1 | Mice

The most explanatory model for daily mice encounters was a zero-
inflated (Zi =year) negative binomial model with year, burn history, 
and stand age (Table A5). Mice were most likely to be encountered 
in non-burns of a younger age (Table 3). Mice were encountered 
approximately twice as frequently in 2018 (2.22 mice/day; 95% CI: 
1.94–2.55) than 2017 (0.91 mice/day; 95% CI: 0.70–1.16; Figure 3a). 
Encounters were lowest in burned stands (Table 3), at 0.53 mice en-
counters per day compared to approximately 0.91 encounters/day in 
other stand types (Figure 3b). Stand age was the weakest predictor 
of mice encounters (Table 3), but encounters were generally more 
frequent in younger stands (Figure 3c). Mice could be encountered 
across the landscape at a range of 0.32–0.81/day in 2017 and 0.84–
1.9/day in 2018.

3.2.2 | Chipmunks

The best-fitting model for daily chipmunk (CM) encounters was a 
zero-inflated (Zi =year) negative binomial model with the forest suc-
cessional gradient (NMDS2), plant species richness (PSR), and slope 
(Table A5). Chipmunks were most frequently encountered in stands 
with taller canopies and greater plant richness, and along steeper 
slopes (Figure 4). The forest successional gradient was the best land-
scape predictor (Table 3) of chipmunk encounter rates (Figure 4a). 
Encountering a chipmunk would take between 1 and 2.5 days (mean 
~1.5 days) in a more mature forest but between 3 and 16 days (mean 

7 days) in a younger stand. Plant species richness had a similar ef-
fect size (mean 0.23 ± 0.11), increasing from 0.14 CM/day (95% CI: 
0.04–0.40) at low plant richness to an estimated 0.74 CM/day (95% 
CI: 0.37–1.48) in a more speciose stand (Figure 4b). Chipmunks were 
also encountered more frequently along steeper slopes (Figure 4c). 
Chipmunks could be encountered across the landscape at a range of 
0.01–1.2/day in 2017 and 0.04–2.8/day in 2018.

3.2.3 | Squirrels

The most supported model for squirrel (SQ) encounters was a zero-
inflated (Zi  =  median date2  +  year) negative binomial model with 
year, foliage height diversity (FHD), the moisture gradient (NMDS1), 
NMDS2, overstory density, and understory density (Table A5). 
Squirrels were most frequently encountered in drier areas and stands 
with taller canopies and greater overstory density, low canopy struc-
tural diversity, and low understory density (Table 3). Year had the 
largest effect on squirrel encounters (1.05 ± SE 0.31), with encoun-
ter rate doubling from an estimated 0.16 SQ/day (95% CI: 0.08–0.25) 
in 2017 to 0.37 SQ/day (95% CI 0.19–0.56) in 2018 (Figure 5a).

The forest succession gradient (NMDS2) was the best land-
scape predictor of squirrel encounter rates, with squirrels ten times 
more frequently encountered in forest stands with taller canopies 
(0.38 encounters/day, 95% CI: 0.15–0.93) compared to more early-
successional stands (Figure 5b). Squirrels could be encountered 
within 1–7  days (mean 3  days) in a mature stand versus rarely, if 
at all, in the youngest stands with low canopy height. Squirrel en-
counters were negatively associated with NMDS1, suggesting the 
species’ preference for drier, southwestern-facing slopes that har-
bor nut-bearing trees (Figure 5c). Squirrel encounter rate drastically 
declined with greater understory density, from 0.55 SQ/day (95% CI: 
0.17–1.64) in sparse understories to minimal encounters (0.03 SQ/
day; 95% CI: 0.01–0.13) in highly vegetated understories (Figure 5d). 
Squirrels were also encountered more frequently at sites with greater 
overstory density (Figure 5e). Additionally, squirrels were negatively 
associated with foliage height diversity (FHD; Figure 5f), suggesting 
a preference for forests stands of similar height and age (Aber, 1979). 
Squirrels could be encountered across the landscape at a range of 
0.004–1.29/day in 2017 and 0.01–3.2/day in 2018.

3.3 | Foraging probability models

The Cumulative Prey landscape, representing the overlay of 
mice, chipmunk, and squirrel daily encounters, was a strong, well-
supported predictor (1.09 ± SE 0.09) of adult TRS foraging probabil-
ity (Tables A6 and A7). The probability of snake foraging increased 
sharply with predicted prey encounter rates (Figure 6). Snake forag-
ing probability increased from a minimum of 0.06 (95% CI: 0.04–
0.08) associated with an estimated mean prey encounter rate of 0.59 
prey/day to 0.69 (95% CI: 0.61–0.76) at an estimated 3.83 prey/day 
(Figure 6).
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Cumulative prey was also the best predictor (1.05 ± SE 0.15) for 
non-gravid females in both year groupings (Table A6). Female forag-
ing probability increased from 0.07 (95% CI: 0.05–0.11) at low esti-
mated prey encounters (0.63 prey/day) to 0.7 (95% CI: 0.55–0.80) at 
the highest predicted prey encounter rate (3.8 prey/day; Figure 7a). 
In terms of individual prey species, the best-supported species-level 
model for females included encounter rates for mice (1.39 ± SE 
0.22) and squirrels (1.73 ± SE 0.72; Table A7), but with a modest in-
crease in foraging probability associated with mice encounters only 
(Figure 7b) and significant uncertainty around the effects of squirrel 
encounters only (Figure 7c).

For males, the species-level foraging model was marginally more 
supported in 2016–2019 and the Cumulative Prey model was better-
supported in 2017–2018 (Table A6). There was greater uncertainty 
around species-level effects on male foraging, particularly for squir-
rels (Table A7). The distribution of mice (0.75 ± SE 0.20) was least 
predictive of male foraging; foraging probability increased margin-
ally to 0.3 (95% CI: 0.22–0.38) at the greatest predicted encounter 
rate (1.90 mice/day; Figure 8a). Predicted chipmunk (1.09 ± SE 0.35) 
and squirrel (2.9 ± SE 0.77) encounters had the greatest effects on 
male foraging (Table A7). Male foraging probability increased to a 
maximum of 0.51 (95% CI: 0.29–0.72) at the highest chipmunk en-
counter rate of 1.81 CH/day (Figure 8b). For squirrel encounters, 

male foraging probability increased sharply to a maximum of 0.62 
(95% CI: 0.36–0.83) at high predicted encounters (0.87 SQ/day; 
Figure 8c). Estimated cumulative prey encounters also had a strong 
effect (1.14 ± SE 0.11) on male foraging probability, similar to trends 
observed across all adults (Table A7; Figure 8d).

4  | DISCUSSION

Because ectotherms have reduced demands for regular, frequent 
foraging and many snakes in particular can be low-energy special-
ists (Glaudas & Alexander, 2017), prey distribution and availability 
may be considered unlikely proximate influences on habitat selec-
tion (Carfagno et al., 2006; Heard et al., 2004). However, we found 
that total prey “availability” (measured as cumulative daily prey en-
counter rates), rather than any one prey type, was overall the best 
predictor of TRS foraging. Our results suggest that TRS may pref-
erably forage in prey-rich areas and forage optimally. Further, our 
study supports that TRS may attune to fine-scale differences in prey 
availability despite specializing on common woodland rodents that 
are generally thought to be widespread.

Previous studies have found support for some overlap in snake 
and prey distributions across a single, typically macrohabitat scale. 

Mice Chipmunks Squirrels

Year 0.56 (±0.17)
<1%

1.05 (±0.31)
<1%

Burn −0.52 (±0.19)
<1%

Age −0.09 (±0.06)
7%

Slope 0.19 (±0.09)
3%

NMDS1 −0.24 (±0.14)
4%

NMDS 2 0.27 (±0.10)
<1%

0.38 (±0.17)
1%

PSR 0.23 (±0.11)
2%

FHD −0.41(±0.22)
3%

OVE 0.3 (±0.14)
2%

UND −0.4 (±0.17)
1%

Zi: (Median camera deployment 
date)2

−1.52 (±1.16)
5%

Zi: Year −3.56 (±2.09)
1%

−4.02 (±2.04)
0

1.21 (±2.8)
30%

Note: We modeled the number of camera days with a species detection, offset by the total number 
of active camera days, as a function of study year (2017–2018) and remotely sensed landscape 
variables (5-m resolution). We report the variables that best described each species’ distribution. 
Mean coefficient estimates, standard errors (± SE), and percentage of the posterior distributions 
overlapping zero are provided. Refer to Table 1 for further descriptions of covariates.

TA B L E  3   Bayesian zero-inflated 
(Zi) negative binomial models of mice 
(Peromyscus spp.), chipmunk (Tamias 
striatus), and squirrel (Sciurus spp.) 
encounter rates across 242 camera sites in 
a mixed-use forest in southeastern Ohio
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The effects of temporal and/or spatial heterogeneity in prey densi-
ties on predator habitat selection are also more straightforward to 
describe on a broader scale because one can estimate prey abun-
dance/availability and describe snake habitat use within specific 
habitat types (Glaudas & Rodríguez-Robles, 2011). However, prey 
may be more abundant in some habitats but more easily detected 
by the predator in others (i.e., “higher catchability”) due to a lack of 
cover or camouflage or changes to predator avoidance behavior by 
prey (Hopcraft et al., 2005). For example, TRS in an agricultural land-
scape frequently foraged in fields that harbored lower densities of 
small mammals than surrounding woodlands, likely as a result of in-
creased prey catchability (Wittenberg, 2012). Because of the use of 
both “prey availability” and “prey abundance” interchangeably in the 
literature, we will hereafter use prey availability to refer to both but 
will make note of the context in which they are used when possible.

Other studies have shown that snake home ranges generally 
contain a high proportion of habitat preferred by rodents (i.e., cor-
respondingly high rodent densities), but snakes do not exhibit site 
selection that would maximize small mammal encounters (Sperry 
& Weatherhead, 2009; Glaudas & Rodríguez-Robles, 2011; but see 
Baxley & Qualls, 2009). We expect that we observed a robust, pos-
itive association between prey availability and snake foraging on a 
fine scale partly because we could distinguish foraging site selec-
tion from other distinct behaviors shaping site use. Previous snake 
telemetry studies accounting for prey availability have either ag-
gregated all snake relocations to compare seasonally within home 

ranges (e.g., Baxley & Qualls, 2009; Michael et al., 2014; Sperry 
& Weatherhead, 2009) or against random or non-used locations 
(Glaudas & Rodríguez-Robles, 2011), rather than accounting for 
behavior-specific variation in habitat use preferences.

Hoffman et al. (2020) found that site selection associated with 
foraging, ecdysis, digestion, and gestation in this TRS population 
could be described by many of the landscape variables used in this 
study (Table 1) at behavior-specific spatial scales (5–105 m). Foraging 
was negatively associated with temperature and a landscape mois-
ture gradient (indicating drier soils and oak-dominated areas), and 
these conditions did not describe site use for other behaviors 
(Hoffman et al., 2020). Importantly, TRS foraging was associated 
with cooler temperatures than sites associated with other behavioral 
states, suggesting that foraging behavior may be decoupled from 
snake thermoregulatory needs (Hoffman et al., 2020). Our collective 
findings that TRS foraging is associated with greater prey availability 
but also suboptimal conditions for thermoregulation demonstrate 
that snakes preferentially seek out prey-rich areas to forage. Habitat 
structure may therefore incompletely describe foraging behavior, 
and the prey landscape is an important additional predictor of am-
bush site selection (Figure 6).

Our finding that the cumulative prey landscape, instead of any 
one prey species’ distribution, is strongly predictive of TRS foraging 
can be understood in the context of snake foraging mode and dietary 
breadth. First, foraging site selection that maximizes encounters 
across multiple prey species is likely partly due to the sit-and-wait 

F I G U R E  3   Daily estimated mice 
(Peromyscus spp.) encounter rates from 
242 camera trap sites distributed in a 
mixed-use forest in southeastern Ohio
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foraging mode of most viperids (Glaudas et al., 2019; Huey & Pianka, 
1981; Reinert et al., 1984). Predators using an ambush strategy to 
hunt are more likely than widely foraging predators to prey on highly 
mobile species (i.e., species more likely to be encountered), be non-
selective in their prey choices, and therefore consume prey species in 
proportion to their availability (Glaudas et al., 2019; Huey & Pianka, 
1981). Viperid species appear to forage in a two-part process, in 
which snakes first search the surrounding landscape for a suitable 
ambush site where prey may be more readily available, and then wait 
to encounter prey or abandon the site when prey encounters are 
unlikely (Clark, 2006; Reinert et al., 1984). Clark (2006) monitored 
foraging TRS with fixed videography and demonstrated that snakes 
selected ambush sites based on potential contact with multiple prey 
individuals of the same or a different species, with snakes likely using 
prey chemical trails for identification of these fine-scale small mam-
mal hotspots. Our results also support that TRS may select ambush 
sites based on the detection of multiple prey species (Clark, 2004).

Specificity in snake diet also affects the importance of the prey 
landscape for snake habitat selection. The studies that have most 
conclusively linked snake space use to the abundance of their prey 
examined focal snake species which primarily consumed a single 
prey species (Heard et al., 2004; Madsen & Shine, 1996). With in-
creasing diet generalization, snakes are expected to respond to 
total prey availability rather than the distribution of any one species 
(Carfagno et al., 2006). This supports our finding that foraging in 
TRS, a species that primarily consumes small mammals but does not 

specialize on any species, positively correlates with the overlapping 
distributions of multiple potential prey.

The orientation of TRS ambush, such as at log, non-log (i.e., for-
est floor), or vertical tree, can suggest but not validate the potential 
prey species targeted through ambush (Goetz et al., 2016; Reinert 
et al., 2011). Snakes are more likely to encounter mice and some 
squirrel species (including Tamias striatus and S. carolinensis) across 
fallen logs (Douglass & Reinert, 1982), shrews and voles on the forest 
floor through leaf litter and vegetation (Reinert et al., 2011), and S. 
carolinensis at standing trees (Goetz et al., 2016). An alternative ex-
planation to TRS prioritizing multiple prey chemical cues in ambush 
site selection is that by combining site-specific prey encounter rates 
for multiple prey species, we negated any prey-specific preferences 
by snakes. However, we do not believe this to be likely because we 
did not detect a difference in predicted encounters of any prey spe-
cies or combined prey grouping for observed snake foraging sites 
among ambush orientations (e.g., snakes foraging at logs were not 
more likely to encounter mice than in non-log ambush). Our finding 
of equally available prey opportunities among ambush orientations 
further supports that prey identity is potentially less significant than 
overall prey availability during foraging in this population (Figure A1).

Although cumulative prey emerged as the best-supported model 
for adults generally, we also found some sex-specific differences in 
individual prey associations (Table A7). Mice most reliably predicted 
female foraging (Figure 7b), while chipmunks best predicted male 
foraging (Figure 8b). Timber rattlesnakes exhibit an ontogenetic 

F I G U R E  4   Daily estimated chipmunk 
(Tamias striatus) encounter rates from 242 
camera trap sites distributed in a mixed-
use forest in southeastern Ohio
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expansion in diet, with larger snakes (i.e., adult males) able to con-
sume larger prey and a broader diversity of small mammals but still 
target smaller prey indiscriminately (Clark, 2002; Reinert et al., 2011). 
We must emphasize, however, that we did not conduct diet analyses 
to examine the dietary compositions of snakes in our population, and 
diet has been shown to vary by population and region (Goetz et al., 
2016; Reinert et al., 2011; Wittenberg, 2012). We therefore caution 
against trying to infer dietary patterns from the spatial overlap of 
snakes with individual prey species or from observed ambush orien-
tations (Clark, 2006; Reinert et al., 2011).

Cameras detected mice (Peromyscus spp.) much more frequently 
than chipmunks (Tamias striatus) or squirrels (Sciurus spp.), and ac-
cordingly, encounter rates for mice scaled higher overall (Table 2; 

Figure 3). Despite the prevalence of mice across our study area, 
their distribution related very little to that of chipmunks (Pearson's 
r = −.19) and squirrels (Pearson's r = −.10). Chipmunks and squirrel 
distributions were most correlated at the landscape scale (Pearson's 
r =  .3). We captured squirrels on camera more intermittently than 
other rodents, but they exhibited the most complex landscape-
scale spatial relationships. Similar to mice and chipmunks, squirrels 
preferred forest structural characteristics associated with mature 
forests, including taller canopies and lower understory density, but 
uniquely with drier, southwestern-facing slopes associated with 
oaks.

We primarily considered spatial associations of small mammals, 
but we also observed temporal shifts in availability (Figures 3a and 

F I G U R E  5   Daily estimated squirrel 
(Sciurus spp.) encounter rates from 242 
camera trap sites distributed in a mixed-
use forest in southeastern Ohio
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5a). Rodent encounter rates greatly increased between the two 
sampled years (2017–2018), and year was the best predictor in the 
zero-inflated process models for all species (Table A5). We believe 
this pattern likely corresponds to the boom-bust mast cycles of 
oaks (Quercus spp.), beeches (Fagus spp.), and hickories (Carya spp.) 
during 2016 and 2017 and the associated stimulus of increased food 

availability on rodent population dynamics during the following year 
(Clotfelter et al., 2007). Given our rodent encounter rate patterns, 
we suspect, but cannot confirm, that 2016 was a poor mast year, 
and from observational data, 2017 represented a better than aver-
age mast crop, particularly for black oaks (Quercus velutina) at the 
site (R. Snell, personal communication). We emphasize that we did 
not expect these yearly fluctuations to affect snake spatial associ-
ations with small mammals because our remotely sensed landscape 
and forest structural characteristics did not change over the course 
of the study.

Although our study provides a unique, fine-scale link between 
prey and predator space use, there are some limitations to the in-
ferences we can make. First, an important assumption to behavioral 
observations during radio-telemetry is continuity in behavior. We 
monitored snakes during the day and assumed that individuals re-
mained in a behavioral state if we relocated them at the same site 
and they exhibited the same behavioral state (e.g., ambush posture) 
across multiple relocations. We therefore cannot account for tempo-
ral gaps in spatial data, during which behavioral shifts or additional 
ambush site selection/abandonment and any nocturnal foraging pat-
terns may occur (Clark, 2006).

Our field deployment of camera traps was intended to simulate 
a snake's perspective and represent a conceptual test of estimating 
prey availability for this species. Improvements to our camera trap 
protocol would need to occur in any future applications, such as 
improving prey species’ detections and sampling more thoroughly 

F I G U R E  6   Foraging probability of 37 adult timber rattlesnakes 
(Crotalus horridus) in a mixed-use forest in southeastern Ohio 
predicted by the cumulative contribution of estimated site-specific, 
daily encounters with mice (Peromyscus spp.), chipmunks (Tamias 
striatus), and squirrels (Sciurus spp.) from 2016 to 2019

F I G U R E  7   Adult female (n = 16) 
timber rattlesnake (Crotalus horridus) 
foraging probabilities in a mixed-use 
forest in southeastern Ohio predicted by 
prey encounter rates from 2016–2019. 
(a) Cumulative prey encounter rate, 
representing the additive combination 
of mouse (Peromyscus spp.), chipmunk 
(Tamias striatus), and squirrel (Sciurus spp.) 
site-specific encounter rates; (b) mice-
specific encounter rate; and (c) squirrel-
specific encounter rate
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and extensively across habitat types and snake ambush sites specif-
ically. Improved image quality could potentially enhance detection 
of rarely captured, smaller prey, such as shrews and voles (Table 2). 
Additionally, we used daily species occupancy to account for indi-
vidual animals moving around or returning to camera sites within 
a 12-h interval. Our prey availability metric underestimates true 
availability. However, we expect this bias to be consistent across all 
habitats surveyed, which may not be the case in studies using prey 
abundance as a proxy of availability (Carfagno et al., 2006; Sperry 
& Weatherhead, 2009).

Because we placed a subset of cameras at known ambush sites, 
it is possible that the presence of snakes caused small mammals to 
avoid these sites (e.g., Glaudas & Rodríguez-Robles, 2011). However, 
we do not think this pattern is likely because small mammal sampling 
generally occurred more than three days (median = 15 days) following 
a snake's departure. We also found no difference (0.02 ± SE 0.08) in 
rodent availability (Cumulative Prey) from cameras placed in previously 
used TRS foraging locations in 2018 compared to cameras from ran-
domly selected sites in 2018. We made indirect spatial links between 
rodents and snakes as our camera locations do not, for the most part, 
match known TRS foraging locations. We inferred prey availability at 
unsampled snake ambush sites by projecting small mammal spatial re-
lationships across the landscape, which may incompletely capture the 
spatial heterogeneity of their distributions. However, we found our re-
motely sensed landscape-scale covariates (Table 1) to have moderately 
strong effects on rodent encounter rates (Table 3).

We demonstrated that prey availability can be an important 
driver of foraging site selection, which corroborates predictions 
from an optimal foraging framework. However, optimal foraging the-
ory can also be applied to understand temporal patterns of site use 
by predators (Charnov, 1976). Future work should therefore investi-
gate time spent foraging to assess site residency times (alternatively, 
“giving-up time”) and potential fitness costs to suboptimal foraging 
site use. We recommend continued assessment of optimal foraging 
theory and its corollaries in describing observed foraging behavior, 
particularly in conventionally underrepresented species in the litera-
ture, such as Viperid snakes and other low-energy specialists.

5  | CONCLUSIONS

Multiple factors could affect the relationship between prey avail-
ability and snake spatial ecology, including prey behavior and habitat 
use, the spatial scales of study, snake diet and foraging mode, and 
environmental fluctuations. We recognize that thermal require-
ments are an important determinant of overall habitat use variation 
in snakes inhabiting temperate climates, but prey availability plays 
a potentially important and underappreciated role in local habitat 
selection. We found a strong association between TRS foraging site 
selection and rodent encounter rates. Our results suggest that TRS 
can detect fine-scale differences in prey availability and spatially 
distribute themselves accordingly. We demonstrate that optimal 

F I G U R E  8   Adult male (n = 21) timber 
rattlesnake (Crotalus horridus) foraging 
probabilities in a mixed-use forest in 
southeastern Ohio predicted by prey 
encounter rates from 2016–2019. 
Prey-specific foraging models include 
encounters with (a) mice (Peromyscus spp.), 
(b) chipmunks (Tamias striatus), and (c) 
squirrels (Sciurus spp.). (d) Cumulative Prey 
encounter rate, representing the additive 
combination of mouse, chipmunk, and 
squirrel site-specific encounter rates
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foraging theory may be applicable to the habitat selection of a low-
energy ambush predator.
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APPENDIX 1

TA B L E  A 1   Land cover types present at the study site, their relative coverage on the landscape, and their representation in our game camera 
trap dataset for small mammals (242 total camera trap sites)

Land cover class Landscape coverage Camera coverage

Mature deciduous 80% 183 (75%)

Burns (& partial harvest with burn) 6% 31 (13%)

Clear-cuts 11% 23 (10%)

Pines 3% 5 (2%)

Total sites 242

Distribution Zi formula LOO WAIC

Poisson None −9.7 −9.3

Median Date + Median Date2 −10.1 −9.7

Median Date + Median Date2 + Year −5.4 −4.8

(Median Date + Median Date2) * Year −7.3 −6.9

Year −5.3 −4.7

Negative Binomial None −3.4 −3.4

Median Date +Median Date2 −3.5 −3.6

Median Date +Median Date2 + Year 0 0

(Median Date +Median Date2) * Year −0.8 −0.7

Year −0.1 −0.2

Note: The global set of predictors described forest structure and composition, landscape 
topography, and year of study (see Table 1 for further descriptions of covariates). Median 
date refers to the median date of a camera's active interval and was modeled as a quadratic. 
We considered diagnostic plots, leave-one-out cross-validation (LOO), and Watanabe–Akaike 
information criterion (WAIC) to determine the most parsimonious model. The best-supported 
global model (in bold type) was a zero-inflated negative binomial model with year of study 
explaining the excess of zeros.

TA B L E  A 3   Candidate global models 
describing chipmunk (Tamias striatus) 
encounter rates in a mixed-use forest in 
southeastern Ohio between 2017 and 
2018, including variations of zero-inflated 
(Zi) Poisson and negative binomial models 
to account for potential temporal variation 
in small mammal distributions contributing 
to an excess of zeros

Distribution Zi formula LOO WAIC

Poisson None −6.3 −6.1

Median Date + Median Date2 −6.5 −6.3

Median Date + Median Date2 + Year −2.4 −2.2

(Median Date + Median Date2) * Year −3.2 −3

Year −1.5 −1.4

Negative Binomial None −2 −2.1

Median Date + Median Date2 −2.2 −2.2

Median Date + Median Date2 + Year −0.8 −0.8

(Median Date + Median Date2) * Year −1.3 −1.2

Year 0 0

Note: The global set of predictors described forest structure and composition, landscape 
topography, and year of study (see Table 1 for further descriptions of covariates). Median 
date refers to the median date of a camera's active interval and was modeled as a quadratic. 
We considered diagnostic plots, leave-one-out cross-validation (LOO), and Watanabe–Akaike 
information criterion (WAIC) to determine the most parsimonious model. The best-supported 
global model (in bold type) was a zero-inflated negative binomial model with year of study 
explaining the excess of zeros.

TA B L E  A 2   Candidate global models 
describing mice (Peromyscus spp.) 
encounter rates in a mixed-use forest in 
southeastern Ohio between 2017 and 
2018, including variations of zero-inflated 
(Zi) Poisson and negative binomial models 
to account for potential temporal variation 
in small mammal distributions contributing 
to an excess of zeros
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Distribution Zi formula LOO WAIC

Poisson None −1.6 −1.9

Median Date + Median Date2 −0.3 −0.3

Median Date + Median Date2 + Year 0 0

(Median Date + Median Date2) * Year −0.2 −0.2

Year −2.1 −2.4

Negative Binomial None −1.4 −1.4

Median Date +Median Date2 −0.4 −0.2

Median Date +Median Date2 + Year −0.1 0

(Median Date +Median Date2) * Year −0.5 −0.5

Year −1.5 −1.6

Note: The global set of predictors described forest structure and composition, landscape 
topography, and year of study (see Table 1 for further descriptions of covariates). Median 
date refers to the median date of a camera's active interval and was modeled as a quadratic. 
We considered diagnostic plots, leave-one-out cross-validation (LOO), and Watanabe–Akaike 
information criterion (WAIC) to determine the most parsimonious model. The best-supported 
global model (in bold type) was a zero-inflated negative binomial model with median date of 
camera deployment and year of study explaining the excess of zeros.

TA B L E  A 4   Candidate global models 
describing squirrel (Sciurus spp.) 
encounter rates in a mixed-use forest in 
southeastern Ohio between 2017 and 
2018, including variations of zero-inflated 
(Zi) Poisson and negative binomial models 
to account for potential temporal variation 
in small mammal distributions contributing 
to an excess of zeros
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TA B L E  A 5   Candidate Bayesian zero-inflated (Zi) negative binomial models for mice, chipmunks, and squirrels describing encounter rates 
from 242 camera traps in a mixed-use forest in southeastern Ohio

Species and candidate models LOO WAIC

Mice (Peromyscus spp.)

[G] Counts ~Year + Burn +Age + Beers +DEM + Slope +
Stream +NMDS1 + NMDS2 + CHM +FHD + EVI +
PSR +OVE + UND +TDE + SKE + offset(log(Days)),
Zi ~ Year

−9.6 −8.8

[M1] Counts ~Year + Burn +CHM + OVE +Age + offset(log(Days)),
Zi ~ Year

−0.9 −1

[M2] Counts ~Year + Burn +CHM + Age +offset(log(Days)),
Zi ~ Year

−0.1 0

[M3] Counts ~Year + Burn +Age + offset(log(Days)),Zi ~ Year 0 −0.1

Chipmunks (Tamias striatus)

[G] Counts ~Year + Burn +Age + Beers +DEM + Slope +
Stream +NMDS1 + NMDS2 + CHM +FHD + EVI +
PSR +OVE + UND +TDE + SKE +offset(log(Days)),
Zi ~ Year

−13.6 −12.9

[C1] Counts ~Slope + NMDS2 + PSR +OVE + UND +offset(log(Days)),
Zi ~ Year

−1.9 −1.8

[C2] Counts ~Slope + NMDS2 + PSR + offset(log(Days)),Zi ~ Year 0 0

Squirrels (Sciurus spp.)

[G] Counts ~Year + Burn +Age + Beers +DEM + Slope +
Stream +NMDS1 + NMDS2 + CHM +FHD + EVI +
PSR +OVE + UND +TDE + SKE + offset(log(Days)),
Zi ~ Median Date + Median Date2 + Year

−8.2 −7.5

[S1] Counts ~Year + Burn +Beers + NMDS1 + NMDS2 + FHD +
PSR +OVE + UND + offset(log(Days)),
Zi ~ Median Date + Median Date2 + Year

−0.8 −0.7

[S2] Counts ~Year + Burn +NMDS1 + NMDS2 + FHD +
PSR +OVE + UND + offset(log(Days)),
Zi ~ Median Date + Median Date2 + Year

−0.5 −0.5

[S3] Counts ~Year + NMDS1 + NMDS2 + FHD +
OVE +UND + offset(log(Days)),
Zi ~ Median Date + Median Date2 + Year

0 0

Note: The number of camera days with a species’ detection (Counts) is offset by the total number of active camera days (Days). Models were reduced 
from the global (G) set of covariates characterizing forest structure and composition (k = 13), landscape topography (k = 3), and year of study (2017–
2018). Refer to Table 2 for descriptions of each covariate. The zero-inflated process was modeled with year and/or median camera deployment 
date. The most parsimonious model (in bold type) for each species was determined using diagnostic plots, leave-one-out cross-validation (LOO), and 
Watanabe–Akaike information criterion (WAIC).
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TA B L E  A 6   Candidate Bayesian mixed-effects Bernoulli models describing timber rattlesnake (Crotalus horridus) foraging as a function of 
predicted prey encounter rates from a landscape-scale small mammal encounter surface (2017–2018) for a mixed-use forest in southeastern 
Ohio

Candidate models 2017–2018 2016–2019

Non-gravid females n = 16 n = 16

Species-level

[1a] Forage ~ Mice + Chipmunks + Squirrels + (1| Snake) −1.9 −0.8

[1b] Forage ~ Mice + Squirrels + (1| Snake) −1.5 −0.2

Cumulative

[2] Forage ~ Cumulative MC + (1| Snake) −1.6 −1.1

[3a] Forage ~ Cumulative Prey + (1| Snake) 0 0

Males n = 15 n = 21

Species-level

[1a] Forage ~ Mice + Chipmunks + Squirrels + (1| Snake) −0.5 0

Cumulative

[2] Forage ~ Cumulative MC + (1| Snake) −4.0 −6.7

[3a] Forage ~ Cumulative Prey + (1| Snake) 0 −1.3

Adults n = 31 n = 37

Cumulative

[2] Forage ~ Cumulative MC + (1| Snake) −8 −6.6

[3a] Forage ~ Cumulative Prey + (1| Snake) −2.3 0

[3b] Forage ~ Cumulative Prey * Sex + (1|Snake) 0 −0.4

Note: Species-level models include predicted daily encounter rates for mice (Peromyscus spp.), chipmunks (Tamias striatus), and squirrels (Sciurus spp.). 
Cumulative models include the additive daily encounter rate predictions for mice and chipmunks specifically (Cumulative MC) or the contribution of 
all species (Cumulative Prey). Variation in prey encounter rates and snake identity (Snake), modeled as a random effect, described TRS foraging status 
(Forage) between 2016 and 2019. In 2016 and 2019, prey encounter values for each snake location represented the average predicted rate (prey 
species or species grouping) between 2017 and 2018. We used diagnostic plots and leave-one-out cross-validation (LOO) to determine the most 
parsimonious models, identified as the smallest selection criterion value (in bold type), for combined adult TRS, non-gravid female, and male foraging 
probabilities among species-level and cumulative models for 2017–2018 and 2016–2019.
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Covariate Estimate SE
95%
LCI

95%
UCI

Overlap 
zero (%)

Females Mice 1.39 0.22 0.94 1.83 0

Squirrels 1.73 0.72 0.34 3.12 0.75

Cumulative Prey 1.05 0.15 0.76 1.34 0

Males Mice 0.75 0.20 0.38 1.15 0.03

Chipmunks 1.09 0.35 0.4 1.78 0.13

Squirrels 2.9 0.77 1.41 4.42 0.03

Cumulative Prey 1.14 0.11 0.92 1.37 0

All adults Cumulative Prey 1.09 0.09 0.91 1.27 0

Note: We tested species-level and CUMULATIVE PREY models for non-gravid females (n = 16) 
and males (n = 21) separately, and cumulative prey models for adults collectively. Mean coefficient 
estimates, standard errors (SE), 95% lower (LCI) and upper (UCI) credible intervals, and percentage 
of the posterior distributions overlapping zero are provided. Refer to Table A6 for further 
descriptions of candidate models.

TA B L E  A 7   Bayesian mixed-effects 
Bernoulli models of adult timber 
rattlesnake (Crotalus horridus) foraging 
from 2016 to 2019, explained by species-
level daily rodent encounter rates rom 
landscape-scale prey encounter surfaces 
of mice (Peromyscus spp.), chipmunks 
(Tamias striatus), and squirrels (Sciurus 
spp.) or cumulative prey encounter rates 
encompassing all prey species

F I G U R E  A 1   Predicted small mammal 
prey availability (10 m resolution) across 
observed timber rattlesnake (Crotalus 
horridus) foraging posture orientations. 
We used a Bayesian multivariate analysis 
of variance (MANOVA) to examine small 
mammal prey availability among different 
foraging orientation types (log-oriented, 
non-log-oriented, and vertical tree-
oriented) by timber rattlesnakes. We 
modeled site-specific daily encounter 
rates of mice (Peromyscus spp.), chipmunks 
(Tamias striatus), and squirrels (Sciurus 
spp.) as a function of foraging orientation. 
Log-oriented and non-log-oriented were 
the most commonly observed foraging 
orientations in our population (n = 244 
and 239, respectively) and these foraging 
orientations exhibited the most similar 
small mammal associations. There was 
greater uncertainty around the species-
level prey availability of vertical tree-
foraging sites due to low observations 
(n = 39) of this ambush posture in our 
population
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F I G U R E  A 2   Predicted encounter 
rates (encounters per day) of potential 
prey species for timber rattlesnakes 
(Crotalus horridus) in a mixed-use forest 
in southeastern Ohio in 2018. We used 
fine-scale (5-m) geospatial covariates to 
model the spatial distributions of mice 
(Peromyscus spp.), chipmunks (Tamias 
striatus), and squirrels (Sciurus spp.) 
across the study area. We generated 
a Cumulative Prey landscape as the 
additive daily encounter rates for all 
species. Observed spatial patterns of 
small mammal encounters were consistent 
between 2017 and 2018, but small 
mammals had a higher relative abundance 
in 2018


